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Warrant Pro 1: Market Price Synthesis with a Software Agent 
and a Neurosimulator 

Abstract: Inherently today's derivative pricing is based on stochastic models developed since the 1970's. Espe-
cially the Cox/Ross/Rubenstein model is widely used. These models base on some unrealistic assumptions. Espe-
cially the necessary estimation of future volatility leads to imprecise prices. Derivatives are priced below or 
above the real market price. In both cases either the issuer or the customer disadvantaged. The imprecision is 
avoided by using software agents and high precision neural networks. The software WARRANT PRO 1 presented 
here combines the software agent PISA (Partially Intelligent Software Agent) and the neurosimulator FAUN 
(Fast Approximation with Universal Neural Networks) to synthesize market price functions instead of theoretical 
price functions. The architecture of WARRANT PRO I is described in detail. PISA automatically extracts data 
from the internet or other (semi-)structured text sources, e. g. videotext. Afterwards PISA automatically analyzes 
the resulting data, eliminates redundant and invalid values and creates neural network input files. High quality 
neural network training and validation patterns with predefinable denseness are generated. Using free sources 
like the internet the input patterns can be generated cost free for any available data. The neurosimulator FAUN 
learns true market price functions from the input patterns and generates a neural network. The neural network 
computes real market prices. It enables customers to single out overpriced and underpriced options a priori (ex-
trapolation) and a posteriori (interpolation). On the other hand issuers are enabled to price over-the-counter-
options (OTC-options) just-in-time. Future versions of WARRANT PRO I will contain the possibility to export 
the market price function in a platform independent executable file. This enables the user to calculate accurate 
market prices on nearly every computer.  
This paper outlines an example with 53 German DAX call warrants. With statistical analysis the quality of the 
issuers' pricing mechanism is analyzed. Issuers and options with prices below and over the market price are sin-
gled out.  

Keywords: Derivatives, market prices, software agent, artificial neural networks, neurosimulator.  

1 Introduction 

Risk management is essential in modern market economy. Financial markets enable compa-
nies and households to select an appropriate level of risk in their transactions by redistributing 
risks towards other agents who are willing and able to accept them. Markets for options, fu-
tures and other so-called derivative instruments – derivatives for short – have a particular 
status. Futures allow agents to hedge against upcoming risks. These contracts promise future 
delivery of a certain item at a certain strike price. Options allow agents to hedge against one-
sided risks. Options give the right, but not the obligation, to buy (call option) or sell (put op-
tion) something at a predefined strike price at expiration (European style option) or at any 
time up to expiration (American style option). For details regarding derivatives, especially op-
tions, see [Hull02]. 

Money can be invested in stocks to benefit from capital gains. To spread the risk often index 
like portfolios are realized. To minimize the risk of loss standardized and over-the-counter 
(OTC) index options can be used. As many different options are available on the market there 
is the necessity for the investing companies to single out overpriced and underpriced options. 
On the other hand issuers have to price (OTC-)options in minutes today. In both cases real 
time market prices are required. Therefore, an important neural network application is the 
synthesis of option and other derivative market prices. Today's options pricing often bases on 
the so called Black/Scholes-model. Another important approach is the Cox/Ross/Rubinstein-
model with various successors, which is also widely spread. For an overview on derivative 
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pricing, see [Hull02], [Pris00] and [JoCv+01]. Here, we present an often more accurate ap-
proach to option pricing which is fully market oriented (instead of theoretic). 

Common to both theoretic models is that the correct option price is investigated by an op-
tion-underlying portfolio with risk-free profit. The theoretically fair option price pBS 
(Black/Scholes) depends on the underlying price s, the strike price b, the time to expiration r, 
the risk-free interest rate ir to expiration and the future volatility σs of the underlying price. 
The latter is estimated by the annualized standard deviation of percentage change in daily 
price. The Cox/Ross/Rubinstein-model depends on s, b, r and ir, too. The future volatility is 
represented by the likelihood of rising and falling of the underlying price s in time steps with 
appropriate length.  

Both mentioned analytic pricing models base on two problematic assumptions: First the mar-
kets are assumed to be efficient so that a prediction of the direction of the market or an indi-
vidual underlying is not possible. Second the future volatility σs of the underlying price is as-
sumed to be accurately estimatable and is a priori known to seller and buyer of an option. As a 
result of estimating the volatility in both models, σs "varies" and often neither the 
Black/Scholes-model nor the Cox/Ross/Rubinstein-model capture option market prices accu-
rately. In particular the very important option price sensitivities ("option Greeks") Γ, Θ, ∆, 
and Ω usually are inaccurate. These problems do not appear when instead of an analytical 
model market price functions are used. The generation of market prices depends on historical 
and actual prices of a set of appropriate options. For details of the option pricing process with 
neural networks see [Brei00] and [Brei03]. In contrast to the theoretical pricing models high 
accurate neural networks can learn true market price functions of options, warrants and other 
derivatives. Like the theoretical option price pBS(s, b, r, ir, σs) or pCRR(s, b, r, ir, σs) the market 
price pM(s, b, r, t) depends on the permanently available underlying price s, strike price b and 
time to expiration r. But instead of ir and the artificially estimated σs the time t, e. g. day and 
hour, is used as direct input for the pricing model.  

During the last years business competition forced financial service providers to increase effi-
ciency. Especially Banks invest in new information technologies to gain advantages in com-
petition, see [LeWi02]. Usually this leads to automation and computerization as the margins 
are constantly getting smaller and computer work is much cheaper than substitutable human 
work. Therefore, research concentrates on the development of innovative computer programs 
and information systems that enable a necessary increase of efficiency. For an overview of in-
formation systems in finance see [Buhl99] and [BuKr+01]. This paper shows the first proto-
type of the WARRANT PRO 1 software. WARRANT PRO 1 synthesizes real market prices for op-
tions and warrants using a software agent and a neurosimulator. Changing the training vari-
ables also other market prices or values can be synthesized. This enables interpolation, ex-
trapolation and forecast of many input-output-relations. WARRANT PRO 1 incorporates the 
web mining software agent PISA and the neurosimulator FAUN. Usually for neural network 
training approaches commercial databases are used. These are usually expensive. PISA auto-
matically extracts option prices from the internet for free and generates input files for the neu-
rosimulator FAUN. The input files are of high quality, i. e. outlier free, and have predefinable 
denseness. FAUN uses the resulting files as input data and learns true option market price 
functions. WARRANT PRO 1 combines PISA and FAUN to offer a framework to calculate 
highly accurate option market prices for free. Currently an advanced prototype is used to ana-
lyze feasibility. The prototype and a test for German DAX put options and warrants are pre-
sented and evaluated, here. The final version of WARRANT PRO 1 will be platform independ-
ent and efficient on common computers. A graphical user interface (GUI) offers a common 
interface to all implemented programs.  
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2 WARRANT PRO 1  

Like presented above current analytical models of pricing warrants and options are inaccurate. 
Therefore, WARRANT PRO 1 is developed. Primary target is to develop a program that extracts 
financial data from the internet and uses them to train neural networks that calculate real mar-
ket prices for warrants and options. Other applications are intended and developed. In differ-
ence to other approaches of pricing warrants or options with neural networks WARRANT PRO 1 
uses data that are gathered from the internet instead of commercial databases. As the data are 
extracted free of charge WARRANT PRO 1 offers an inexpensive way to calculate real market 
prices for warrants and options.  

WARRANT PRO 1 is a framework program that is still under development. It bases on two re-
search programs of the Institut für Wirtschaftsinformatik of the University of Hanover. FAUN 
is a neurosimulator developed by the second author since 1996. FAUN supports supervised 
learning with different topologies using neural networks. FAUN features a fast and efficient 
training method. Other multivariate approximation approaches are inferior, here. Here, FAUN 
learns real market price functions for warrants and options. For more details see 
http://www.iwi.uni-hannover.de/faun.html. The FAUN training process needs high quality in-
put data. PISA is a software agent that extracts the needed values from the internet automati-
cally. Beside internet pages any other semistructured or structured text sources are supported, 
e. g. videotext or XML-feeds. It is developed by the first author since 2002. For latest infor-
mation, see http://www.iwi.uni-hannover.de/pisa.html. Currently both programs are used 
separately as no common user interface is available. The current version is a prototype to ana-
lyze feasibility. When test approve that the idea is realizable and the results a superior a com-
plete software development process will be initiated. In future versions WARRANT PRO 1 will 
offer a graphical user interface to access and control every underlying module. The currently 
used programs Maple and GnuPlot will be substituted by internal and more efficient pro-
grams. The final version of WARRANT PRO 1 will be available in summer 2005. The architec-
ture of WARRANT PRO 1 is illustrated in Figure 1. 

In the current development status the modules PISA and FAUN both work separately. Both 
programs work satisfactorily as shown in Section 5. Webpages are processed and gathered 
data are used for neural network training successfully. Generated networks calculate real mar-
ket prices for options and warrants with high quality. WARRANT PRO 1 only uses components 
that are free of charge. Used programs, programming languages, runtime environments and 
extracted data are also free of charge. Using neural networks usually requires as much system 
resources as possible. To increase platform independency WARRANT PRO 1 supports all major 
operating systems: Microsoft Windows, Unix, Linux and MacOS.  

3 Option Market Price Functions with the Neurosimulator FAUN 

Neural networks are a very popular technique in financial market research for many years 
now, see [KiWe94] and [Buhl99]. Neural networks are information-processing systems in-
spired by the way the densely interconnected, parallel structure of the mammalian brain proc-
esses information. Neural networks are mathematical models that emulate some of the ob-
served properties of biological nervous systems and draw on the analogies of adaptive bio-
logical learning. That is why neural networks sometimes are called learning networks. Key 
element of the artificial neural network system is the novel structure of the information proc-
essing system. It is composed of an, eventually large, number of highly interconnected proc-
essing elements. These elements are analogous to neurons and tied together with weighted 
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connections analogous to synapses. For further information about neural network's functional-
ity see [Brei03].  

Using neural networks mathematically means optimization, here. Input data are processed and 
mathematical functions like fapp(x;p) are returned as a result. This function depends on a vec-
tor x that contains the input data and a vector p that contains the adjustable network parame-
ters. The returned function approximates a correlation of the input variables. With this func-
tion either future values can be extrapolated or missing values can be interpolated or analyzed. 
To estimate the function's quality approximated and desired output data are compared. As ref-
erence either a dataset with validated data or a known reference function fref(x) is used. The 
calculated error, e. g.  

ε( fapp(x;p) ; fref(x) ) = ( fref(x) - fapp(x;p) )2, 

should be as small as possible after the neural network training for all patterns. In order to 
minimize ε, the network tries other input/output-relations and compares the results again. If ε 
is less than before the new function is accepted as the currently best one. Otherwise the func-
tion is discarded and another one is tried. The described process is a kind of a learning proc-
ess. For details regarding neurosimulators and neural networks, see [GöRo+03] and [Stub01]. 

 
Figure 1: Overview of the WARRANT PRO 1 program. 

The described learning process is utilized for different kinds of applications. Among others 
recent financial market research concentrates on two application areas. Forecasting time series 
using neural networks has been discussed for many years now, e. g. price forecasts. The usual 
aim is to synthesize a mathematical function that predicts future values of the underlying time 
series. For the necessary training neural networks usually need large datasets, e. g. options 
prices, currency exchange rates or interest rates. The network generated mathematical func-
tions usually are validated using their market prices as reference. The needed data usually are 
taken from commercial databases. Second application area is pricing derivatives. Today's ana-
lytical methods use several, partially estimated variables. The derivative prices of different is-
suers usually are not equal. In cases where highly accurate market prices are needed, neural 
networks can be used to synthesize market prices instead of analytical prices. New approaches 
are presented by [Brei03] and [Brei00]. The outcome of the network training process is a 
function that interpolates input prices. Changing the input variables market prices are gener-
ated for each variable combination without any estimation. As input data time price series of 
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historical prices are needed. The series have to be as dense as possible and must not have 
large data gaps.  

There are very many commercial and public domain (free- and shareware) neurosimulators, 
but the software FAUN 1.0 is standing out by special features. Based on sequential quadratic 
programming (SQP) FAUN efficiently trains three and four layer perceptrons with and with-
out shortcuts and radial basis networks, too. A perceptron’s error function and its gradient are 
computed with matrix algorithms implemented with the BLAS1. The SQP methods NPSOL2 
and NLSSOL3 used are based on the BLAS, too. Optimized and fine-grained parallelized im-
plementations of the BLAS exist for various hardware platforms. The coarse-grained FAUN 
1.0 parallelization uses the PVM subroutines and runs on heterogeneous and decentralized 
networks interconnecting many general-purpose workstations and PCs and also high-
performance computers. Most important features are 

• the portability of FAUN 1.0 on LINUX, UNIX and WINDOWS; 

• the easy to handle graphical user interface with detailed documentation; 

• the comprehensive online graphics to control the program run and  

• the offline graphics for a posteriori analyses and evaluation of the program run. 

FAUN 1.0 synthesizes functions from high-dimensional input-/output-relations. The synthesis 
of functions is of importance e. g. for mathematical modelling and the calculation of optimal 
feedback controls for optimal control problems. Time series-analyses and -forecasts, are ac-
complish for many economical and technical applications, e. g. for interest- or exchange rate 
forecasts. Exemplarily option and warrant pricing with market prices is considered here, see 
Chapter 5. For more detailed information on FAUN see [Brei03]. 

For optimizing output data market price function generating applications need validated data 
as a reference. For functional correctness the input data have to be correct. Those data usually 
are bought in databases. Financial service providers buy the data directly from stock ex-
changes and resell them. Such databases usually are very expensive. An alternative approach 
is to get that information from the Internet. Possible sources of data are for example websites 
of banks, warrant issuers, or financial services companies. Also time delayed data can be used 
as neural networks are trained with historical series. Here, the needed pieces of information 
are automatically collected from webpages. To achieve the mentioned goals, the partially in-
telligent software agent PISA is developed. The agent enables extracting several stock, option 
or derivative prices efficiently. The agent loads specified webpages, extracts the demanded 
data, stores the data on computers and automatically generates the input file for neural net-
work training. 

4 Web Mining with the Software Agent PISA 

4.1 Requirements 

The web mining process is separated in four steps. These steps are illustrated in Figure 2. The 
illustrated subtasks require specific abilities of a web-mining agent in each step of the process. 

                                                 
1  BLAS: Basic Linear Algebra Subprograms, see http://www.netlib.org/blas/. 
2  NPSOL: Nonlinear programming problem solver. 
3  NLSSOL: Nonlinear least squares problem solver. 
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These requirements lead to a specific design of the software agent PISA. For further details on 
software agents and their applications see [WoJe95] and [BrZa+98]. A detailed analysis of the 
requirements for the given tasks is published in [BaBr04] and [BaBr04b].  

Receiving webpages: The software agent has to be able to crawl websites and to decide 
whether a webpage contains required values. For neural network training a continuous data 
flow is mandatory. The agent has to be permanently available during trading hours. In times 
with only few changes of the presented data processing frequency can be decreased.  

Extraction: After the webpage is loaded it is processed and the needed data is extracted. A 
parsing mechanism is important for financial website extraction as it deals with quotes. These 
Quotes are usually numbers and an extraction using simple regular expressions is error-prone. 
The expressions might not match exactly the needed information. More complex patterns 
might match the exact information but might not be flexible enough if the websites structure 
changes. Therefore, the position of the quote containing tag is considered for the extraction. 
Dealing with HTML documents the structure is not always completely defined and can be ir-
regular. HTML documents can contain errors; e. g. missing tags. The agent has to recognize 
and handle such problems to assure error tolerant HTML parsing. Once a webpage's source 
code is received and parsed regular patterns are advisable to identify and extract complex pat-
terns from HTML source code. The Internet offers financial data from all over the world. De-
pendent on the target group of a website different international number, time and date formats 
are used. These have to be recognized and reformatted in user defined formats to increase 
flexibility for further processing programs. The formats need to be adjustable.  

Data storage: File handling methods are mandatory to save extracted patterns. The user should 
be able to choose an output file format. Both plain text files and XML-files (XML = Extensi-
ble Markup Language) should be supported. Large amounts of data can be handled easier 
stored in a database instead of text files. The most common protocol for accessing databases 
is the ODBC-Protocol (Open database connectivity) which should be supported. The agent 
should be as platform independent as possible to assure flexible application. The hazard of 
breakdowns has to be minimized to assure a continuous data flow. Accurateness of the ex-
tracted data is very important. The agent has to provide rules with which extracted data can be 
checked on plausibility. 

Post-Processing: Once rawdata are extracted they need to be processed. Different websites are 
merged and edited to create an input file for the neurosimulator FAUN. E. g. to synthesize 
real market price functions for the German stock index DAX the input function has to contain 
the current value of the option and the related price of the underlying index. Usually these in-
formation items are extracted from different websites. Exchange rate and options price are 
matched by their quote time. Other applications with neural networks need special technical 
indicators as input. The post-processing phase generates these values from given rawdata. The 
generated input file have particular requirements regarding formatting. FAUN requires one 
text file containing training data and another one containing validation data. Validation data 
are used to verify the trained neural network’s results. Both files have to contain the input 
variables in one row and the related output variables in the next row. Only numbers are al-
lowed as alphanumerical characters can not be processed. PISA has to create the neural net-
work input files without any intermediate processing steps.  

The listed requirements are achieved by some commercial and shareware software agents. For 
further information of their applicability see [BaBr04]. Usually web mining programs save 
extracted values to a text file with little possibilities to adjust data formatting and filter op-
tions. As programmers usually do not allow source code modifications formatting and filter-
ing require an intermediate processing step. Furthermore, existing agents usually do not pro-
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vide an application programming interface. This is necessary to control the agent by the 
framework program. The software agent has to be as platform independent as possible to as-
sure platform independency of the whole Warrant Pro 1 framework. These are the major ar-
guments to develop an own agent instead of using an existing one.  

4.2 Design and Implementation 

The mentioned requirements lead to special demands for the PISA's design. Major considera-
tions are described in detail in [BaBr04] and [BaBr04b]. PISA is completely realized in Java. 
The major modules are shown in Figure 3. The component PisaMain initiates and starts all 
user defined extraction tasks. Specifications are taken from a configuration file. The initiated 
tasks run as independent threads and are executed simultaneously. Each task is represented by 
a single PisaCrawler object. These objects request the defined webpages and approve that 
during the crawling process no webpage is requested multiple times. Each received webpage 
is process by the HtmlDocument component that parses the passed website's source code. The 
source code is further processed by the PisaGrabber component which identifies and returns 
the user wanted patterns. The extracted data are saved either in a plain text file, XML-file or a 
database. Due to the dynamic nature of the web, most information extraction systems focus on 
specific extraction tasks. Here, we concentrate on agent based generation of dense datasets. 
The specific problems are focused here. 

 
Figure 2: Complete extraction process. 

PisaMain: PISA starts with executing the main module PisaMain that initiates the extraction 
tasks. They are predefinable in an XML-file. The PisaMain-object starts one PisaCrawler-
object per URL. These PisaCrawler-objects are started with a one second time delay, each. 
For dense datasets the request interval is very small. If too many pages are requested from the 
same webserver too frequently, the webserver might crash or it does not answer some re-
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quests. Latter results from a standard mechanism to avoid webserver overload by ignoring re-
quests when a specified number of requests in a period is exceeded. This results in informa-
tion gaps. The delay time is adjustable. 

PisaCrawler: Each PisaCrawler object is executed in an adjustable interval. The interval is 
defined in seconds. Shorter intervals are possible but not reasonable since financial quotes are 
updated at most every second. The PisaCrawler component crawls websites either at every 
execution or just once at the first run. In this case PISA recognizes interesting webpages by 
user defined requirements and memorizes the URL. Future accesses use this address. Each re-
quested webpage is represented by an HtmlDocument object. The wanted data are extracted 
from each object by a PisaGrabber object. 

 
Figure 3: Major modules of PISA. 

HtmlDocument: The evoking class passes an URL. The HtmlDocument component requests 
and analyzes the according webpages. PISA handles common syntactical errors reliably. The 
source code is converted into XHTML compliant text. Afterwards, all needed tags are identi-
fied using regular expressions for start- and end-position of a tag. Only needed tags are proc-
essed to decrease processing time. Once a tag is identified its attributes like size, colour and 
content are analyzed and stored in a tag-object. This tag-object represents the HTML tag. For 
each kind of tag an array is created that contains the objects of a kind in order of appearance. 
This enables a successive comparison of the array fields and the search for a special pattern.  

PisaGrabber: The PisaGrabber module extracts the demanded patterns from a passed 
HtmlDocument-object. The location of a requested pattern is defined relative to an anchor 
pattern. Both patterns are specified by regular expressions. Using this approach the user has to 
know four things: 1. Pattern of the requested information; 2. Anchor pattern; 3. Number of 
tags between anchor-pattern and wanted information; 4. Kind of tag the patterns are formatted 
with. Optionally names for each extracted bit of information can be defined to store the values 
in XML-files and for calculation. To assure high data quality, accurateness of the extracted 
data are very important. Information items can be defined as mandatory. If an object is de-
clared as mandatory and not available on a webpage the whole dataset is abolished. Extracting 
data from several webpages leads to the problem that the display format of numbers and dates 
do most likely differ from each other. PISA formats text, numbers and dates in adjustable 
formats. 
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Figure 4: Exemplary neural network input file for FAUN. 

As a consequence of the rapid growth of the internet it becomes more and more difficult to 
find, extract and organize information in the internet. The vision of the semantic web is de-
veloped to solve that problem. The semantic web is an enhancement of the existing internet 
that contains well defined data in a computer readable and processable meaning. Major idea is 
to annotate the information of the World Wide Web in a computer processable semantic. 
Thereby software agents are enabled to access the information in an easier way to convey 
them to the user. For more information see and http://www.semanticweb.org. PISA easily can 
be adjusted to extract values from webpages of the semantic web.  

PisaOutputter: The PisaOutputter module collects the extracted items and matches them to 
related values if possible. Redundant values are discarded. The resulting patterns are auto-
matically split into training and validation data. The ratio of training data to validation data 
and their allocation can be adjusted. The generated input file accomplishes all requirements 
given by FAUN and can be directly used for training. An example of a FAUN training file is 
shown in Figure 4.  

5 Test Example: Calculating Option Market Prices for DAX Put Options 

5.1  Introduction 

Money can be invested in stocks to benefit from capital gains. Usually the investment period 
is predefined. To increase dependency usually portfolios are blended with stocks from differ-
ent branches. To hedge the risk of stock investments options are used. Options usually have 
single stocks or indexes as underlying asset. Therefore, many companies use portfolios simi-
lar to major stock indexes. DAX (Deutscher Aktien Index) is the major German stock index.  

For each hedging scenario usually options from many issuers are offered on the market. As 
described in Section 3 usually analytical functions or numeric simulations are used to calcu-
late option prices. The used approximations are individual for each issuer. Therefore, prices of 
offered options differ as well. Companies need to single out overpriced and underpriced op-
tions. A reliable market price model is needed.  

On the other hand, issuers need to calculate a price for (OTC-)options on-the-fly. 
(OTC-)options are e. g. asked by companies that want to hedge an individual problem for 
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which no standard option matches. Issuers price (OTC-)options within short time, usually 
minutes. If the price is too small issuers might not find a hedge for the offsetting item. If the 
calculated price is too high the customer does not buy the option. Therefore, a reliable market 
model is needed by issuers as well.  

Here, WARRANT PRO 1 is used to synthesize real options market price functions for German 
DAX options. To hedge stock investments put options are needed. A put option guarantees 
the sell of an underlying asset at a specified strike price at expiration. The following sections 
describe the extraction process of the needed data from the internet with PISA, the training 
process of FAUN using the extracted data and a validation of the test.  

5.2  Extraction Process with PISA 

Referring to the problem of option pricing we used the neurosimulator FAUN to synthesize 
real market price functions for German options. The needed variables are derived from the in-
put function see Section 3. The influencing variables for each price/time combination are 
mainly: The derivative price, including bid- and ask-price, related date and time of the price 
and the time to expiration. The price related date and time of a quote are extracted because 
mostly published prices are no realtime prices. So the extraction date can not be used. The 
time to expiration is calculated by PISA as well as the options' premium. The options' pre-
mium is usually not published on the webpages. In case it is given it is usually time delayed, 
so that the premium does not match the published price on the same page. The following 
static values are extracted for each option: Security identification number, expiration date and 
strike price. Additionally the option's omega is extracted for further analyses. It is not used for 
training.  

Generated values must not have any data gaps. Data gaps can be caused by poor quality of the 
offered data, poor webserver availability or networks failures. The source of most quotes is 
the EUWAX, Europe's leading derivative exchange, see http://www.euwax.de. Alternatively 
financial service providers like Onvista (http://www.onvista.de) also are a high quality source. 
Onvista is market leader in the segment of financial realtime quotes. Previous tests showed 
that both EUWAX and Onvista offer high and reliable data quality and webserver availability 
is very high, see [BaBr03]. Long term tests showed that within weeks both websites did not 
have any webserver breakdowns. As EUWAX offers all necessary values for the options 
within the webpage for an option except a usable price of the underlying asset the pattern are 
only extracted from one website. Here the EUWAX website is used as financial service pro-
viders receive their quotes directly from exchanges. The underlying German stock index DAX 
is calculated by the Deutsche Börse AG (http://www.deutsche-boerse.de) and published on 
many financial websites. Most of them are adequate to be used as resource here. Here, DAX 
values are extracted from the Deutsche Börse AG and matched to the option values automati-
cally. The usual update interval for stock index webpages is about 30 seconds, see [BaBr04]. 
To assure availability of a DAX value for each extracted option values are additionally ex-
tracted from three different websites: Onvista, Comdirect (see http://www.comdirect.com) 
and CortalConsors (see http:// www.cortalconsors.com).  

On February 17, 2005 EUWAX offered values for 53 different DAX call options with a strike 
price between 4000 and 4800 from the 12 major different issuers. Values for all 53 options are 
extracted for one week from Monday February 14, 2005 to Friday February 18, 2005. PISA 
automatically generates training and validation files for FAUN for each day. Without any in-
termediate processing steps each of the five day's data can be used for training. Data are 
stored in a rawdata file additionally for analyses. Note that using the pattern for Monday or 
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Friday might result in incorrect networks as the market behaviour is special shortly before and 
after weekends. 

Pisa has been tested in detail in different environments and for different tasks in [BaBr04] and 
[BaBr04b]. Here, a common 2.4 GHz computer with 1 Gigabyte memory is used. Microsoft 
Windows XP is used as operating system. To reduce redundant extraction the extraction in-
terval is set to 5 minutes for each option and 30 seconds for DAX values. Tests indicated that 
a higher extraction interval increases the extracted data volume with no proportional increase 
of the usable pattern. Most values are redundant and should not be used for network training. 
Note that this kind of redundancy is unintentional. Redundancy is eliminated to avoid an over 
proportional weight of a single option with too many pattern. On the other hand redundancy is 
deliberately generated during generation of the training patterns to raise the number of pat-
terns for under represented options or issuers to equal weighting. The extracted number of 
values is adequate for the given task. Average processing time for each webpage is less than 
one second. Here, a more powerful computer like described in [BaBr04b] would not lead to 
any advantage.  

Issuer 
(alias number) 

Security  
identification  

number 
(alias number) 

Number 
of  

values 

 

Issuer 
(alias number) 

Security  
identification  

number 
(alias number) 

Number 
of  

values 
A0CT2L (40) 22  DR6EBS (25) 94 Merrill Lynch (9) 
A0CT2M (41) 2  

Dresdner Bank (5) 
DR6EBT (23) 95 

A0CVC6 (49) 52   DR6EBU (24) 93 
A0CVC7 (47) 91   DR6EBV (22) 91 

Unicredito Italiano (11)

A0CVC8 (48) 91   DR6EBW (21) 81 
BNP13U (0) 48  DZ1A42 (26) 96 
BNP13V (2) 47  

DZ-Bank (6) 
DZ1A43 (27) 96 

BNP13W (5) 48   DZ1A44 (28) 94 
BNP5R0 (4) 48  GS0BNC (30) 96 

BNP5R1 (50) 47  GS0BND (34) 94 
BNP5RY (1) 48  GS0BNE (31) 96 

BNP Paribas (0) 

BNP5RZ (3) 48  

Goldman Sachs (7) 

GS6DYP (32) 96 
BVT14H (6) 51   GS6DYQ (33) 48 
BVT14K (7) 34   GS6DYR (29) 56 

Vontobel (1) 

BVT14M (8) 8   GS6DYS (52) 3 
CB0AE3 (14) 18  SAL5YE (45) 54 
CB0AE4 (11) 97  SAL5YF (42) 54 
CB6D0A (15) 95  SAL5YG (43) 54 
CB6D0B (13) 69  

Sal. Oppenheim (10) 
 

SAL5YH (44) 94 

Commerzbank (3) 

CB6D0C (12) 43   SAL5YJ (46) 57 
CG6D0Q (9) 97  TB8PUF (36) 95 
CG6D0S (10) 48  TB8PUG (35) 95 

Citigroup (2) 

CG6D0U (51) 42  TB8PUH (38) 95 
DB0C7B (17) 96  TB8PUJ (37) 95 
DB0C7D (19) 45  

HSBC Trinkaus & 
Burkhardt (8) 

TB8QDE (39) 85 
DB0C7F (20) 89  Total number of values 3623 
DB1288 (16) 96 Total number of options 53 

Deutsche Bank (4) 

DB1290 (18) 96 
 

Total number of issuers 12 

Table 1: Summarization of the number of extracted options values for February 17, 2005. 

The overall extracted amount of data is 3 Megabytes per day. After eliminating redundant and 
incorrect patterns the net file size of used values is about 1 Megabyte per day. Major cause for 
redundant values is an extraction interval that is higher than the update interval of the ex-
tracted data. Future versions of PISA will adjust the extraction interval automatically to in-
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crease efficiency and decrease webserver load. The net file contains about 3600 different pat-
terns. The number of patterns per day is consistent for each day of the week. Technically, all 
days can be used for intraday training. For neural network training values of February 17, 
2005 are used. Table 1 illustrates the number of extracted values for this day. Two options, 
A0CT2M of Merrill Lynch and GS6DYS of Goldman Sachs, have significantly less extracted 
patterns that all other options. Checking the extraction log files showed that all webpages for 
these two options have been correctly processed for each extraction. The values have been ex-
tracted redundantly and only two and three were different. As the extracted webpages con-
tained a nearly real-time quote time it is reasonable to say that the Euwax website published 
the values the way they were extracted. There are two major possible reasons. First, the web-
site's data base contained more quotes but they were not published for any reason, e. g. tech-
nical problems. Second possibility is that the website's database did not contain more quotes 
because for these options prices no more prices existed. Nevertheless we used these values to 
avoid a loss of information although the influence of these two options on the market price 
function is small.  

The neurosimulator FAUN only works with numbers as input values. Therefore the alphanu-
meric values for the security identification number and for the issuer are automatically re-
places with consecutive numbers in order of appearance. This way identification number and 
issuer specific price differences can be trained. The alias number is also shown in Table 1.  

The number of extracted values is not equal for each option and especially not for each issuer. 
Using training pattern with non equal numbers of pattern for an option or an issuer would re-
sult in an inadequate price function. The generated market price function would be over pro-
portionally influenced by the options and/or issuers with an above-average number of values. 
Therefore the number of values is adjusted by copying the patterns of the under represented 
options until the number of pattern equals the maximum number of values. To avoid an over 
average influence of other factors like time of day the copied values are picked randomly. In-
stead values of the options with too many patterns could be deleted. This would result in a 
loss of information and is refused here. For the first training the number of pattern per security 
identification number is adjusted. In a second training run the number of pattern per issuer is 
adjusted. Table 2 shows the resulting numbers of values over-all and for training and valida-
tion using a ratio 20 % as validation data.  

 Total numbers 
of values 

Numbers of values used 
as training patterns 

Numbers of values used 
as validation patterns 

Original values extracted 3623 -- -- 

Normalized for options 4947 3954 993 

Normalized for issuers 5378 4298 1080 

Table 2: Overview of the number of patterns used as training and validation data. 

5.3 Training of Neural Networks with FAUN 

For numerical performance FAUN requires standardized input files. Therefore, FAUN uses a 
pre-processing program to scale training and validation files automatically. Input variables are 
scaled within an interval from -1 to 1. The output variable option's premium is scaled from -
0.95 to 0.95. For all variables linear scaling is used. For further details of the scaling process, 
see [Brei03]. For the given task the neural network type three-layered perceptron with two 
neurons in the first hidden layer is used. Shortcut connections are activated. In addition to the 



14   

described settings different other scenarios are tested but results are significantly inferior to 
the ones generated with the described settings. Available patterns are departed into training 
and validation data by a ratio of about 4:1 which means that 20 % of the data are used for 
validation. The anticipate differences in the data depending on the time of day validation data 
are taken out of the extracted data in five equally spread blocks. Each block contains 4 % of 
the validation data. Figure 5 illustrates the partitioning.  

The approximation quality of the neural network can be estimated with the training and vali-
dation error functions εt (W) and εv (W). W is the matrix of the weights that constitute a neu-
ral network. As usual the perceptron is trained iteratively, i. e. εt is decreased by adaption of 
W, as long as εv < εt or εv ≈ εt holds (prevention of overtraining). Thousands of multi-layer 
perceptrons with various topologies and with different weight initializations are trained with a 
fast sequential quadratic programming (SQP) method. 

FAUN trains neural networks until a specified number of adequate networks is generated. The 
quality of a generated neural network is defined, among other criteria, by the cross-validation 
quality. The cross-validation quality is the quotient of εv and εt. Here, the worst accepted 
cross-validation quality is 1.00. FAUN shows the cross-validation error of the trained net-
works during the program run in a separate window. Figure 6 shows the online error for the 
first training process. Each chart represents the error of a single neural network. FAUN opti-
mizes each network by minimization of εt(W) until the overlearning limit is reached. The 
nearer a networks minimum εt(W) approaches zero the better a network is. FAUN stops 
automatically when a specified number of adequate networks have been found, here the limit 
is set to 100 adequate networks. Test indicated that a higher number of adequate networks 
does not lead to any enhancement of training or validation error. All settings for the two train-
ings processes are illustrated in Table 3.  
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Figure 5: Partitioning of the extracted data in training and validation data. 

The training process was conducted on the same computer the extraction process was con-
ducted on, see Section 5.2. In a first training the security identification number's alias number 
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is used as fifth input variable. In an additional training process the issuer's alias number is 
used instead. Each training process with FAUN lasts less than 10 minutes. Note that the train-
ing duration is highly dependent on the used hardware power.  

 First training Second training 
Layers 3 3 
Number of networks to be trained successfully 100 100 
Number of parallely trained networks 1 1 
Maximum number of trainingstops 2,000 3,000 
Worst accepted cross-validation quality 1.00 1.00 
Number of minimizing iterations without cross-validation 20 30 
Number of cross-validation error comparisons after which weights will be saved 10,000 10,000 
Shortcuts  used used 
Number of neurons in the input layer 5 5 
Number of neurons in the first hidden layer 2 2 
Number of neurons in the output layer 1 1 
Input variables: extraction time, strike price, time to expiration, underlying price 
and …  

numeric option 
identifier 

numeric issuer 
identifier 

Table 3: Overview of the number of patterns used as training and validation data. 

The best neural network is exported in the Maple computer algebra system. Maple is an inter-
active symbolic mathematical system and a very sophisticated electronic calculator. Maple 
has the ability to algebraically manipulate unbounded integers, exact rational numbers, real 
numbers with arbitrary precision, symbolic formulae, polynomials, sets, lists, and equations. 
It can solve systems of equations and differentiate and integrate expressions. For further in-
formation, see http://www.maplesoft.com/products/maple/. Maple is used to evaluate the 
trained networks and to calculate market prices for any input value combinations. The results 
are presented in the next subchapter. Future versions of WARRANT PRO I will automatically 
generate Java sourcecode for the resulting neural networks. The java functions will be used to 
analyse the generated neural networks. They can be applied to any variation of the input vari-
ables to analyze the resulting changes in the market price. Using the resulting java function 
market prices can be calculated for non existing options. The source code is going to be a 
platform independent executable file. This means that the market price function can be used 
autonomously without the WARRANT PRO I framework.  

 
Figure 6: FAUN online error window with four very good networks. 

The results of the training process are illustrated with the program Gnuplot. Gnuplot is a port-
able command-line driven interactive data file (text or binary) and function plotting utility all 
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major operating platforms. The software is copyrighted, but shareware. It was originally in-
tended as graphical program which would allow scientists and students to visualize mathe-
matical functions and data, for more information see http://www.gnuplot.info. Major reasons 
to use Gnuplot instead of other spreadsheet programs are the free distribution and the avail-
ability for all major operating systems. Furthermore, it can be integrated in the 
WARRANT PRO 1 program which is not possible with spreadsheet programs like Microsoft 
Excel.  

5.4 Results 
The extraction process with the software agent PISA works satisfactorily. The generated data-
sets are of high quality and no data gaps occur. The resulting output file is applicable for neu-
ral network training with FAUN. Here, a more powerful computer would not have led to any 
advantage, as average processing time is less than one second for each webpage. The given 
environment even offers the possibility to shorten extraction intervals and to process more 
webpages. Here, a shorter interval is not reasonable as the update interval of the underlying 
option is longer than the actual extraction interval.  

Quality of a neural network is measured by the cross-validation error εt(W), see Section 5.3. 
The nearer a networks minimum εt(W) approaches zero the better a network is. Here, the best 
network produced by the first training session has an error of εt(W)= 0.0680357. The minimal 
error εt(W) of the second training process is εt(W)=0.0464518. Both errors are considered as 
very good. As a result prices for non existing options can be calculated precisely.  
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Figure 7: Absolute error of training and validation data for the first training (interval from -0.95 to 0.95). 

Quality of a trained network is also measured by the absolute error. The absolute error is the 
difference of the extracted option's bid price and the calculated market price for the given in-
put values of an option. If the extracted price is higher than the calculated market price this 
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results in a positive error. The absolute error is calculated for both training and validation 
data. Under the assumption that the generated neural network is correct this means that op-
tions with a positive error are overpriced and options with a negative error are priced below 
the market price. Figure 7 shows the absolute errors for each training and validation pattern of 
the best neural network of the first training process. In the first training the input values are: 
extraction time, strike price, time to expiration, price of the underlying and the numeric option 
identifier. Figure 8 illustrates the absolute for the second training process where the numeric 
issuer identifier is used instead of the option identifier. The error for most values of both train-
ings is very small. Comparison of the error for training and validation data indicates that the 
validation data are adequately calculated. Note that identical training or validation patterns 
produce an identical error, so redundant values do not appear multiple times in the illustra-
tions.  

If noticeable and regular patterns in the chart appear the reasons for these patterns have to be 
analyzed. Usually those patterns have common attributes. They are usually based on specific 
combination of the input variables, e. g. a specific issuer with over-prised options or a specific 
option that is badly prised. Analyzing the training results neural networks can be used to sin-
gle out over-prised and poorly-prised options. In Figure 7 most patterns' errors are very small. 
Only a few of the first patterns have an over-proportional high absolute error. All three pat-
terns are from the option with the numeric option identifier 52. The according security identi-
fication number is GS6DYS and the issuer is Goldman Sachs. As only these three prices are 
higher than the market price the option is not generally over-priced. Further analyzes pro-
duced that the error is quite similar for all groups of input variables.  
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Figure 8: Absolute error of training data and validation data for the second training (interval from -0.95 to 0.95). 

Figure 8 illustrates the absolute error for the second training. The numeric option identifier is 
replaced by a numeric issuer identifier. The resulting error is dependant on quote time, strike 
price, time to expiration, price of the underlying asset (DAX) and the issuer. The single option 
has no influence on the resulting neural network. As mentioned before noticeable patterns in 
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the chart might indicate poorly priced options depending on one of the input variables. The 
illustration itself does not show such patterns. All prices seem to be well distributed around 
the market price. The market price is indicated by the neutral axis.  
Analyzing the average error for each issuer shows that there are differences anyway. Figure 9 
shows the average error combined with the minimum and maximum error for each issuer. The 
average error shows if an option of an issuer is averagely below or over the market price. In 
the described test scenario the average option of Dresdner Bank and Deutsche Bank has a 
lower price than the market price. On the other hand the average option of Commerzbank and 
DZ-Bank has a price that is higher than the market price. Prices for options of Citigroup and 
BNP Paribas averagely equal the market price. The average error is only one quality criterion 
for an issuer's pricing mechanisms. E. g. if half of the options are below the market price and 
the other half is higher than the market price this results in an average error that is quite equal 
to the market price although the options are not well priced. Additionally the absolute average 
of the errors of an issuer indicates how close the prices are to the market price. Together with 
the absolute average error the range of the errors has to be small. As the range of Citigroup is 
one of the smallest their pricing mechanism calculates good prices. Note that the number of 
values per issuer has been adjusted before the training. The difference in the number of ex-
tracted patterns per issuer has no influence here. It concludes from this analysis that the option 
prices of the markets biggest issuer Citigroup are close to the market price and can be pre-
cisely calculated by the trained neural network. Dresdner Bank and Deutsche Bank are aver-
agely cheaper than the market price and Commerzbank and DZ-Bank are dearer than the mar-
ket price. Some issuers' options' prices are quite close to the market price in-average but their 
absolute average error is higher than the average. This indicates that only a few option prices 
of this issuer are quite close to the market price. They are distributed below and over the mar-
ket price so the average hits the market price. E. g. BNP Paribas' average error indicates a 
good pricing mechanism but it is not, because the absolute average error is higher than the av-
erage. In fact BNP Paribas has the highest absolute average error, which indicates an impre-
cise pricing mechanism.  

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Dres
dn

er 
Bank

Deut
sch

e B
ank

HSB
C 

Sal. 
Opp

enh
eim

Gold
man

 Sa
chs

Citig
rou

p

BNP P
ari

bas

UniC
red

ito
 Ita

lia
no

Von
tob

el

Com
merz

ba
nk

DZ-B
ank

Issuer

A
ve

ra
ge

 e
rr

or

Maximum error Absolut average error Minimum error
Absolut average error Total absolut average

 

Figure 9: Average errors of the second training for each issuer. 



Option Market Prices with the WARRANT PRO 1 System 19 

With the same analytic method as for the issuers the pricing for each strike price can be ana-
lyzed. Figure 10 illustrated the average error with the according error range and the absolute 
average error for each strike price. Additionally the number of extracted values for each strike 
price illustrated. Note that the numbers of values for each strike price has not been adjusted 
before the training. Therefore, it is not possible to conclude from this illustration to the pric-
ing of such options. Nevertheless it is noticeable that the options with many training patterns 
have very good prices. Adjusting the numbers of values for the under-represented strike prices 
would lead to an enhancement in calculating their prices. This would result in an over-all 
quality enhancement of the option pricing mechanism of WARRANT PRO I.  
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Figure 10: Average errors and number of training patterns of the second training for each strike price. 

6 Conclusions and Outlook 

Software agents used with artificial neural networks offer a wide range of financial applica-
tions. WARRANT PRO 1 incorporates the software agent PISA and the neurosimulator FAUN. 
It offers the possibility to use financial market data extracted from the internet to synthesize 
real market (option) price functions. Currently a prototype is developed to analyze feasibility. 
For analyses the programs Maple and GnuPlot are used, here. The final version will contain 
own analyses tools and a common graphical user interface (GUI). Here, a test for German 
DAX call options is presented that confirms feasibility. 

The software agent PISA extracts financial market values efficiently. The extracted values are 
of high quality, i. e. usually have no data gaps and no outliers. They are stored in text files 
which are successfully used for neural network training with the neurosimulator FAUN. Ger-
man warrant prices are extracted, here. They are used to build a reliable heuristic pricing 
model for German options based on highly accurate neural networks. In contrast to theoretical 
pricing models this heuristic pricing model learns true market price functions of options. It 
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enables customers to single out overpriced and underpriced options a priori (extrapolation) 
and a posteriori (interpolation). On the other hand issuers are enabled to price (OTC-)options 
just-in-time. Currently theoretical methods are used which base on unrealistic assumptions.  

A test with 53 German DAX call warrants shows that the generated neural network calculates 
prices for relevant options satisfactorily. Issuers calculate warrant prices differently. Using the 
issuer as an input variable for the neural network training the neural network learns true mar-
ket price functions dependent on the issuer. This shows issuer dependant price differences and 
enables the user to find out issuers with high prices. The test also shows that market prices for 
nonexistent, not standardized options can be successfully calculated. WARRANT PRO 1 is cost 
efficient as the used data from the internet are for free. Usually commercial databases are used 
which are expensive. Here, no licenses have to be acquired.  

Today's and future development concentrates on two major aspects. First PISA and FAUN 
will be better integrated by the framework program. Currently the two programs are used 
separately. A common GUI will enable the user to control PISA and FAUN within one pro-
gram. An additional module will replace Maple for analyses and will increase usability. Major 
component of the analysis module is the market price function which is realized in Java. The 
Java function implements the weights of the best neural network and provides a real market 
price function. After the source code is compiled the resulting executable file can be used to 
either analyze neural networks or calculate market prices for non existing options. Secondly 
performance of PISA will be enhanced. As long as the webpage structure is correct invalid 
data are caused by wrong data in the underlying database of the website. Currently, such data 
can not be differentiated from valid data as long as they are syntactically correct. Beside the 
fact that webservers can fail the network the agent is executed in can fail as well. Webserver 
failure can be bypassed by using redundant sources. Local network failure can only be man-
aged by multiple cooperating agents in independent networks, working simultaneously and 
redundantly (multi-agent system with cooperation). Furthermore, the extraction interval will 
be automatically adjusted to the data updates to decrease download traffic and webserver 
load.  

Note that extraction and usage of internet data requires special regards towards legal aspects. 
Usually the general terms and conditions of the financial service providers impose legal re-
strictions to the usage of the published data. Usually usage is restricted to private purposes. 
Especially reselling extracted data to third parties is not allowed. Most financial service pro-
viders reserve themselves the right of compensation in case of reselling of if adverse effects to 
the provider's technical infrastructure are determined. WARRANT PRO 1 uses extracted data to 
provide users the service of generating derivative market price functions. The extraction 
methods do not harm the system in any way. Neither extracted data nor generated functions 
are used for profit purposes today. WARRANT PRO 1 does nothing the user can not do manu-
ally. As usage of the published data is permitted the usage of WARRANT PRO 1 is legal in 
terms of the general terms and conditions of most financial service providers, too. 
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