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Abstract

The purpose of this study is to investigate the short- and long-
run relationships between the US and the German stock markets
during overlapping trading hours. We employ the framework of
a bivariate common factor model for our empirical analysis to es-
tablish a permanent-stationary decomposition of the two major in-
dices (the Deutsche Aktienindex (DAX) for Germany and the Dow
Jones Industrial Average (DJIA) for the US). Based on a novel high-
frequency data set for 2003 we are able to compute various measures
to identify the fundamental dependencies between the two indices.
Our findings can be summarized as follows: (1) we reveal a sig-
nificant cointegration relationship between the DAX and the DJIA
and identify a common trend shared by both stock indices; (2) we
find that the DJIA contributes up to 95% to the total innovation of
the common factor, clearly demonstrating the dominant role played
by the US market during overlapping trading hours; (3) we show
that both markets adjust within minutes to a system-wide shock
and to shocks coming from either direction; and (4) analyzing the
relevance of each individual factor component we verify that the
DJIA is in fact the main driving force in the transatlantic system
of stock indices.

Keywords : Stock Market Cointegration, High-frequency Data, Permanent-Transitory
Decomposition

JEL Classification: C32, G15



1 Introduction

Over the last three decades, the financial world has undergone a profound change.

While national financial markets were largely isolated until the beginning of the

1970s, the stock market crash in October 1987 and recently the events of Septem-

ber 11, 2001 have shown how inter-connected securities markets have become over

time. Regularly, three broad driving forces behind this process are identified in

the literature. The first is connected with the gradual abolition of trade bar-

riers, deregulation, and market liberalization as well as policy coordination to

establish economic ties which imply a strong integration in the goods market and

consecutively the co-movement of output, earnings/dividends, and stock prices.

The second is related to the dissemination of floating exchange rate systems, to

global investor entities, and to multiple international stock listings fostering a

worldwide repercussion of shocks. And, the third driving force is linked with

technological advancements in communication and trading systems leading to an

efficient information sharing and thus a facilitation of the transmission of news

and innovations.

The purpose of this contribution is to analyze the long- and short-run interre-

lationship between national stock markets. While the literature in this area of

empirical finance and financial economics is rather heterogenous, we specifically

seek to bring together two strands of this literature to provide new insights into

the information processing mechanism of stock markets during overlapping trad-

ing hours. The first line of research, dating back at least to the contributions of

Taylor and Tonks (1989), Jeon and Chiang (1991), Kasa (1992), and Richards

(1995), seeks to identify empirically cointegration relationships between national

stock markets. More recent studies in this vein include Knif and Pynnönen (1999),

Dickinson (2000), Chen, Firth and Rui (2002), Bessler and Yang (2003), Eberts
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(2003), Yang, Min and Li (2003), and Westermann (2003). As may be expected,

the results brought forward are not unanimous. Some papers find evidence in

favor of cointegration, notably Kasa (1992) and Bessler and Yang (2003), while

others (e.g. Richards, 1995 and Westermann, 2003) fail to reject the hypothesis

of a stable common stochastic trend among the stock market indices but find

evidence of weak predictability or common serial correlation. The data used for

the various studies differ markedly with respect to their sampling frequency, the

time spans covered and the number of indices scrutinized. Important from our

point of view is the fact that the lowest sampling frequency used in the previous

cited studies is daily data.

The second strand of literature comes from the field of market microstructure

analysis and is closely connected with the work of Hasbrouck (1995). Its purpose

is to identify the driving forces of a price discovery process for a security linked

by arbitrage conditions. Various extensions and applications of this approach are

discussed in several contributions published in a special issue of the Journal of Fi-

nancial Markets Volume 5, 2002. A closely related contribution to this literature

turned out to be the paper by Gonzalo and Granger (1995) which can also be

used to measure the relative importance of the contributions to price discovery

in financial markets. An important branch of this literature using the Hasbrouck

and/or Gonzalo-Granger methodology is the analysis of cross-listed shares traded

on different (national and international) exchanges. For a recent contribution see

e.g. Grammig, Melvin and Schlag (2005).

While the basic idea of our study is in the spirit of Kasa (1992), it differs from it

and the existing literature in various respects. The most obvious difference is our

focus on the US and the German stock markets during overlapping trading hours

such that activity in one market may simultaneously influence, and respond to,
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same-day activity in the other market. We feel that this provides the most na-

tural environment to identify a common stochastic trend driving the two markets

while both have a chance to react on news arrivals instantaneously (probably to

a different degree). Consequently, we rely on high-frequency intraday data of

the major stock market indices in either country for our empirical analysis. Our

approach comprises generalized impulse response and forecast error variance ana-

lyses, as well as permanent-transitory decompositions, which were put forward by

Hasbrouck (1995) and Gonzalo and Granger (1995). A subsequent application of

three different information revealing techniques seeks to identify the fundamen-

tal dependencies between the two indices under study. Papers that have applied

these methods in a similar fashion in the context of stock market interaction are

Cheung and Lai (1999), Phylaktis and Ravazzolo (2002), and Yang et al. (2003).

Yet, these authors mainly focus on emerging market linkages or stock markets

within Europe and only consider daily or even monthly data. Hence, our study

is the first to analyze the interrelation of the US and German stock markets by

using high-frequency data and asking: what, if any, are the possible leadership

effects that the US and German stock markets have over each other during over-

lapping trading hours and if (economic) news is first aggregated in the US and

then transferred to the German stock market.

The remainder of the paper is organized in the following manner. In section

2 we describe the data and consider particular institutional features of the two

markets. Section 3 is devoted to an outline of the methodology employed in our

analysis. Section 4 presents and discusses the empirical results and section 5

concludes.
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2 Institutional Background and Data

The stock indices included in our study are the Dow Jones Industrial Average

(DJIA) and the Deutsche Aktienindex (DAX).1 Market participants, the finan-

cial media, and the literature usually refer to the DJIA when judging the overall

performance of the US stock market. The DAX is the obvious German analogue

to the DJIA - and not only in this respect. In fact, both indices comprise 30 of

the highest capitalized and most traded domestic companies (see Table 1).

- Table 1 on Trading Hours, Market Cap., and Trading Value -

The study is based on high-frequency intraday data for the year 2003 in which

country specific bank holidays are omitted from both series. More explicitly, we

create a sample running from March 13, 2003 to December 31, 2003 to neutralize

uncertainties underlying the stock markets worldwide due to the Iraqi crisis. As

Table 1 shows, the common trading time overlap begins at 2:30pm GMT but

varies in its closing time. On November 03, 2003 Frankfurt’s trading hours were

curtailed by 2.5 hours, mainly due to low trading volume during the late evening

hours. Therefore, we focus on the main trading-time overlap of Deutsche Boerse

and the New York Stock Exchange, ranging from 2:30pm GMT to 4:30pm GMT.

To base our further analysis on conventional grounds, we transform both index

series by taking natural logarithms.

Stock prices and indices respond very quickly to new information. High-frequency

data thence provides useful insights into market dynamics. As mentioned by

Grammig et al. (2005), there may be one-way causalities which exist among

1 The DJIA data was obtained from Olsen & Associates and the DAX data from the KKMDB
(Karlsruher Kapitalmarkt Datenbank).
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the variables at a shorter sampling interval that cannot be identified at a lower

frequency. On the other hand, increasing the frequency to an arbitrary level is

also counterfactual. Indices especially face infrequent trading problems since they

contain also less liquid stocks. Hence, we regard minute by minute data as the

best way to cope with the trade-off between the issues of contemporaneous corre-

lation and non-trading. Tests based on lower sampling frequencies (two minutes

up to five minutes) showed qualitatively similar results but higher contempora-

neous correlation.

Considering minute by minute data, together with our data range chosen pro-

vides us with T = 20628 observations in our sample. Interpreting statistical

tests from the classical perspective to a sample of this size is likely to indicate

statistical significance for values that won’t be statistical significant otherwise.

Since there is no general approach to tackle this issue and many analyses of high-

frequency data are often conducted using conventional significance levels (e.g.

Harris, McInish and Wood, 2002 and Grammig et al., 2005), we provide p-values

- where appropriate. Reasoning along a similar line of the classical perspective,

Shiller and Perron (1985) conclude that as the number of observations increases,

the power of a test ought to be very high even though the data come from a rel-

atively short sample period. That means one should think of the power of a test

as depending more on the span of the data than on the number of observations.

As our sample period (almost ten months) is relatively large compared to similar

studies of high-frequency data (e.g. Grammig et al., 2005 who have a span of

three months), we consider our sample period to be long enough to prevent the

power of our tests being biased by too many observations.

Closely connected to the previously mentioned problem of stock indices facing

infrequent trading is the so-called stale-quote-problem, which is for both indices

one of the main institutional features that must be considered (see e.g. Lin,

5



Engle and Ito, 1994). Since both stock exchanges try to publish the opening

quote as early as possible right after trading starts, the indices may not reflect

all relevant information available at that time. In fact, we found for both indices

that relevant information was lacking at the beginning of the trading day (i.e.

opening quotes which differed only marginally from the previous day’s closing

quote) for a relative large fraction of our sample period. To get robust results,

we follow similar studies, in particular Baur and Jung (2006), and tested for

several opening-proxies. We find that omitting the first 10 minutes of trading

on the New York’s stock exchange is most suitable for overcoming this negative

feature. Hence, we chose 2:40pm GMT as the beginning of the common trading

time overlap. Alternatively, continuously traded future (index) data is often used

to circumvent the stale-quote-problem (see e.g. Roope and Zurbruegg, 2002).

However, since the DJIA and the DAX usually receive more attention when it

comes to monitoring transatlantic stock market linkages we take the exchange’s

spot index.

Our analysis could also be accomplished by following Kasa (1992) and converting

national stock price indices into a common currency (Euro or U.S. dollars) or even

deflating them by using CPI- or GDP-deflators. Yet, we are interested in the pure

leadership effect of one national stock market over its transatlantic counterpart

and thus base our analysis on nominal data in local currencies. Converting either

the US or the German stock price index into a common currency could distort

our findings because it implicitly assumes that the exchange rate evolution is

stationary. To check if such a conversion implies additional effects, we tested for

a unit root in the Euro/USD exchange rate and strongly failed to reject the null-

hypothesis. Also, expressing both stock equity index in real terms would hide

a possible leadership effect by either excluding the US or the German inflation;

apart from that, deflating our high-frequency data by CPI- or GDP-deflators
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is not feasible since these deflators are based on lower sampling (monthly or

quarterly) frequencies.

3 Methodology

3.1 Common stochastic trend representation

Given the nature of and the empirical evidence that financial markets tend to

move together, it seems only natural from a statistical point of view that stock

markets consist of a common factor and an individual transitory component which

captures country specific innovations. Let us thus propose that each stock market

index yi,t (i = 1, .., N) evolves according to a random walk plus noise model, i.e.:

yi,t = ft + ηi,t, with ft = ft−1 + ξt, (1)

where {ξt} is a white-noise process and ηi,t is a well-defined zero-mean covariance-

stationary random disturbance.

Recursively substituting in (1) for ft−1, ..., f1 and assuming f0 = 0 for ease of

notation yields:

yi,t =
t∑

s=1

ξs + ηi,t. (2)

The individual sequences yi,t share a common factor, i.e. the stochastic trend∑t
s=1 ξs of cumulated random information arrivals, but they differ from each

other by the stock market specific transitory disturbance ηi,t. By explicitly mo-

deling stock indices in such a way we implicitly assume that new information

emanating from economic fundamentals is aggregated in the equity markets.
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To capture the joint evolution of the stock market indices, we extend our uni-

variate random walk plus noise model (2) to a multivariate version of the Beveridge-

Nelson (1981) decomposition. In particular, we consider the polynomial factori-

zation C(L) = C(1) + (1 − L)C∗(L), where C∗(L) =
∑∞

j=0C
∗
jL

j is "absolutely

summable in matrix norm" and C∗
j = −

∑∞
l=j+1Cl ∀ j ≥ 0. Defining Yt and εt as

the N -dimensional versions of the time series vectors {yi,t} and {ξt}, respectively,

then leads to:

Yt = C(1)
t∑

s=1

εs + ηt, (3)

where εt is white-noise with E(εtε
′
t) = Ω being positive definite (Ω = {ωi,j

∀i, j = 1, 2, ..., N}) and ηt = C∗(L)εt. Hence, the system of stock market in-

dices depends on a non-stationary (permanent) component C(1)
∑t

s=1 εs, where

C(1) represents the long-run impact matrix of a disturbance on each of the vari-

ables in the system, as well as a covariance stationary (transitory) component ηt.

If C(1) has full rank then the permanent part of equation (3) is only a linear

combination of N random walks and no stationary part exists. However, if C(1)

is of rank k = N − r, then this implies the presence of r stationary components,

i.e. cointegrating vectors β, and the existence of k common trends (i.e. random

walks with serially uncorrelated increments) which drive the cointegrated system

(Stock and Watson, 1988). Using Johansen’s (1991) notation we obtain equation

(3) as:

Yt = β⊥ϕ
′

t∑
s=1

εs + ηt, (4)

where β′C(1) = 0, C(1)α = 0, ϕ′α = 0, β′⊥β = 0, and ϕ′εt is the common stochas-

tic trend component innovation.2 Applying the Granger representation theorem
2 ϕ′ ∑t

s=1 εs is the Stock and Watson common stochastic trend component.
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(Engle and Granger, 1987) this multivariate process may also be represented by

the following vector error correction model (VECM):

∆Yt = αβ′Yt +
P−1∑
p=1

Γp∆Yt−p + εt. (5)

3.2 Detection of leadership effects

Assuming only one common trend in the system of stock indices raises the ques-

tion to what extend different markets have leadership effects over each other, i.e.

how the individual information content relates to the common long-run factor. In

this respect, the studies by Hasbrouck (1995) and Gonzalo and Granger (1995)

supply qualified techniques for which the work by Kasa (1992) shall be used as a

benchmark.

Kasa’s measure

Kasa (1992) starts to derive the basic idea of the relative independence of each

national stock market from the common stochastic trend by specifying the state

space formulation of equation (4):

Yt = β⊥(β′⊥β⊥)−1β′⊥Yt + β(β′β)−1β′Yt, (6)

where the first part on the right hand side of equation (6) reads as the permanent

and the second part as the stationary component.

Kasa (1992) arranges the orthogonal complements of the permanent component

to define the common factor as a weighted average of the variables under con-

sideration, i.e. (β′⊥β⊥)−1β′⊥Yt with loading vector β⊥. To attach an economic

meaning to this decomposition, Kasa normalizes the vector of factor loadings

such that the weights of the variables in the common factor sum to unity. As he

points out, the relative importance of each market to the trend is the same as
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the relative importance of the trend to each market (except for a normalization

factor). We therefore calculate the relative importance of each variable to the

common trend from the factor loadings β⊥. Considering a bivariate system of

variables, we compute our measure in the sense of Kasa by first solving simulta-

neously the orthogonality condition β′⊥β = 0 and ι′β⊥ = 1, where ι is a vector

of ones, and then correcting for the normalization issue. Thus, Kasa’s measure

(K1,2) can be characterized as:

K1 = 1− β2

β2 − β1

, K2 = 1− β1

β1 − β2

, (7)

where β = (β1, β2)
′.

In contrast to the common-trend-representation by Stock and Watson (1988),

Kasa’s common stochastic trend will no longer be a pure random walk. Any

short-run dynamics that are orthogonal to the cointegration relation (the long-

run dynamics) might be included in the common trend. Needless to say, isolating

a group of transitory shocks from their permanent counterparts is somewhat

controversial when not applying any additional identification restrictions (e.g.

motivated by economic theory).

Hasbrouck’s measure

The Hasbrouck (1995) methodology of measuring the contribution of each mar-

ket to the overall variance of the system essentially boils down to a variance

decomposition of the common factor. Central to the argumentation is the fac-

tor component (common to all markets, i.e. the stochastic trend) of which the

elements represent the new information arrival that is permanently impounded.

Taking into account that all the variables have the same long-run impact (i.e.

the same common trend) the rows of C(1) in equation (4) are identical. Equation
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(4) then becomes:

Yt = ιc

t∑
s=1

εs + ηt, (8)

where c is the common row vector of C(1). The variance of the common factor

innovations can be decomposed into components attributable to the ith variable

and its relative contribution is defined as:

Hi =
([cMii])

2

cΩc′
, (9)

where a Cholesky factorization of the form Ω = MM ′ (with M as a lower trian-

gualar matrix ) is typically used to tackle the issue of contemporaneous correla-

tion among the innovations. Unfortunately, different conclusions can be obtained

by alternative rotations of the variables. Thus, one can only compute a range of

measures to establish upper and lower bounds such that the effect of any common

factor is attributed to the variable that comes first in the system. Nevertheless,

one should be careful with the tempting idea that the upper bound of Hasbrouck’s

measure can always be attributed to the variable ordered first. In fact, Hasbrouck

(2002) shows that a maximum (upper) bound can be obtained from the variable

ordered last. It is thus necessary to rotate the variables and check for upper and

lower bounds.

Usually, Hasbrouck’s measure is estimated using the Vector Moving Average

(VMA) form of the cointegrated variables. As Martens (1998) shows, the com-

mon row vector c is, up to a scale factor, orthogonal to the vector of adjustment

coefficients α in a bivariate VECM-system. Consequently, the information mea-

sures only depend on the adjustment coefficients and the covariance matrix of the

cointegrated system. More precisely, the orthogonal complement to the vector

of adjustment coefficients are obtained by solving simultaneously α′⊥α = 0 and
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ι′α⊥ = 1, where ι is again a vector of ones. Hasbrouck’s measure (H1,2) can then

be written (depending on the order of the variables) as:

H1 =
[α⊥,1M11 + α⊥,2M21]

2

[α⊥,1Ω11α⊥,1 + α⊥,2Ω21α⊥,1 + α⊥,1Ω12α⊥,2 + α⊥,2Ω22α⊥,2]
,

H2 =
[α⊥,2M22]

2

[α⊥,1Ω11α⊥,1 + α⊥,2Ω21α⊥,1 + α⊥,1Ω12α⊥,2 + α⊥,2Ω22α⊥,2]
, (10)

where α⊥ = (α⊥,1, α⊥,2)
′.

Gonzalo-Granger measure

In comparison to Kasa (1992) and Hasbrouck (1995), Gonzalo and Grangers’

(1995) analysis supplies an additive separable form of the system of cointegrated

variables in a more concrete manner. The basic idea is to decompose the cointe-

grated system into a permanent component ft (the common factor) and a tran-

sitory component Ỹt:

Yt = A1ft + Ỹt, (11)

where A1 represents a factor loading matrix. By using the identifying restrictions

that ft is a linear combination of Yt and that the transitory component Ỹt does

not Granger-cause Yt in the long-run (see Gonzalo and Granger, 1995, definition

1), the dynamics above can be decomposed as:

Yt = β⊥(α′⊥β⊥)−1α′⊥Yt + α(β′α)−1β′Yt. (12)

That is to say, since ft is given as α′⊥Yt the elements of α⊥ are the common factor

weights of the variables driving the cointegrated system. More precisely, Gon-

zalo and Granger (1995) show that in a N -variable system with r cointegrating

restrictions the relevant vectors of common factor weights are given by the eigen-

vectors corresponding to the N−r smallest eigenvalues (determined in a reduced
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rank regression and generalized eigenvalue problem similar to those of Johansen,

1988, 1991). Once α⊥ has been normalized so that its elements sum to unity, it

measures the fraction of system innovations attributable to each variable. In a

bivariate system, the Gonzalo-Granger measure (G1,2) is tantamount to:

G1 =
α2

α2 − α1

, G2 =
α1

α1 − α2

, (13)

where α = (α1, α2)
′.

As Gonzalo and Granger (1995) point out, the random walk part of their common

factor corresponds indeed to the common trend of the Stock-Watson decompo-

sition. However, their common factor as such differs from the Stock-Watson

definition of a common trend because the changes in ft are serially correlated.

Nevertheless, the appealing feature of Gonzalo and Grangers’ approach is the

definition of the common factors as a linear combination of observations, and the

simple separation of the transitory component by having only temporary effects

on Yt.

Connection between the three approaches of information dominance

At first glance, especially the Gonzalo-Granger and Hasbrouck’s measures seem

to be competing approaches to detect leadership effects in cointegrated security

markets. The provision of bounds by Hasbrouck (1995) versus the precise esti-

mate derived from the Gonzalo-Granger methodology is one of the most obvious

differences. Hasbrouck gauges variable i’s innovation εi to the total variance

of the common trend innovations. He defines the permanent component as a

combination of current as well as lagged variables of interest, since the common

stochastic trend is (and the transitory components are) driven by current and

lagged innovations εt. This I(1)-process is, however, still a random walk by def-

inition. On the other hand, Gonzalo and Granger (1995) measure the impact

of εi on the innovation in the common factor and their permanent component
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only comprises current values of yt. Any non-stationary process could thus form

the permanent component in the Gonzalo-Granger decomposition (as is the case

in Kasa’s decomposition) and might be forecastable, in which case a reasonable

interpretation would fail (Hasbrouck, 2002); obviously, this is somewhat contro-

versial. Nevertheless, the two methodologies are indirectly related to each other

via the Gonzalo-Granger factor loadings which directly feed into the calculation

of Hasbrouck’s measure. This can be best seen in a bivariate system in which the

vector of factor loadings is broken down to the common row vector c of equation

(8) and is therefore equivalent (up to a scale factor) to the orthogonal comple-

ment of the vector of adjustment coefficients.

Furthermore, Escribano and Peña (1994) give an intuitive way of looking at the

connection between Gonzalo and Grangers’ decompostion and the decomposition

provided by Kasa. Subtracting equation (12) from equation (6) gives:

β⊥(β′⊥β⊥)−1β′⊥Yt = β⊥(α′⊥β⊥)−1α′⊥Yt + (β(β′β)−1 − α(β′α)−1)β′Yt. (14)

Premultiplying by α′⊥ or β′⊥ delivers either the common factor of the Gonzalo-

Granger decomposition in terms of Kasa, i.e.:

α′⊥Yt = α′⊥β⊥(β′⊥β⊥)−1β′⊥Yt − α′⊥β(β′β)−1β′Yt, (15)

or that of Kasa in terms of the Gonzalo-Granger approach:

β′⊥Yt = β′⊥β⊥(α′⊥β⊥)−1α′⊥Yt − β′⊥α(β′α)−1β′Yt. (16)

It is clear from the above specifications that the common factors are not only

simple mutual linear combinations but, as stated above, they also differ in defin-

ing the common factor. In the Gonzalo-Granger decomposition, the long-term

dynamic is eliminated in a manner that shocks to the common factor have only
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a temporary effect on Yt. Kasa (1992), on the other hand, allows for "tran-

sitoriness" in the permanent component, i.e. any short-run dynamics that are

orthogonal to the cointegrating relation are included in the common trend.

3.3 Speed of incorporating new information

Tightly connected to the detection of leadership effects is the nature of the long-

run structure. We employ the persistence profile developed in Pesaran and Shin

(1996) to analyze the time profile of the long-run impacts of a shock to the

cointegrated system. Specifically, Pesaran and Shin cast up the impact of a

system-wide shock as a difference between the conditional variances of the j-

step- and the (j − 1)-step-ahead forecast, scaled by the difference between these

measures on impact:

ψZ(j) =
V ar(ζt+j|It−1)− V ar(ζt+j−1|It−1)

V ar(ζt|It−1)− V ar(ζt−1)

=
β′BjΩB

′
jβ

β′Ωβ
, for j = 0, 1, 2, ..., (17)

where V ar(ζt+j|It−1) is the conditional variance of the equilibrium relation ζt+j =

β′Xt+j given the information set It−1 at time t − 1, and Bj =
∑j

l=0Cl as well

as ψZ(0) = 1 on impact. The persistence profile will be unique in the case of

just one cointegrating relation and does not require prior orthogonalization of the

shocks (e.g. by a Cholesky factorization); it is thus invariant to the ordering of

the variables in the model. Moreover, the profile provides valuable information of

the speed with which the effects of a system-wide shock eventually disappear as

the system returns to its steady state, even though such a shock may have lasting

effects on each individual variable. As the speed of adjustment to the (new) equi-

librium indicates how strong the variables are cointegrated, cointegration analysis

can also be interpreted as a test on the limiting value of the persistence profile
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being zero as the forecast-horizon j tends to infinity (Pesaran and Shin, 1996).

We further investigate the dynamic effects of a variable-specific shock on each of

the other variables. Based on the Wold representation of equation (5), Pesaran

and Shin (1998) develop a (scaled) generalized impulse response function (IRF)

of the VECM-variables ∆Yt+j to a one-standard-error shock in first differences

which is again invariant to the ordering in the system. It is given by:

ψ∆Y,i(j) =
CjΩ√
ωii

ei, for j = 0, 1, 2, ..., (18)

where ei is a (n× 1) selection vector with its ith element equal to one and zeros

elsewhere. A generalization in terms of an integrated form of (18) is obtained by:

ψY,i(j) =
BjΩ√
ωii

ei, for j = 0, 1, 2, ..., (19)

where ei, Cj and Bj as before. This generalized IRF (19) gives further insight

into the dynamic interactions between the level-series, i.e. whether shocks to

the ith variable only affect the ith variable or if they strike predominantly other

variables in the model.

3.4 Testing hypotheses on the common factor

To gauge the nature of the common permanent trend, we identify the common

factor components by applying the permanent-transitory decomposition of Gon-

zalo and Granger (1995). Furthermore, we test which variable is the driving

force in the system, i.e. whether information revealed on one market contributes

mainly to the permanent component. The latter hypothesis can be tested by

using the Gonzalo-Granger likelihood ratio test to analyze the relevance of each

individual factor component. This hypothesis on α⊥ is formulated as:

H0 : α⊥ = Gθ, (20)
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where G is a (N ×m) restriction matrix on α⊥ with m as the number of freely

estimated coefficients of the common factor and θ is the (m × (N − r)) matrix

of restricted coefficient estimates. In particular, Gonzalo and Granger (1995)

estimate θ as the m eigenvectors associated with the m smallest eigenvalues (λ′is)

of the following generalized eigenvalue problem:

(λG′S00G−G′S01S
−1
11 S10G)θ = 0, (21)

in which Sjl (j, lε{0, 1}) are the residual product matrices of the Johansen (1988,

1991) technique. The likelihood ratio test statistic is then given by:

−T
N∑

i=r+1

ln
(1− λ̃i+m−N)

(1− λ̂i)
∼ χ2

(N−r)×(N−m), (22)

which is χ2 distributed with (N − r)× (N −m) degrees of freedom, and where λ̂i

and λ̃i+m−N represent the solution to the unrestricted and restricted (equation

(21)) eigenvalue problems, respectively.

4 Empirical Results

4.1 Preliminary analysis

The subsequent analysis was conducted using Gauss software and programs writ-

ten by the authors. Although many standard software packages offer pre-pro-

grammed procedures for the kind of analysis undertaken here, they do not allow

for the special data handling necessary in our case. To avoid spurious results in

our analysis caused by overnight influences, we carefully adjusted the starting

point for the data on each day in such a way that lagged values would not be

taken from the previous trading day.
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Keeping the interrelatedness of the two stock market series in mind, we started

our empirical analysis by testing for the presence of a single unit root. Since

financial series are generally considered to move according to a stochastic trend,

we apply the augmented Dickey-Fuller (ADF) test (Dickey and Fuller, 1979,1981)

with a constant but without a linear time trend in order to assess the order of

integration of DAX or DJIA, respectively. Both ADF-regressions are conducted

on the levels and on first differences. To determine the optimal lag length, we

employ a general-to-specific modeling strategy.

- Table 2 on ADF-Test -

Table 2 reports the ADF-test results for I(1) versus I(0). For every stock in-

dex series, the null-hypothesis of a unit root is not rejected at any conventional

significance, whereas the null of non-stationary first differences is rejected at the

0.01%-level.

To test for one common stochastic trend in the underlying system of the DAX-

and DJIA-indices we apply the reduced rank regression proposed by Johansen

(1988, 1991). This procedure (being robust to non-normal innovations and GARCH

effects, see e.g. Cheung and Lai, 1993, as well as Lee and Tse, 1996) has the ad-

vantage of incorporating all that matters in the context of our goal to determine

common trends and information dominance into the well-known maximum likeli-

hood framework by simply specifying an autoregressive process with white-noise

error terms. In practice, the cointegration rank is best chosen by applying both

test-procedures (λtrace = −T
∑N

i=r+1 ln(1 − λ̂i) and λmaxeig = −T ln(1 − λ̂r+1))

proposed in Johansen (1988, 1991) along with the eigenvalues (λ̂′is) themselves.

As is well known, the λmaxeig-statistic tends to have more power than the λtrace-

statistic in the presence of unevenly distributed (either very large or very small)
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eigenvalues whereas the opposite is true when the eigenvalues are uniformly dis-

tributed. Both test statistics are non-normally distributed with critical values

given in MacKinnon, Haug and Michelis (1999). The cointegration test is con-

ducted by restricting the constant to lie in the cointegration space, thus assuming

that there is no deterministic trend in stock markets. Moreover, the optimal lag

length is determined by applying the Schwarz information criterion; a general-

to-specific modeling strategy leads to similar results with the presence of cointe-

gration being robust to the number of lags.

- Table 3 on Cointegration-Test -

According to Table 3, we do not fail to reject the null hypothesis of no cointegra-

tion among the two stock indices at the 0.02%-level. In other words, there exists

a common trend which affects both stock markets significantly.

Finally, we assess the model adequacy by checking the VECM-residuals for con-

temporaneous correlation, non-normality, and autocorrelation, which are de-

picted together with some descriptive statistics in Table 4. We cannot detect

any contemporaneous correlation in the innovations and also cannot reject the

null-hypothesis of no autocorrelation at any significance level.

- Table 4 on Error Diagnostics -

4.2 Information dominance

Virtually all results of our analysis of information dominance are obtained on

the basis of the estimation results from the reduced rank regression. We adopt
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the bootstrap method for cointegrated systems developed by Li and Maddala

(1997) to overcome the shortcoming that the precision of our estimates cannot

be assessed analytically. We choose to bootstrap from the estimated residuals

of the VECM in order not to distort the dynamic structure of our model (see

Sapp, 2000 for further details on bootstrapping dependent variables in a dy-

namic framework). Using estimated parameters and initial values, we create a

new set of system variables (with the same number of observations as in the

original data) by drawing independently observations with replacement from the

innovations. Based upon the generated data, the common trend relationship

and the subsequent assessments are re-estimated. This process is then repeated

1000 times and the standard errors are calculated from the empirical distribution.

Table 5 assembles our estimates for the various information measures which are

perhaps not surprising - the US stock market exhibits strong leadership effects

over its German counterpart.

- Table 5 on Information Measures -

According to Hasbrouck’s measure, the DJIA contributes 95% to the total in-

novation of the common factor, whereas the DAX merely attains a level of five

percent on average. This means that the permanent shocks emanate predomi-

nantly from the US market, or put differently, the DJIA has a leading role in

impounding new information. Moreover, the bounds of Hasbrouck’s measure are

close together (due to the small contemporaneous correlation of the innovations)

which strengthens our findings. Gonzalo-Grangers’ method displays the same

outcome. The US market enters with almost 90% percent into the common long

memory component and thus affirms our hypothesis that (economic) news is first

aggregated in the US and then transferred to the German stock market during
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overlapping trading hours. These results are strengthened by considering Kasa’s

measure which assesses the relative importance of each market to the common

trend. The US market is relative important to the common trend (the DJIA

determines the common factor by 61%) while the DAX-weight in the common

factor is 39%.

In a next step, we examine the persistence profile and generalized impulse re-

sponses following Pesaran and Shin (1996, 1998) to gain further insight into the

structure of shocks impacting the system of stock markets. After a system-wide

shock, the equilibrium relationship between the US and German stock markets

adjusts very quickly, i.e. within the first five to ten minutes (Figure 1, where

the bootstrapped 95%-confidence bands are also shown). However, such an im-

pact exhibits long persistence such that the pre-shock state is only restored after

approximately 40 days which is in line with other studies on the persistence of

shocks to a cointegrated system of stock markets (e.g. Yang et al., 2003).

- Figure 1 on Persistence Profile -

Figure 2 and 3 depict the generalized impulse responses to one-standard-error

shocks (along with the bootstrapped 95%-confidence bands) of the adjustment-

and level-equations, respectively. The findings from the generalized impulse re-

sponses of Figure 2 provide further support that the two markets react very

quickly (in less than five minutes) to shocks coming from either direction, al-

though a shock emanating from the same direction has a stronger effect on the

own market on impact. Moreover, as the plots in Figure 3 show, a DAX inno-

vation affects Frankfurt’s stock market more than its US counterpart whereas

a DJIA innovation has a greater effect on the US market on impact. However,

such a shock to New York’s stock index exerts a bigger impact on the DAX in
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the long-run compared to the long-run effect of a DAX-shock on the US index.

The greater long-run impact of DJIA innovations on the German stock market

supports our findings that shocks emanating from the US market have a broad

or permanent effect on the German stock market while a DAX shock is only

transitory in the long-run.

- Figure 2 and 3 on IRF -

Given the information to what extend the individual information content relates

to the common long-run factor, a probably more illuminating way to gain further

understanding of the trend across markets is to compare plots of the actual series

versus its permanent component. If stock price changes represent predominantly

innovations to the long-rung factor, both series will be closely aligned, whereas

the permanent component series and the actual index series should deviate from

each other if transitory disturbances are relatively important to the market. Fig-

ure 4 shows the Gonzalo and Grangers’ (1995) permanent component of the two

stock indices superimposed on the actual series. As the relative magnitudes of the

Gonzalo-Granger measure suggest, the fit is best for the DJIA (note: although

the scaling of Panel (a) and (b) in Figure 4 is different, the number and the span

of intervals is the same).

- Figure 4 on Permanent Component vs. Actual Series -

Turning to the permanent-transitory decomposition of our multivariate random

walk plus noise model it can be seen from Table 6 (feedback parameters) that

deviations from the equilibrium relation do not appear to be significant in the

case of the DJIA (α1 receives a p-value of 0.19) whereas they are significant for
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the DAX for which α2 receives a p-value of 0.06. Hence, one could conclude that

α = (0, 1)′, i.e. the common factor could be assumed to be a multiple of the

DJIA and the permanent component could be written as:

ft = (1, 0)

 DJIAt

DAXt

 . (23)

This means that, ceteris paribus, any innovation in the DAX is going to affect

the German and the US stock markets only via the transitory component. This

is exactly the conclusion we inferred from the generalized IRFs of Figure 3 where

a DAX shock seems to have only transitory effects in the long-run.

- Table 6 on Permanent Component Estimation and Hypothesis Testing -

To assess more thoroughly the role of the national stock markets as a source of

price relevant information, we test the null-hypotheses (in the sense of Gonzalo

and Granger, 1995) that either stock index is the only variable driving the whole

system in the long-run. For the null-hypothesis that e.g. the US stock market is

in fact responsible for revealing 100% of the common factor this means:

H0 : α⊥ = Gθ, with G =

 1

0

 . (24)

Table 6 lists also the χ2-test statistic and p-value for these null-hypotheses. We

cannot reject the null-hypothesis H0,a that the US stock market only contributes

to the revelation of the common factor (p-value=0.19). However, we don’t fail

to reject H0,b that the German market drives the system and obtain a χ2-test

statistic of 15.5 with a p-value smaller than 0.0001. Thus, our presumptions that

the DAX introduces only transitory components and that the common factor

seems to be a multiple of the DJIA variable are justified.
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5 Concluding Remarks

This paper provides an empirical analysis of the common factor driving the in-

traday movements of the DAX and the DJIA during overlapping trading hours.

Based on minute-by-minute data set spanning from March to December 2003 we

estimated a bivariate common factor model for the two indices. By explicitly

modeling the two stock indices we implicitly assumed that news on economic

fundamentals is aggregated in either equity market and that therefore both stock

indices are linked by a common trend of cumulated random information arrivals.

We computed various measures of information leadership and found that the

DJIA is the predominant source of price relevant information flowing into the

transatlantic system of stock indices. While the measure by Kasa attributes a

weight of 61% for the DJIA in the common factor, the measures by Hasbrouck as

well as Gonzalo and Granger demonstrate that the DJIA contributes up to 95%

to the total innovation of the common factor. Moreover, our impulse response

analyses show that both stock markets adjust very quickly (in less than five min-

utes) to shocks emanating from either the US or the German side but that DJIA

innovations have a greater long-run impact on the German stock market whereas

DAX shocks are transitory in the long-run. This observation is further strength-

ened by our permanent-transitory decomposition. It clearly emerges from our

hypothesis testing that the US stock index is the main variable driving the bi-

variate system during overlapping trading hours. Any innovations in the German

stock index affect both markets only via the transitory component. Hence, our

analysis implies that (economic) news is first incorporated in the US and then

transferred to the German stock market.
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Appendix

Table 1

Table 1: Trading Hours, Market Capitalization, and Trading Value in 2003

Market Index 5% Market 5% Trading No. of 5% Domestic
Capitalization1 Value2 Value2 Companies

DJIA / NYSE 22.2 58.6 41.5 92

DAX / Deutsche Boerse 63.5 67.0 85.3 36
1Percent of total market capitalization (Dec. 2003).
2Market concentration (in %) of 5% of the largest companies by market capitalization and trading value compared with total

domestic market capitalization and trading value, respectively.

Source: Datastream, World Federation of Stock Exchanges, and authors’ calculations.
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Table 2

Table 2: Unit root test of stock index series

Estimated equation: ∆yi,t = a0 + γyi,t−1 +
∑P

p=1 bp∆yt−p + εt

τ(γ) DJIA DAX

P=1 P=5

log index-level -2.21 -3.31
[0.2028] [0.0144]

log index-return -96.55 -59.01
[<0.0001] [<0.0001]

Note: τ(γ) is the t− statistic of the estimate of γ. P-values in squared

brackets according to MacKinnon (1996).

Lag-length P based on general-to-specific modeling strategy.

Source: authors’ calculations.
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Table 3

Table 3: Johansen test results

Estimated equation: ∆Yt = α(β′Yt + c) +
∑P−1

p=1 Γp∆Yt−p + εt

P=8

H0 λtrace λmaxeig Eigenvalue

r = 0 24.92 21.46 0.001136
[<0.0001] [0.0002]

r ≤ 1 3.45 3.45 0.000183
[0.9985] [0.9796]

Note: λtrace is the Johansen’s trace and λmaxeig is the Johansen’smaximum

lambda test. P-values in squared brackets according to MacKinnon et al.

(1999).

Lag-length P chosen according to Schwarz information criterion.

Source: authors’ calculations.
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Table 4

Table 4: Error Term Diagnostics

Contemporaneous correlation

DJIA DAX

DJIA 1

DAX 0.0716 1

Excess
Mean Std.Dev. Skewness Kurtosis LB-Q(15)

DJIA 0.0038 0.3487 0.0143 6.3638 6.88

DAX 0.0034 0.7872 0.0660 8.5245 10.89
Note: Ljung-Box Q-test distributed as a χ2(15). ***:=sign. at 1%; **:=sign. at 5%;

*:=sign. at 10%

Source: authors’ calculations.
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Table 5

Table 5: Information dominance

DJIA DAX

Kasa’s measure

0.6112 0.3888
[0.0267] [0.0408]

Hasbrouk’s measure

average 0.9510 0.0490
[0.0021] [0.0405]

bounds 0.9061 , 0.9959 0.0939 , 0.0041
[0.0051] , [0.0002] [0.0404] , [0.0452]

Gonzalo-Grangers’ measure

0.8724 0.1276
[0.0029] [0.0199]

Note: P-values in squared brackets based on bootstrapped standard errors.

Source: authors’ calculations.
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Table 6

Table 6: Common permanent component estimation and hypothesis testing

DJIA DAX

Feedback parameters

α = (α1, α2)′ 0.0036 -0.0246
[0.1942] [0.0605]

Hypothesis testing H0,a H0,b

QGG 1.6920 15.5001
[0.1934] [<0.0001]

Permanent-transitory decomposition (Gonzalo and Granger, 1995)

 YDJIAt

YDAXt

 =

 0.3321

0.2936

 ft +

 −3, 8140

26, 0601

 zt

where

ft = 2.6670YDJIA,t + 0.3902YDAX,t

zt = −0.0490YDJIA,t + 0.0312YDAX,t

Note: QGG is the χ2(1)-distributed test statistic of Gonzalo and Grangers’likelihood ratio

test on common factor weights with one degree of freedom.

P-values in squared brackets (based on bootstrapped standard errors).

Source: authors’ calculations.

vi



Figure 1

Figure 1: Persistence profile of a one-standard-error shock

Source: authors’ calculations.
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Figure 2

Figure 2: Effects of a one-standard-error shock to adjustment equations

Source: authors’ calculations.
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Figure 3

Figure 3: Effects of a one-standard-error shock to level equations

Source: authors’ calculations.
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Figure 4

Figure 4: Permanent component vs. actual series

(a): Permanent component imposed on DJIA

(b): Permanent component imposed on DAX

Note: PERM_DJIA = 0.3321ft and PERM_DAX = 0.2936ft, where ft = 2.6670YDJIA,t + 0.3902YDAX,t.

Source: authors’ calculations.
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