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Incentive Contracts and Hedge Fund Management 
 
 
 
 
 
 
 
 

Abstract 
 
 
This paper investigates dynamically optimal risk-taking by an expected-utility maximizing 

manager of a hedge fund. We examine the effects of variations on a compensation structure that 

includes a percentage management fee, a performance incentive for exceeding a specified high-

water mark, and managerial ownership of fund shares.  In our basic model, there is an exogenous 

liquidation barrier where the fund is shut down due to poor performance.  We also consider 

extensions where the manager can voluntarily choose to shut down the fund as well as to enhance 

the fund’s Sharpe Ratio through additional effort.  We find managerial risk-taking which differs 

considerably from the optimal risk-taking for a fund investor with the same utility function.  In 

some portions of the state space, the manager takes extreme risks.  In another area, she pursues a 

lock-in style strategy.  Indeed, the manager’s optimal behavior even results in a trimodal return 

distribution.  We find that seemingly minor changes in the compensation structure can have 

major implications for risk-taking.  Additionally, we are able to compare results from our more 

general model with those from several recent papers that turn out to be focused on differing parts 

of the larger picture. 
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Incentive Contracts and Hedge Fund Management 
 

 Hedge funds have grown rapidly with assets under management ballooning from around  

$50 billion in 1990 to $600 billion in 2002.1  As they have come to play a larger role in financial 

markets, there has been increasing attention focused on their management and investment 

practices.  In that vein, we analyze how risk-taking by a hedge fund manager is influenced by her 

compensation structure.  We have a single risk-averse manager who controls the allocation of 

fund assets between a risky investment and a riskless one.  The manager’s compensation can 

potentially include both a proportional management fee and an incentive fee based on exceeding 

a “high-water mark.”  We also consider the possibility that the manager has her own capital 

invested in the fund.  In practice, a fund that performs poorly is frequently shut down and 

liquidated.  We also include this influence on fund management via incorporating an exogenous 

liquidation boundary into the model as well as considering an endogenous shutdown decision by 

the manager. 

Recognizing that a manager will control the hedge fund’s investments, altering them 

through time, means the fund’s value follows a controlled stochastic process.  Since the 

manager’s compensation is a payoff whose value depends on fund performance, we are 

effectively valuing a derivative on a controlled stochastic process.  This generates significant 

challenges relative to more standard derivative valuation situations.  We use a discrete-time 

framework to model the rebalancing decisions and develop a numerical procedure for 

determining the manager’s sequence of optimal investment decisions.  As discussed in the next 

section, that approach enhances realism and provides great modeling flexibility albeit at the cost 

of losing the analytical tractability of a continuous-time model.  Moreover, the basic approach 

developed here can be applied to valuing derivatives in other situations where a return process is 

controlled by a utility maximizing manager. 

There is an important analogy with Merton (1969) who examines the optimal investment 

strategy for an expected utility maximizing individual who exercises continuous-time control 

over his own investment portfolio.2  In Merton’s model with constant relative risk aversion, the 

optimal proportion of wealth invested in the risky asset is a constant through time. Although 

                                                 
1 From: “An Invitation from the SEC”, Economist, vol. 367, No. 8324, May 17th, 2003, p. 63. 
2 Merton’s work in turn is based on Markowitz’s (1959) dynamic programming approach and 
Mossin’s (1968) implementation of that idea in discrete time. 
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optimally controlled, the associated wealth process evolves just like a standard geometric 

Brownian motion.  There are circumstances where our hedge fund manager will follow the same 

strategy in discrete time.  Those circumstances effectively amount to owning a proportional share 

of the fund with no other incentives or disincentives to influence the manager’s behavior.   

Importantly, an outside investor in the hedge fund with the same utility function as the 

manager would also find this solution optimal and desire that a constant proportion of the fund’s 

capital be allocated to the risky investment.  As we show, the manager’s optimal strategy 

frequently differs substantially from that simple rule.  This results in a striking contrast between 

the manager’s optimal behavior and what our stereotypical outside investor would prefer.  

 Typically, hedge funds earn incentive fees for performance exceeding a high-water mark.  

This is analogous to a call option with the high-water mark corresponding to the strike price.  As 

we shall see, that structure generates dramatic risk-taking below the high-water mark as the 

manager tries to assure that her incentive option will finish in-the-money.  At performance levels 

modestly above the high-water mark, she reverses that strategy and opts for very low risk 

positions to “lock in” the option payoff.  From the perspective of our outside investor, this is very 

perverse behavior.   

 Both managerial share ownership and the use of a liquidation boundary can play 

important roles in reducing the manager’s risk-taking at modest distances below the high-water 

mark.  How these aspects of the compensation structure interact is both interesting and important 

for thinking about incentives which do a better job of aligning the manager’s interests with  

outside investors’.   In that regard, we find that seemingly slight adjustments in the compensation 

structure can have enormous effects on managerial risk-taking.  For example, even a relatively 

small penalty for hitting the lower boundary can eliminate risk-taking in the lower portions of the 

state space.    

Several recent papers examine effects of incentive compensation on the optimal dynamic 

investment strategies of money managers.  Carpenter (2000) and Basak, Pavlova, and Shapiro 

(2003) focus directly on this issue.3  Goetzmann, Ingersoll, and Ross (2003) focus primarily on 

valuing claims (including management fees) on a hedge fund’s assets.  Most of that paper 

assumes the fund follows a constant investment policy; however, one section briefly explores 

                                                 
3 There are also related papers by Basak, Shapiro, and Teplá (2003), who investigate risk-taking 
when there is benchmarking, and by Ross (2004), who decomposes risk-taking according to three 
underlying causes. 
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some limited managerial control of fund risk.  These three papers all generate analytic solutions 

using equivalent martingale frameworks in continuous time.  However, they generate seemingly 

conflicting results regarding the manager’s optimal risk-taking behavior.   

Although we pursue a different tack and use a numerical approach to determine the 

manager’s optimal investment strategy, we are able to shed light on the differing results in the 

above papers by relating them to our own model.  Perhaps not surprisingly, it turns out that these 

papers have (sometimes rather subtle) differences in how they model the manager’s 

compensation structure.  Again, some seemingly minor differences (e.g. continuous vs. discrete 

resetting of the high-water mark) have dramatic impacts on optimal risk-taking by the manager.  

It also appears that some simplifying assumptions used to generate analytic solutions result in 

leaving out important aspects of the problem.  For example, Carpenter as well as Basak, Pavlova, 

and Shapiro ignore the possibility of the fund being shut down in response to poor performance.  

As we shall see, this possibility has important implications for managerial behavior. 

In the next section, we present the basic model and briefly describe the solution 

methodology (more details are in the Appendix).  Section II provides numerical results for a 

standard set of parameters.  We actually begin our discussion with a simplified version of the 

model which is analogous to a discrete-time version of Mossin (1968) and Merton (1969).  This 

allows us to build intuition as we add pieces of the compensation structure and examine the 

effects on managerial behavior.   

Section III describes two extensions of our model including one where the manager can 

voluntarily choose to shut down the fund in order to pursue outside opportunities and/or avoid 

costs of continued operations.  This is an American-style option which can be easily 

accommodated by our solution procedure.  Both in practice and in our model, this is a realistic 

possibility if fund value is well below the high-water mark so that the manager’s incentive option 

has low value.  Our second extension is to allow the manager to enhance the fund’s return 

distribution by exerting extra effort.  The manager suffers a disutility from increased effort, and 

we investigate her optimal strategy for balancing the costs and benefits of effort exertion. 

In Section IV, we compare our results with those from Carpenter (2000), Basak, Pavlova, 

and Shapiro (2003), and Goetzmann, Ingersoll, and Ross (2003).  This is a useful exercise which 

allows us to see that these papers are effectively looking at different parts of a larger picture.  It 

also helps our understanding of how different pieces of the compensation structure interact to 
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influence risk-taking in various regions of the state space. Section V provides concluding 

comments. 

 

I. The Basic Model and Solution Methodology 

 

 In modeling our hedge fund manager’s problem, we attempt to introduce considerable 

realism while still retaining tractability.  We will first address the stochastic process for the fund’s 

value.  Next, we discuss her compensation conditional on both upside performance and the 

possibility of fund liquidation at a lower boundary.  Finally, we show how the manager optimally 

controls the fund value process to maximize her expected utility.  Our approach utilizes a 

numerical procedure, with details on the implementation available in the Appendix. 

 

A. The Stochastic Process for Fund Value 

Assume that a single manager controls the allocation of fund value  X  between a riskless 

and a risky investment.  The proportion of the fund value allocated to the risky investment is 

denoted by  κ.  We allow the manager to control  κ, which is short for  κ(X,t).  Think of the risky 

investment as a proprietary technology that can be utilized by the fund manager but is not fully 

understood by outside investors (and hence not replicable by them).  The risky investment grows 

at a constant rate of  µ  and has a standard deviation of   σ.  The riskless investment simply grows 

at the constant rate  r.4 

The typical and mathematically convenient assumption is to model the fund value in 

continuous time as driven by a geometric Brownian motion for the risky investment.  However, 

that approach inhibits modeling some important aspects of fund management.  As a practical 

matter, many hedge funds are voluntarily shut down or forced to liquidate due to poor 

performance.  We address this latter possibility by having a lower (liquidation) boundary.  

However, in a continuous-time setting, the manager can always avoid liquidation since (by 

design) there is sufficient time to get out of any risky investment before hitting the lower 

boundary.  

 Related issues are human limitations as well as markets being closed which constrain 

trading frequency.  This is in addition to the practical issue of transaction costs (which we do not 
                                                 
4 The parameters  µ,  σ  and  r  can be deterministic functions of  (X,t)  without generating much 
additional insight about managerial risk-taking. 
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model) that would make continuous-time trading financially unrealistic.  Clearly, continuous-time 

trading is a simplifying assumption that greatly enhances analytical tractability.  There is, 

however, a trade-off regarding both realism and modeling flexibility.  We have opted to use a 

discrete-time framework where the manager can only change the risky investment proportion at 

discrete points in time. If the fund value is in the vicinity of the lower boundary, the manager can 

no longer pursue a risky strategy and avoid the risk of liquidation.5 

For a given proportion allocated to the risky investment  κ, we assume that the log returns 

on the fund value  X  are normally distributed6 over each discrete time step of length ∆t with 

mean 2 21
, 2[ (1 ) ]t r tκµ κµ κ κ σ∆ = + − − ∆   and volatility  , t tκσ κσ∆ = ∆ .  Most of the analysis in 

the paper uses time steps approximately equal to a trading day.  However, we have also 

conducted runs with time steps of approximately  15  minutes  (1/32nd of a trading day).  That 

seems close to the maximum practical trading frequency, and our qualitative results were 

unchanged. 

In order to proceed, we discretize the log fund values onto a grid structure (more details 

are provided in the Appendix).  That grid has equal time increments as well as equal steps in  log 

X.7  To insure that a strategy of being fully invested in the riskless asset  (κ = 0)  will always end 

up on a grid point, we have points for the log fund value increase at the riskfree rate as time 

passes.  From each grid point, we allow a multinomial forward move to a relatively large number 

of subsequent grid points (e.g. 121) at the next time step.  We structure potential forward moves 

to land on grid points and calculate the associated probabilities by using the discrete normal 

distribution with a specified value for the control parameter kappa. 

 

B. The Manager’s Compensation Structure 

 We assume the manager has no outside wealth but rather owns a fraction of the fund.  

Frequently, a hedge fund manager has a substantial personal investment in the fund.  Fung and 

                                                 
5 Our approach also provides considerable flexibility in modeling, as well as the ability to solve 
free boundary problems such as the optimal endogenous liquidation decision of the manager 
which we analyze below. 
6 For simplicity, we assume normality for log returns; however, our approach can accommodate 
alternative return distributions such as might be generated by a portfolio including option 
positions with their highly skewed returns.    
7 To economize on notation, we assume the fund value  X  and the time  t  are always multiples of  
∆(log X)  and  ∆t  without the use of indices. 
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Hsieh (1999, p. 316) suggest that this “inhibits excessive risk taking.”  For much of our analysis, 

we will assume the manager owns  a = 10%  of the fund.  That level of ownership, or more, is 

certainly plausible for a medium-sized hedge fund.  A large fund with assets exceeding a billion 

dollars would likely have a substantially smaller percentage but still a non-trivial managerial 

ownership stake.  On the remaining  (1-a)  of fund assets, the manager earns a management fee at 

a rate of  b = 2%  annually plus an incentive fee of  c = 20%  on the amount by which the 

terminal fund value  XT  exceeds the “high-water mark”.  Such a fee structure is typical for a 

hedge fund.8 

We use a high-water mark that is indexed so that it grows at the riskless interest rate 

during the evaluation period (a fairly common structure).  Letting  H0  denote the high water mark 

at the beginning of an evaluation period with length  T  years, we have  H0erT  at the period’s end.  

The manager is compensated based on the fund’s performance if the fund is not liquidated prior 

to time  T.  Since the manager has no further personal wealth (or other income) 9, her wealth at  T  

equals her compensation and is equivalent to a fractional share plus a fractional call option 

(incentive option) struck at the high-water mark  H0erT: 

 

0(1 ) (1 ) ( )rT
T T T TW aX a bTX a c X H e += + − + − −    (1) 

 

 A realistic complication is that if the fund performs poorly, it may be liquidated.  The 

simplest approach is to have a prespecified lower boundary.  Our basic valuation procedure uses 

this approach with the fund being liquidated if its value falls to  50%  of the current high-water 

mark.10  Using  Φt   to denote the level of the liquidation boundary at time time  t,  we set 

00.5 rt
t H eΦ = . 

 Now consider the manager’s compensation if the fund value hits the lower (liquidation) 

boundary at time  τ, with  0 Tτ≤ ≤ , and it is immediately liquidated.  For the moment, we 

assume no dead weight cost to liquidation but do recognize that, in a discrete-time setting, the 

                                                 
8 See for example, Fung and Hsieh (1999) for a description of incentive fees as well as a variety 
of additional background information on hedge funds. 
9 This assumption can readily be relaxed. 
10 Apparently such liquidation boundaries are sometimes contractual and sometimes based on an 
unwritten understanding between the fund management and outside investors.  Goetzmann, 
Ingersoll, and Ross (2003) also use a prespecified liquidation boundary based on the high-water 
mark. 
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fund value may cross the barrier and have  Xτ < Φτ.  Our base case assumption will be that the 

manager recovers her personal investment  aXτ  plus a prorated portion of the management fee  

τ(1-a)b Φτ .  This total is reinvested until  T  at the riskless interest rate.  This last step is because 

the manager’s utility is defined in terms of time  T  wealth.  This results in: 

    
( - )

00.5(1- )   0r T rT
TW aX e a b H e for Tτ

τ τ τ= + ≤ ≤   (2)  

 

where this value depends on when the fund reaches the boundary and by how much it crosses that 

boundary.  Note, however, that once the boundary has been reached or crossed, we know  Xτ  and  

τ  so the terminal payoff in (2) is certain.  An obvious alternative to (2), which we will also 

consider, is that the manager receives a smaller amount due either to some liquidation costs or an 

explicit penalty built into the fee structure.  In any case, we will refer to the payment the manager 

receives if the fund hits the liquidation boundary as her severance compensation. 

 As we shall see shortly, the lower (liquidation) boundary plays an important role in 

determining the manager’s optimal portfolio allocations over time.  Failure to consider such a 

boundary when modeling managerial behavior leads to very different and potentially seriously 

misleading results. 

 

C. The Optimization of Expected Utility  

We assume the manager seeks to maximize expected utility of terminal wealth  WT  and 

has a utility function that exhibits constant relative risk aversion  γ  (an assumption that can 

readily be relaxed): 

   
1

( )
1

T
T

WU W
γ

γ

−

=
−

      (3) 

 

For each terminal fund value, we calculate the manager’s wealth and the associated utility.  

We then step backwards in time to  T-∆t.  At each possible fund value within that time step, we 

calculate the expected utilities for investment proportions  (κ)   in our discrete choice set (κ  can 

be zero or lie at specified steps between  0.2  and  10,  details on that set are in the Appendix).  

We choose the highest of those expected utilities as the optimal indirect utility for that fund value 
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and denote its value as  JX,T-∆t.  We record the optimal indirect utilities and the associated optimal 

kappas for each fund value within that time step and then loop backward in time, repeating this 

process through all time steps.  This generates the indirect utility surface and optimal kappa 

values for our entire grid.  Formally: 

   

, , , ,;     max [ ]

where  t  takes the values ,..., 2 , ,0 one after another.
X T X T X t X t tJ U J E J

T t t t
κκ +∆= =

− ∆ ∆ ∆
   (4) 

 

II. Some Illustrative Results 

 

We will frequently refer to a standard set of parameters as displayed in Table 1, which we 

will use as our reference case.  The horizon is three months with portfolio revisions in  60  time 

steps, roughly once per trading day.  For this reference case, the starting fund value of  1  equals 

the current high-water mark.  We can think of the risky investment as a typical trading strategy 

employed by a hedge fund (e.g. convergence trades or macro bets).  On an unlevered basis, we 

assume that the risky investment has a mean return of  7%  and a volatility of  5%.  The riskless 

asset yields  5%.  This combination of mean returns and volatility would be consistent with a 

market-neutral strategy and implies a Sharpe Ratio of  0.40, which seems reasonable in light of 

the results reported in Brown, Goetzmann, and Ibbotson (1999).  There are a total of  1200  log 

steps between the lower and upper boundaries with the initial fund value  X0  centered in that 

space.  The risk aversion coefficient of the manager’s power utility is  γ = 4. 
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Table 1 
Standard Parameters 

 

Time to maturity    T 0.25   Interest rate  r 0.05  

Log value steps below/above X0  600/600 Initial fund value X0 1.00 

Risk aversion coefficient   γ 4  Mean    µ 0.07 

Number of time steps   n 60  Volatility  σ 0.05 

Initial high-water mark  H0 1.00  Incentive fee rate c 0.20 

Exit boundary at t=0   Φ0 0.50   Basic fee rate   b 0.02 

Manager’s share ownership  a 0.10 

Future nodes for the Normal approx.  1+2×60 = 121 

Log X step     (log (1/0.5))/600 ≈ 0.001155 

 

A. The Effect of the Liquidation Barrier 

 

Before displaying results for our reference case, it is useful to build some intuition by 

examining a sequence of simpler situations.  In Merton (1969), an individual (analogous to our 

manager) dynamically chooses the optimal allocation of available funds between shares and the 

riskless asset. In the case where there is no intermediate consumption (between  0  and  T), she 

chooses that investment strategy to maximize her expected utility of terminal wealth (WT).  

Merton’s analysis is in continuous time (as opposed to our discrete-time framework); however, 

that description otherwise matches the situation of our manager if she had no incentive option and 

there was no liquidation boundary.  In Merton’s framework, the optimal proportion allocated to 

the risky investment would be constant and using our standard parameters implies: 

 

     2

( -r)=  = 2µκ
γσ

.      (5) 

 

Our model also generates a flat optimal kappa surface at  κ = 2  when there is no liquidation 

boundary or incentive option.  Thus, our discrete-time analog of Merton’s analysis generates the 

same solution.  That is not surprising since optimally allocating a constant proportion to the risky 
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investment does not exploit the rebalancing capability (in either discrete or continuous time).  

This changes dramatically when we add the liquidation boundary.  

 

Figure 1.  Optimal Risky Investment Proportion  (κ)  with No Incentive Option and 
No Managerial Share Ownership 

 
In this figure, the manager receives as compensation only a management fee (b = 2%) and has 
neither an incentive option (c = 0) nor an equity stake (a = 0).  Other parameter values are as 
specified in Table 1. 
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The liquidation boundary effectively turns the manager’s compensation function into a 

knockout call with a rebate equal to the severance compensation of equation (2).  The manager’s 

optimal kappa levels are depicted in Figure 1 for our standard parameters except for setting  a = c 

= 0.11  That is, the manager has neither ownership in the fund nor an incentive option. 

The manager exhibits essentially four different areas of economic behavior. Two of these 

areas are intuitively rather straightforward.  In “Merton Flats” to the right in Figure 1, the 

manager’s optimal kappa recedes to the continuous-time Merton solution, which in the current 
                                                 
11 For better readability of the graphs, we depict the kappa surfaces in Figures 1 - 4 on a grid 
structure which is much coarser (by a factor of  5  to  25) than the underlying data. 
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case is  2.  This represents an area where fund value is far enough from the liquidation boundary 

(given the time left to  T) that it plays essentially no role in her decision making.  

“Gambler’s Ridge” in the far left corner of Figure 1 is also not surprising. Here the 

manager is in a situation just prior to  T  that could be described as “heads: I win, tails: I don’t 

lose very much.”  She is thus willing to gamble with a very large kappa.  In practice, there would 

be limits on a fund’s ability to undertake leverage.  In our case, we excluded kappa values where 

we did not get a good approximation for the normal distribution -- the maximum available kappa 

here is only  10.  Nevertheless, her gambling behavior is pronounced. 

More interesting and perhaps more surprising are the “Valley of Prudence” toward the left 

boundary and the “Hill of Anticipation” toward the center of Figure 1.  The Valley of Prudence 

can be interpreted as a region where the manager chooses a very low kappa (zero or only slightly 

higher) in order to dramatically reduce the chance of hitting the liquidation boundary at an early 

date.12  Hitting that boundary early incurs an implicit cost since the manager is now unable to 

improve on her severance compensation by managing the portfolio a little longer.  Approaching 

the terminal date, the remaining potential for her gaining from continuing to manage the portfolio 

becomes progressively smaller.  Eventually, the possible upside from a high-kappa bet comes to 

dominate the alternative of carefully managing the portfolio, as she encounters Gambler’s Ridge. 

 The Hill of Anticipation is a novel area of managerial behavior.  It occurs a few percent 

above the lower boundary and starts some two months before the end.  Here, the manager 

increases the risk of the controlled process substantially but not in the indiscriminate manner of 

the Gambler’s Ridge.  She has more to lose and more time left to manage the fund than on the 

Gambler’s Ridge area, and this moderates her behavior regarding kappa.  Nevertheless, she finds 

it attractive to increase kappa above the Merton optimum since the potential loss is limited and 

the time to maturity is relatively short.  If she is fortunate and her higher-kappa bet pays off with 

a large increase in fund value, she heads toward Merton Flats.  There the higher kappa level is too 

risky and gets revised downward.  Hence, the Hill of Anticipation tails off to the right 

approaching Merton Flats.  If she is unfortunate, then there is still consolation (and utility) in the 

knowledge that she can bet on Gambler’s Ridge one last time.  The Hill of Anticipation also tails 

                                                 
12 Since we approximate the normal distributions very accurately, there is still some exceedingly 
small probability of crossing the boundary as long as kappa is not exactly zero.  The manager 
does not entertain negative kappa strategies as these are risky and can thus hit the boundary. 
Moreover, their expected return is less than the riskfree rate. 
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off to the left, dropping into the Valley of Prudence where she prefers to wait until very close to  

T  before undertaking the high-kappa bets associated with Gambler’s Ridge. 

Thus, introducing a liquidation boundary causes the manager to follow an optimal strategy 

that is much richer than the constant kappa solution.  A key factor in these results is the absence 

of dead-weight liquidation costs or some penalty which reduces the manager’s severance 

compensation.  Even a relatively small penalty that reduces her severance compensation by as 

little as  3%  can eliminate her gambling behavior both at the boundary and on the Hill of 

Anticipation.  In that case, we only see the Valley of Prudence along the lower boundary; and that 

valley extends substantially further before blending into Merton Flats at higher fund values. 

 
Figure 2.  Optimal Risky Investment Proportion  (κ)  with an Incentive Option but 

No Managerial Share Ownership 
 
In this figure, the manager receives as compensation a management fee (b = 2%) and an incentive 
option (c = 20%), but she still does not have an equity stake (a = 0).  Other parameter values are 
as specified in Table 1. 
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B.  The Effect of an Incentive Option 

We now consider the effect of adding an incentive option (struck at the high-water mark) 

to the manager’s compensation structure and also return to not penalizing her severance 

compensation.  There is still no share ownership by the manager  (a = 0), but otherwise, the 

parameters are as in Table 1.  

In Figure 2, we see the same features as in Figure 1 plus a new region of high kappa 

values, which we term “Option Ridge”.  This region is centered just below the terminal high-

water mark of  H0erT = 1.0125.  Again, the manager dramatically increases the fund’s riskiness as 

she approaches the terminal date.  Now the motivation is to increase the chance of finishing with 

her option substantially in-the-money.  She thus increases the kappa considerably if the fund 

value is either somewhat below or slightly above the strike price. 

Somewhat above the strike price, Option Ridge drops into a valley where kappa decreases 

dramatically and can go all the way to zero near maturity as the manager locks in her bonus.  If 

the fund value at maturity were just at the strike price, the incentive option would have a zero 

payoff.  Even a couple of grid points into the money, the option payoff is quite small.  

Consequently, near maturity and at or slightly above the strike level, the manager has an incentive 

to choose extremely large kappa values.  This incentive tails off rapidly as the fund value 

increases since the manager starts having more to lose if her option finishes out-of-the-money.  

This leads to a lock-in style behavior, particularly near maturity and slightly above the money.  

From the outside investor perspective, such lock-in behavior is another perverse effect of the 

incentive option.  Depending on the level of fund value, that option can induce both dramatically 

more and dramatically less risk-taking compared with the  κ = 2  preferred by an outside investor 

with the same utility function as the manager. 

There is a Merton Flats region between the Hill of Anticipation and Option Ridge.  This is 

because the liquidation boundary is relatively far below the high-water mark.  If the liquidation 

boundary is sufficiently close to the high-water mark, the incentive option starts to affect the Hill 

of Anticipation causing it to spread into Option Ridge and eliminating the Merton Flats region in 

between.  There is also another Merton Flats region that is far to the right.  To reach that upper 

Merton Flats, the manager’s incentive option has to be sufficiently deep in the money that it acts 

like a fractional share position.  Gambler’s Ridge and the Valley of Prudence are driven almost 

exclusively by the lower boundary and therefore do not change noticeably when an incentive 

option is added to the manager’s compensation. 
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C.  The Reference Case  

We now reintroduce the manager’s share ownership  (a = 10%)  and examine the effect on her 

optimal kappa choice in Figure 3.  The most dramatic differences between Figure 2 and Figure 3 

are that Gambler’s Ridge almost disappears and that the Hill of Anticipation vanishes.13   

 

Figure 3.  Optimal Risky Investment Proportion  (κ)  with both an Incentive Option and 
Managerial Share Ownership 

 
In this figure, the manager receives the complete compensation package: a management fee (b = 
2%), an incentive option (c = 20%), and also an equity stake (a = 10%).  Other parameter values 
are as specified in Table 1. 
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In previous figures, Gambler’s Ridge and the Hill of Anticipation were induced by partial 

protection of the basic management fee  (b = 2% annually)  when fund value hits the liquidation 

boundary.  However, over a three-month interval, that management fee represents only  0.5%  of 

fund value; and its effects near the lower boundary are largely overwhelmed by the manager’s  
                                                 
13 They appear compressed in Figure 2 due to the change of horizontal scale relative to Figure 1. 
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10%  ownership stake (the incentive option being almost worthless near that boundary).  

Consequently, this part of the picture is consistent with Fung and Hsieh’s (1999, p. 316) comment 

about managerial share ownership inhibiting excessive risk taking.  Note that this qualitative 

result depends importantly on the degree of managerial ownership.  Moreover, Option Ridge 

remains an area of very high kappa values, although somewhat narrower than previously.  Above 

Option Ridge, the manager’s optimal kappa does not drop as low as in Figure 2 and also ramps 

up faster towards an upper Merton Flats region which again exists at high fund values. 

 Since we now have the manager’s optimal kappa at each grid point, we can readily 

calculate the probability of reaching any terminal grid point given a starting location.  This 

provides another approach for assessing the implications of the manager’s risk-taking behavior.  

For example, starting at the beginning of the grid with the initial fund value  X0,  the manager 

optimally takes risks which cause the fund return to exhibit a trimodal distribution.  Her desire to 

finish in-the-money with her incentive option, leads her to gamble so much on Option Ridge that 

she either ends up with large profits (and a sizeable incentive) or much poorer or so much poorer 

that she is being fired.  This is again a striking contrast to what would be preferred by an outside 

investor with the same utility function.  In particular, that investor would prefer a constant kappa 

strategy, which would generate a lognormal return distribution.  Implicitly, that investor is 

accepting the manager’s behavior in order to gain access to the fund’s investment technology.  

However, there would appear to be considerable room for altering the manager’s compensation 

structure to better align her interests with the investor’s.  

 

III.  Endogenous Shutdown and Effort Choices 

 

 In this section, we explore two major extensions of our model.  We first consider the 

possibility that the manager can choose to shut down the fund voluntarily at asset levels above the 

liquidation boundary.  We subsequently examine a variation of our model where the manager can 

enhance the return characteristics of the fund’s (proprietary) technology by expending extra 

effort.   

 

A.  The Managerial Decision to Shutdown the Fund 

Instead of simply using a prespecified liquidation boundary, the model can be readily 

adapted to include a managerial shutdown option.  This is an American-style option where the 
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manager can choose to liquidate the fund at asset values above the prespecified lower boundary. 

Whether she will choose to do so depends on her other opportunities relative to continuing to 

manage the fund.  What largely motivates the manager to keep the fund alive are the possibility 

of earning the incentive fee by exceeding the high-water mark plus the ability to manage her own 

invested capital  (a > 0)  using the fund’s superior return technology.14  If the value of her outside 

opportunities is large enough to offset those effects, she will choose to shut down the fund.   

We model her outside opportunities in a simple manner, using  L  to represent an annual 

compensation rate which is independent of the fund value.15  If the manager chooses to shutdown 

the fund at time  τ  at some fund value  Xτ  above  Φτ= 0.5 H0erτ,  she receives at maturity: 

 

 ( - ) ( - )(1- ) ( )  0τ ττ τ τ= + + − ≤ ≤r T r T
TW aXe b a Xe L T for T  (6) 

 

The first two terms of (6) indicate that the manager recovers her share of the fund  (aX)  

plus a prorated fraction of the management fee (with no incentive payment).  These two amounts 

are invested for the time remaining until  T  at the riskless rate  r, since the manager no longer has 

access to the fund’s investment technology after shutdown.  She also earns  L  prorated over the 

time remaining until  T.  As we work backward in time through our grid, we compare the indirect 

utility of receiving (6) with that from choosing the optimal  κ(X,t)  and continuing to manage the 

fund.  When the indirect utility of (6) dominates, it indicates that the manager would voluntarily 

choose to shut down the fund at that grid point.  

In our experience, this endogenous shutdown has only occurred at fund values below the 

lower edge of Option Ridge, where the probability of reaching the high-water mark becomes very 

small and essentially disappears as an influence on the manager’s decisions. However, depending 

on the value of  L, shutdown can potentially occur well above the prespecified lower boundary.  

On the other hand, when the value of her outside opportunities is relatively low, the manager will 

not voluntarily choose to shutdown and must be forced to liquidate the fund at the lower 

boundary. 

                                                 
14 This is consistent with Brown, Goetzmann, and Ibbotson (1999) who indicate a belief that 
funds are terminated because it appears unlikely that performance will reach the high-water mark 
(presumably within a “reasonable” time frame). 
15 More complicated specifications of the manager’s outside opportunities are possible; however, 
the intuition remains the same.   
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Note that if a shutdown occurs, outside investors incur a resetting of their high-water mark 

when switching to another fund.  In effect, they are forced to forgo the possibility of gains in the 

current fund without triggering incentive fees.  Moreover, outside investors can experience a 

pattern of heavy gambling along Option Ridge with fund closure at perhaps only slightly lower 

asset values.  This could be described as “heads: the manager wins a performance incentive, tails: 

outside investors have their high-water mark reset.”  That description sounds rather unappealing 

from the perspective of an outside investor but serves to illustrate the importance of being able to 

address the manager’s optimal actions in an American option framework.  

 Fung and Hsieh (1997, p. 297) point out the possibility that relatively poor performance 

may trigger fund outflow which is sufficiently large that “assets shrink so much that it is no 

longer economical to cover the fund’s fixed overhead and the manager closes it down.”16  This 

suggests that the fund’s cost structure as well as the manager’s external opportunities play 

important roles in her decision whether or not to shut down the fund.  We have not explicitly 

included operating costs, but this can be readily done – at least in simplified form.  Variable costs 

can be modeled via adjusting  µ  and  r  to a net-of-cost basis.  Fixed costs can be represented as a 

drag on expected returns that is greater at lower fund values.  Both types of costs reduce expected 

future fund values and the manager’s expected compensation.  Hence, they lead to an endogenous 

shutdown decision at higher fund values than when such costs are not considered.   

 

B.   Managerial Effort 

Presumably, outsiders invest in a hedge fund because they believe the manager has an 

expertise that they cannot replicate for themselves (or that replication is too costly).  Previously, 

we modeled the manager as working with equal effort and skill at all grid points where the fund 

was in operation.  We now consider the possibility that the manager has some control over the 

effort (and skill) she uses in managing the fund.  We model this by assuming that she can enhance  

µ  (the expected return of the risky investment technology) via expending more effort.17    

However, expending effort reduces her utility.   

                                                 
16 They also mention the possibility that a young fund with good performance may go unnoticed, 
the managers get impatient, close down the fund, and return to trading for a financial institution. 
 
17 Alternatively, we can model her effort as reducing the volatility  (σ)  of the risky technology.  
Altering  σ  affects both the drift and volatility of the fund value, whereas altering  µ  affects just 
the drift.  However, the qualitative effects are similar. 
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 We use  ψ  to denote the level of effort expended.   We use  ψ = 0  to denote the normal 

effort level and increase  ψ  in steps of  0.01  to a maximum of  0.02 (maximum effort level).  The 

enhanced drift for the risky investment technology becomes  µ + ψ,  and the manager’s indirect 

utility function takes on the modified form of: 

 

 2
,ψ, ,ψ,[ ] 0.5 ψ+∆= −X t X t tG E G g  (7) 

    

where  g  is a parameter that scales the manager’s aversion to effort. 

 At each grid point, the manager jointly chooses  κ  and  ψ  to maximize her indirect utility  

(G).  We employ the same basic procedure as previously and select the highest indirect utility.18  

We denote that value as the optimal  GX,ψ,t  as we loop backward through time.  We also record 

the optimal kappa and psi values for each grid point.  For modest numbers of effort levels (we use 

three – normal, high, and maximum effort), this augmented procedure is not onerous.19 

 We use for our results an effort aversion coefficient of g = 2500.  Figure 4 displays typical 

results for the situation where the fund is liquidated at the lower boundary (one-half the high-

water mark) as in Section II.  We observe that the manager expends only normal effort at 

relatively high fund values.   These are scenarios where she expects a relatively high terminal 

payoff and incremental income is less valuable in terms of her utility than at low fund values.  

Hence, she is less willing to expend additional effort at high fund values.  On the other hand, she 

expends greater effort along the lower boundary, along Option Ridge, and approaching 

Gambler’s Ridge.  These also tend to be locations where she chooses high kappa values.  As a 

somewhat loose generalization, she tends to exert maximum effort to get her incentive option into 

the money and to avoid liquidation.   

     

                                                 
18 Previously, we had a discrete set of kappa values that allowed us to calculate a matrix of 
probabilities (with one probability vector for each potential kappa value).  Now, we change that 
matrix to have a probability vector using the appropriate drift and volatility for each combination 
of  κ  and  ψ.  Our augmented probability matrix is again the same throughout the grid. 
19 We have experimented with up to ten effort levels.  This provides more refinement, but the 
overall qualitative results are much the same as with three effort levels. 
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Figure 4.  Optimal Risky Investment Proportion  (κ)  with both an Incentive Option 
and Managerial Share Ownership plus a Choice of Three Effort Levels. 

 
In this figure, the manager receives the complete compensation package: a management fee (b = 
2%), an incentive option (c = 20%), and also an equity stake (a = 10%).  Other parameter values 
are as specified in Table 1.  The manager can also increase the drift by  0,  1, and  2%  per year 
through exerting normal, high, or maximum effort. 
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 Compared with Figure 3, the optimal kappa levels are higher below Option Ridge except 

for the lower portions of the Valley of Prudence -- where the manager is trying to avoid hitting 

the liquidation boundary by choosing very low kappa values.  Kappa values are the same above 

Option Ridge in both figures.  This is consistent with the manager expending only normal effort  

(ψ = 0)  in Figure 4, while we have  ψ = 0  in Figure 3 by construction.  Option Ridge is now 

wider, indicating higher kappa values on the shoulders of that ridge.  Intuitively, positive psi 

values increase the Sharpe Ratio for the risky technology and make greater investment (larger 

kappa) more attractive.  This motivation is very clear in the Merton Flats region below Option 

Ridge.  In Figure 3, the optimal kappa for that region is  2.  In Figure 4, the optimal kappa 

increases to  3 with high effort  (ψ = 0.01)  and to  4  with maximum effort  (ψ = 0.02).  Using 
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equation (5) with  µ  replaced by  µ + ψ,  one can readily see that these are the appropriate 

optimal kappa values conditional on those levels of effort. 

 We now add the possibility of a voluntary shutdown using the same modeling structure as 

in the previous subsection.  Above the endogenous shutdown level, the optimal risk-taking and 

exertion of effort is virtually identical to Figure 4.  As in the previous subsection, the manager’s 

ability to voluntarily shut down damages outside investors by forcing them to reset their high-

water marks at other funds.  However, the increased kappa value of  4  in the maximum-effort 

portion of Merton Flats causes the manager to choose a slightly lower endogenous shutdown 

level as compared with that in the previous subsection.   

 Including effort as a managerial choice variable yields some interesting results; but ones 

that are intuitively reasonable after some reflection.  We see increased effort only on and below 

Option Ridge. The manager becomes something of a “slacker” when things are going well.  

Admittedly, the model is simplified; however, this result suggests that the typical hedge-fund 

incentive structure may not elicit intensive managerial effort at high fund values.  It is also 

interesting that increased effort goes together with higher kappa values rather than resulting in a 

tradeoff between the two.  Thus, one needs to exercise some caution before inferring whether a 

relatively high kappa is the result of just gambling or in response to enhanced upside probabilities 

resulting from extra effort by the manager. 

 

IV.  Managerial Control and Risk Taking  

 

Recently there has emerged a growing literature examining the nature and effects of 

incentive compensation mechanisms for money managers.  Although using different valuation 

technologies and somewhat different incentive structures, some of these papers have generated 

results that can be related to portions of our Figure 3.  It is instructive to make those comparisons.  

It not only promotes a better understanding of how these papers fit together but also strengthens 

our knowledge of how shares, options, knockout barriers, and horizon times interact in 

influencing managerial behavior. 

Carpenter (2000) utilizes an equivalent martingale technology to determine the optimal 

trading strategy for a risk averse money manager whose compensation includes an option 

component.  The manager seeks to maximize expected utility of terminal wealth, which is 

composed of a constant amount (external wealth and a fixed wage) plus a fractional call option on 
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the assets under management with a strike price equal to a specified benchmark.  There are 

substantial similarities to the incentive option in our model, with Carpenter’s benchmark 

corresponding to our high-water mark at time T.  There are also important differences.  

Carpenter’s manager does not have a personal investment in the fund  (a = 0)  and also does not 

earn a percentage management fee  (b = 0).  These two differences remove the manager’s 

fractional share ownership – see equation (1).  Also, Carpenter does not have a knockout barrier 

where the fund is liquidated or the manager is fired for poor performance.   

 

Figure 5.  Comparison of Risk Choices in Different Models I:  Hodder & Jackwerth, 
Merton, and Carpenter 

 
We depict a stylized time slice of the surface of risky investment proportions  (κ)  from our 
Figure 3 where the manager receives the standard compensation (management fee  b = 2%, 
incentive option  c = 20%, and equity ownership  a = 10%).  We also graph Merton’s optimal 
solution which is constant at  κ = 2.  Finally, we overlay the result from Carpenter (2000) where 
we assume that her incentive option is aligned with our standard assumptions. 
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In Figure 5, we superimpose a graph similar to Carpenter’s figure 3 on a stylized time 

slice from our Figure 3.  Carpenter finds results that qualitatively correspond to our manager’s 

behavior when the fund value is above the high-water mark.  Starting from the high-water mark, 
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there is the upper slope of Option Ridge followed by a pronounced dip in kappa before a gradual 

ramping up to an upper Merton Flats at high fund values.  However, her manager behaves very 

differently from ours as fund value drops below the strike of the incentive option.  Her manager 

continues to increase volatility as the fund value declines and there is, counterfactually, no limit 

to this behavior since it is costless to the manager.  On the other hand, our manager moderates 

volatility and gradually reduces the risky investment proportion to the level prevailing in the 

lower Merton Flats.  This difference in behavior is induced by our manager owning a fractional 

share in the fund which makes it very expensive for a risk averse manager to increase risk without 

limit.  Parenthetically, even if our the manager did not explicitly own a fractional share  (a = 0), 

having a percentage fee based on the (terminal) value of funds under management  (b > 0)  

generates similar results as in Figure 5. 

The liquidation boundary and the extent of severance compensation also play important 

roles in our model whereas Carpenter does not have such a lower boundary.  This aspect of the 

analysis is partially examined in Goetzmann, Ingersoll, and Ross (2003) (GIR).  That paper has a 

fee structure that is similar to ours (except for no explicit managerial ownership) as well as a 

liquidation boundary.  In most of their paper, the hedge fund’s investment policy is fixed.  

However, in section IV they briefly explore a simple extension with the state space (measuring 

fund value) split into multiple regions, where different volatilities can be chosen by the manager.  

GIR use an equilibrium pricing approach with a martingale pricing operator based on the attitudes 

of a representative investor in the hedge fund.  Hence, they cannot directly address choices based 

on managerial utility.  However, they are able to examine volatility choices which maximize the 

capitalized value of fees (performance plus annual) earned by the fund.   

In that context, they examine two alternative cases (GIR, p. 1708).  With no lower 

liquidation boundary, they find that “the volatility in each region should be set as high as possible 

if the goal is to maximize the present value of future fees.”  When they have a liquidation 

boundary, GIR find that “volatility should be reduced as the asset value drops near the liquidation 

level to ensure that liquidation does not occur.”   They also point out that “this conclusion is 

inconsistent with that of Carpenter (2000) in which volatility goes to infinity as asset value goes 

to zero.”   

Clearly the liquidation boundary plays a vital role.  Carpenter does not have such a 

boundary (or managerial share ownership).  Hence, at low asset values her manager is motivated 

only by the probability of getting back into the money prior to the evaluation date.  The further 
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out-of-the-money and the shorter the time to maturity for her incentive option, the more the 

manager is willing to gamble.  In contrast, GIR have a boundary at which fees go to zero.  If the 

objective is to maximize fees, such a boundary is to be avoided, and this drives their result that 

volatility should be decreased as asset values approach the boundary.  In effect, this is our earlier 

result where a penalty imposed at the lower boundary causes the manager to reduce kappa (and 

volatility) as the fund value declines near the boundary.  

An important but perhaps subtle issue in the GIR model is the timing of performance fees.  

In GIR, such fees are earned continuously whenever the fund value reaches the high-water mark.  

In our model as well as Carpenter’s, such fees are earned only on an evaluation date.  This 

difference means that GIR’s manager can never be deep-in-the-money.  Similarly, their manager 

cannot lose an accrued incentive fee by falling out-of-the-money prior to an evaluation date.  

Hence, the GIR manager would always want to increase volatility as the fund value moves further 

away from the liquidation boundary.  This serves to emphasize the role of timing in performance 

measurement.  If performance evaluations are quarterly or annual, then the sort of complicated 

risk-taking behavior seen in Figure 2 and Figure 3 is more realistic than GIR’s continuously 

increasing volatility.     

Another related paper is Basak, Pavlova, and Shapiro (2002) (BPS).  That paper examines 

the use of benchmarking to control the risk-taking behavior of a money manager.  The manager 

maximizes expected utility with respect to a terminal payoff function and exercises continuous 

control of the investment process.  One version of their model examines optimal behavior with a 

single risky plus a riskless asset and generates results which can be fairly readily compared with 

ours.   

Figure 6 qualitatively illustrates the GIR and BPS results compared with ours and with 

Merton’s.  As discussed above, GIR’s liquidation boundary and incentive structure with 

continuous earning of performance fees results in volatility being optimally zero at the liquidation 

boundary and then increasing as the fund value rises.  Their paper does not examine this situation 

graphically, but we illustrate the qualitative result at the left-hand side of Figure 6.  
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Figure 6.  Comparison of Risk Choices in Different Models II:  Hodder & Jackwerth, 
Merton, GIR, and BPS 

 
We depict a stylized time slice through the surface of risky investment proportions  (κ)  from our 
Figure 3.  There the manager receives the standard compensation (management fee  b = 2%, 
incentive option  c = 20%, and equity ownership  a = 10%).  We graph Merton’s optimal solution, 
which is constant at  κ = 2.  Next, we overlay the result from Goetzmann, Ingersoll, and Ross 
(2003) (GIR) with their lower boundary behavior aligned with our Valley of Prudence.  This is a 
hypothetical graph since GIR do not graph that result in their paper.  Finally, we overlay the 
results from Basak, Pavlova, and Shapiro (2003) (BPS) where we assume their fund flow (digital 
option) is aligned with our incentive option.  Again, we assume that their risk choices for fund 
values slightly below (0.8 - 0.9) the option strike price align with our own results.  
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Our illustration of BPS results in Figure 6 is based on their figure 1a.20  We have also 

aligned their benchmark with our high-water mark, and we are plotting fund value discounted at 

the riskless rate on the horizontal axis (in that framework,  HT  = 1).  BPS does not have a 

liquidation boundary.  Consequently, they do not get the types of boundary induced behavior 

                                                 
20 In their model, the benchmark is risky.  An example would be the S&P 500.  Consequently, it’s 
possible for their manager to follow a strategy which is either more or less risky than the 
benchmark.  In the current version of our model, the high-water mark is known and it’s not 
possible to follow a less risky strategy than setting kappa to zero (investing completely in the 
riskless asset).  Hence, BPS figure 1b is not relevant in our situation. 
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(depending on the severance compensation structure) that occur in our model or in GIR.  Instead, 

the BPS manager optimally pursues a Merton Flats strategy toward the left of Figure 6.  This is 

because their manager’s compensation in that region is effectively a fractional share.  As fund 

value increases toward  1  (our high-water mark), the portfolio weight in the risky security rises21 

then dives dramatically to zero before rising gradually back to a Merton Flats strategy for high 

fund values.  This behavior around the high-water mark is due to the way BPS model funds flow, 

which provides an implicit performance incentive for their manager.  

In their model, the manager’s compensation is simply proportional to terminal fund value 

(assets under management in their terminology) and the same as our management fee  b.  

Although they can use other approaches, fund flow is modeled in that paper by adjusting the 

terminal fund value using a multiplier which takes on just two values  fL < 1  for poor 

performance and  fH  > 1  when performance is good.  Using  z  to denote the proportionality 

coefficient between terminal fund value  XT  and the manager’s payoff  WT, the BPS 

compensation structure is equivalent to: 

 

   { }( ) 1
T TT L T H L T X HW zf X z f f X ≥= + −    (8) 

 

The indicator variable takes on the value one in good performance states, where  XT  

equals or exceeds what corresponds to our high-water mark.  The BPS manager’s compensation 

as portrayed in equation (8) is effectively a partial share of fund value plus a binary “asset or 

nothing” call option struck at the high-water mark.  This modeling choice implies a rather 

extreme response for fund flow compared with empirical estimates by Chevalier and Ellison 

(1997) which portray fund flow as a much more gradual function of past performance. 

 Still, there are clear similarities between the BPS compensation structure and our 

manager’s payoff in equation (1) when she does not hit the liquidation boundary prior to date  T.  

In both cases, the manager has a partial share plus an incentive option.  However, the binary 

option in equation (8) has an at-the-money value of  z (fH  - fL) HT.  In other words, the incentive 

structure of equation (8) implies a jump in the manager’s compensation (as well as an increased 

slope) when performance just reaches the benchmark.  That jump is what causes the BPS 

manager’s optimal kappa in Figure 6 to dive to zero when fund value touches the strike price of 1.  
                                                 
21 However, the exact shape of this Option Ridge (our terminology) in BPS will depend on the 
parameter choices and can differ from our model. 
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In effect, that jump is sufficiently valuable to the manager that she chooses to lock-in the at-the-

money position and hold it until date  T.  At fund values further above the strike price, the BPS 

manager’s risk taking heads back toward a Merton Flats strategy.  Effectively, BPS has a payoff 

structure which is equivalent to Merton (1969) plus a binary option.  At asset values which are far 

enough from that option’s strike price, their manager exhibits the same behavior as in Merton.   

Comparison of these models highlights the importance of seemingly minor changes in the 

manager’s compensation structure.  For example, whether or not the manager has a share position 

as well as an incentive option can substantially mitigate risk-taking behavior – compare our 

results and those of BPS with the more extreme risk-taking in Carpenter.  The nature of the 

incentive option (e.g. plain vanilla call versus binary asset-or-nothing) also makes a difference, 

with the binary option inducing more dramatic shifts in risk-taking because of the jump in value 

at the strike price.  On the other hand, both types of options can cause active managers to lock-in 

on a high-water mark (or benchmark) months before an evaluation date.  Such behavior is 

presumably undesirable from the perspective of outside investors.  We also get the message that 

liquidation barriers as well as the frequency of evaluation can have dramatic effects.  In summary, 

there is a lot to be seen in this relatively simple comparison.  Our Figure 3 may not depict the 

“whole elephant,” but it does illustrate how managerial behavior can vary dramatically in 

different parts of the state space. 

 

V.  Concluding Comments 

 

Exploring the effects of a typical hedge-fund compensation contract as well as the 

implications of differing shutdown alternatives, we find a range of rich and interesting managerial 

behavior.  If fund value is near the lower liquidation boundary and there is only a little time left 

until the manager’s evaluation date, she may be inclined to take extreme gambles. This behavior 

is prompted by an asymmetry in payoff structure caused by a liquidation boundary which 

truncates her down-side compensation risk.  She gambles more in this situation the lower her 

shareholding in the fund and vice versa.  Such gambling can also be reduced or eliminated by 

explicitly penalizing her compensation for hitting the liquidation boundary. 

Having a performance incentive for exceeding a high-water mark also induces extensive 

risk-taking as she tries to push that incentive option into the money.  Once that is achieved, she 

dramatically lowers her risk-taking behavior and pursues a lock-in style strategy.  For an outside 
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investor with the same utility function, this behavior is far different from what he would prefer.  

Indeed, that behavior results in a trimodal distribution for the managed hedge fund returns.  It is 

not clear why this highly nonlinear compensation contract would be used.  Seemingly, a linear 

contract would provide a much better alignment of the manager’s risk-taking and the preferences 

of external investors.  Bebchuk and Fried (2003) suggest an interesting approach by viewing the 

compensation contract demanded by a powerful manager as part of the agency problem rather 

than its solution.  We intend to explore this question in future research. 

Such a trimodal return distribution, particularly when coupled with an endogenous 

shutdown option, suggests a potentially serious problem with survivorship bias in reported hedge 

fund returns.  Liang (2003) documents such an empirical survivorship bias.  The trimodal 

distribution will also cause potentially large errors in derivative prices based on the erroneous 

assumption that asset values follow an uncontrolled geometric Brownian motion.  For example, a 

European call struck at the high-water mark is more than twice as valuable with managerial 

control (using our standard parameters) than its Black-Scholes price with the constant volatility 

preferred by the outside investor.  This option corresponds to the manager’s incentive fee 

structure.  However, there are also instances where options on hedge fund values have been part 

of external transactions.  A well-cited example is the seven-year call on $800 million of Long 

Term Capital Management (LTCM) shares sold by Union Bank of Switzerland (UBS) to LTCM.  

Again, these are issues we intend to explore in the future. 

We frequently find that seemingly slight adjustments in the compensation structure have 

dramatic effects on managerial risk-taking.  In addition to our comparisons in Section II, this was 

again illustrated in Section IV (see Figure 5 and Figure 6), where we examine results from recent 

papers by Carpenter (2000), Goetzmann, Ingersoll, and Ross (2003), and Basak, Pavlova, and 

Shapiro (2003).  Although we can explain results from those papers using our model and put 

them into a more general context, the dramatic divergence of results across those papers 

illustrates that one needs to be cautious with generalities about managerial behavior.  Even minor 

additions to the model can have major implications.    

 Allowing the manager to voluntarily shut down the fund adds an American-style option to 

the analysis.  Our methodology can readily handle this situation, and it adds an interesting aspect 

of managerial discretion.  Two key drivers in the shutdown decision appear to be the manager’s 

outside opportunities and the likelihood that her performance incentive option will finish out-of-
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the-money.  Moreover, it is possible that the manager chooses to shutdown at a fund value well 

above what outside investors would prefer. 

 Allowing the manager to enhance the fund’s Sharpe Ratio via increased effort adds 

another interesting dimension to the analysis.   One striking result is that maximum effort tends to 

go together with relatively high risk-taking.  This makes sense because the effort enhances the 

Sharpe Ratio, which makes greater risk-taking more attractive.  A second potentially important 

result is that standard hedge fund compensation contracts do not appear to provide much 

incentive for maximum effort levels when the fund is doing well.  Our modeling of effort choice 

is simplified, but such issues clearly warrant further attention. 

Managerial control of the hedge fund’s investments implies controlling the stochastic 

process for fund value.  An underlying theme of the paper is developing a methodology for 

valuing payoffs (derivatives) based on such a controlled process.  The basic approach we 

developed here can be applied to other situations where a portfolio return process is controlled by 

a utility maximizing individual.  With some added constraints, a mutual fund manager clearly fits 

this description, as does a currency trader at a bank. 

In a more approximate manner, we can think of a firm being controlled by an individual 

manager (the CEO).  A useful comparison is Merton (1974), where risky debt is valued based on 

an exogenous underlying process for the firm’s asset value.  An alternative perspective is to 

model this asset value process as being controlled via investment and hedging decisions, in a 

manner analogous to an investment portfolio.  From that perspective, not only risky debt but any 

derivative based on firm value (such as stock or options) is implicitly based on a controlled 

process.  Hence, the basic valuation technology developed in this paper has numerous potential 

applications. 

 

Appendix:  Numerical Procedure 

 

 The basic structure of our model uses a grid of fund values  X  and time  t,  with  ∆(log X)  

constant as well as time steps  ∆t  of equal length.  The initial fund value  X0  is on the grid, and it 

is convenient to have the fund values increase over each time step at the riskfree rate r te ∆ . This 

choice implies that in the limiting case where  κ = 0  (the manager chooses to only invest in the 

riskless asset) the value process will still reach a regular grid point. Thus, the grid structure will 
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not prevent the manager from switching to the riskless strategy. Maintaining this structure for the 

lower boundary implies having  0
rt

t eΦ = Φ   where  t  is a multiple of  ∆t  and  0 Tt≤ ≤ .  

 To calculate expected utilities, we will need the probabilities of moving from one fund 

value at time  t  to all possible fund values that can be reached at  t+∆t.  The possible  log X  

moves are  (log )r t i X∆ + ∆   where the  r∆t  term is due to the riskless drift in the  X  grid.  We 

use  i  to index the grid points to which we can move.  In the current implementation,  the range 

for  i  is from  –60, …, 0, …, 60.  The probabilities for those possible moves depend on the 

choice of kappa which determines the process for  X  over the next time step.  For a given kappa, 

the log change in  X  is normally distributed with mean  2 21
, 2[ (1 ) ]t r tκµ κµ κ κ σ∆ = + − − ∆   and 

volatility  , t tκσ κσ∆ = ∆ .  Note that this mean and variance do not depend on the level of  X.  

They do depend on  ∆t  but not on  t  itself.  Since the normal distribution is characterized by its 

mean and variance, the probabilites we need are solely functions of  κ  and not the grid point. 

 We now use the discrete normal distribution.  For a given kappa, we calculate the 

probabilities based on the normal density times a normalization constant so that the computed 

probabilities sum to one: 
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We keep a lookup table of the probabilities for different choices of kappa which we vary 

from 0, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 10, to 20.  However, the ends of this 

range are problematic and can result in poor approximations to the normal distribution. For low 

kappa values, the approximation suffers from not having fine enough value steps. For high kappa 

values, the difficulty arises from potentially not having enough offset range to accommodate the 

extreme tails of the distribution.  

To insure reasonable accuracy, we compare the standardized moments of our 

approximated normal distribution  ˆ jµ   with the theoretical moments of the standard normal, 
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1 3 ... ( 1) j jµ = ⋅ ⋅ ⋅ − for  j  even and  0jµ =   for  j  odd. In particular, we calculate a test statistic 

based on the differences of the first 10 approximated and theoretical moments scaled by the 

asymptotic variance of the moment estimation – see Stuart and Ord (1987, p. 322): 
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After some experimentation, we discard distributions with a test statistic of more than  0.01.  For 

our standard model, this results in eliminating the distributions associated with the kappa level of  

0.1 and the kappa levels greater than  10.  We finally have a matrix of probabilities with a 

probability vector for each kappa value in our remaining choice set. 

We now calculate the expected indirect utilities and initialize the indirect utilities at the 

terminal date  JT  to the utility of wealth of our manager  UT(WT)  where her wealth is solely 

determined by her compensation scheme.  Our next task is to calculate the indirect utility function 

at earlier time steps as an expectation of future indirect utility levels.  We commence stepping 

backwards in time from the terminal date  T  in steps of  ∆t.  At each fund value within a time 

step  t, we calculate the expected indirect utilities for all kappa levels using the stored 

probabilities and record the highest value as our optimal indirect utility, JX,t.  We continue, 

looping backward in time through all time steps. 

In our situation, using a lookup table for the probabilities associated with the kappas has 

two advantages compared with using an optimization routine to find the optimal kappa.  For one, 

lookups are faster although coarser than optimizations.  Second, a sufficiently fine lookup table is 

a global optimization method that will find the true maximum even for non-concave indirect 

utility functions.  In such situations, a local optimization routine can get stuck at a local 

maximum and gradient-based methods might face difficulties due to discontinuous derivatives.   

When implementing our backward sweep through the grid, we have to deal with behavior 

at the boundaries. The terminal step is trivial in that we calculate the terminal utility from the 

terminal wealth. The lower boundary is also quite straightforward.  We stop the process upon 

reaching or crossing the boundary and calculate the utility associated with hitting the boundary at 

that time.  For our basic model, the manager’s severance pay is reinvested at the riskfree rate until 

time T.  Consequently, she receives a terminal wealth of  r(T- ) rT
T 0W =aX e +0.5(1-a)b H eτ

τ τ   for 
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sure.  Because that terminal payoff is certain, its expected utility is simply the utility of terminal 

wealth for that payoff.  We use these values in calculating the expected indirect utility at earlier 

time steps.  

 For the numerical implementation, we also need an upper boundary to approximate 

indirect utilities associated with high fund values.  We use a boundary 600 steps above the initial  

X0  level.  For fund values near that boundary, our calculation of the expected indirect utility will 

try to use indirect utilities associated with fund values above the boundary.  We deal with this by 

keeping a buffer of fund values above the boundary so that the expected indirect utility can be 

calculated by looking up values from such points.  We set the terminal buffer values simply to the 

utility for the wealth level associated with those fund values.  We then step back in time and use 

as our indirect utility the utility of the following date times a multiplier which is based on the 

optimal Merton (1969) solution without consumption: 2 2exp[ ( ) (1 ) /(2 )]t rµ γ γσ∆ − − .  We do not 

assume that these values are correct (they are based on a continuous time model while we work in 

a discrete time setting) but they work very well.  This approach is potentially suboptimal, which 

biases the results low. However, the distortion ripples only some 20-50 steps below the upper 

boundary, affecting mainly the early time steps.  
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