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Abstract

The valuation of insurance contracts using concepts from finan-
cial mathematics (in particular, from option pricing theory), typically
referred to as Fair Valuation, has recently attracted considerable in-
terest in academia as well as among practitioners. We will investigate
the valuation of so-call participating (with-profits) contracts, which
are characterised by embedded rate guarantees and bonus distribu-
tion rules. We will study two model specific situations, one of which
includes a bonus account. While our analysis reveals information on
fair parameter settings of the contract, the main focus of the study
will be on the impact of different Lévy process specifications on the
fair values obtained. Our findings imply that regardless of the models
current German regulatory requirements are not compatible with the
fair valuation principle. We also find that a change in the underlying
asset model will imply a significant change in prices for the guarantees,
indicating a substantial model risk.
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1 Introduction

With-profit life insurance policies which contain an interest rate guarantee
have recently generated considerable practical concern in many countries.
In particular in Germany there has been an extensive discussion between
life-insurance companies and their regulator on level of guarantees and par-
ticipation rates. While some life-insurance companies argued that participa-
tion rates need to be different to properly account for the value of different
guaranteed return levels the regulator opposed this view on the basis of
equal treatment of policy holders.

Based on the so-called fair value principle, i.e. valuation of the life-
insurance contracts by means of option pricing theory, one can support the
point of view of the insurance companies, see Buchwald and Müller (2004)
and Kling and Ruß (2004). Similar results, in a different setting specific
to the Danish market have been obtained in Hansen and Miltersen (2001).
A general model has been proposed in Miltersen and Persson (2001) where
also a bonus distribution mechanism was included.

In all the cited papers the model of the underlying costumer asset ac-
count, to which the guaranteed return rule has to be applied, was based
on a Brownian motion driven Black-Scholes setting. In our study we will
generalize the dynamics of the asset account by using different Lévy process
specifications. This is motivated by the substantially changed investment
policies of insurance companies in recent years which contributed to higher
fluctuations of the insurers investment portfolios underlying the contracts.
This generalisation of the model setting also allows to investigate the impact
of a variation of investment strategies on fair rates. Recall the a Gaussian-
based model is complete specified by the first two moments of a distribution.
In contrast, Lévy-type models allow for much more flexible strategies which
can be distinguished according to higher moments of the asset returns, e.g.
with respect to kurtosis and thus to the tails of the return distribution. Ad-
ditionally, we will investigate the impact of different types of Lévy process
models on fair contract parameters. In this respect our study generalizes
Ballotta (2004), who focused on a Merton-style jump-diffusion model applied
to a simple contract model.

The paper is organized as follows. In section 2 we specify a simple con-
tract, introduce the fair value principle and present results in the standard
Black-Scholes setting. Section 3 is devoted to the analysis of the simple con-
tract under Lévy process specifications. In section 4 we study the impact
of the introduction of a bonus account under different Lévy process speci-
fications. The proposed contract specifications in the simple and the more
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complex case are as in Miltersen and Persson (2001).

2 The simple model

In this section we specify a simple contract specification which does not
include a bonus account.

2.1 The simple contract

At t = 0 policy holders deposit X into account C which is invested by insurer
for T years. The insurer promises an annual rate of return of C in year i of

gi + δ(ξi − gi)+,

where gi is the minimum rate of return, ξi is random rate of return of insur-
ers (investment) performance and δ is the participation rate. The insurers
liabilities

Ct = Ct−1 exp
{
gt + δ[ξt − gt]+

}

= X exp

{
t∑

i=1

gi + δ[ξi − gi]+
}

with initial liabilities C0 = X. The insurers assets are given by

At = X exp

{
t∑

i=1

ξi

}
.

2.2 Fair valuation principle

We suppose the we can use a pricing measure (equivalent martingale mea-
sure, EMM) QQ so that any (random) cash flow ZT at time T can be valued
using the pricing formula

Vt(ZT ) = IE
(

e−
R T

t ruduZT

∣∣∣Ft

)
(1)

where IF = (Ft) is the relevant financial market filtration and (rt) short rate
process. Thus

V0(AT − CT ) = 0

Since V0(AT ) = X we have the fair value condition

V0

(
CT

X

)
= V0

(
e
PT

i=1 gi+δ[ξi−gi]
+
)

= 1 (2)
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We now assume a constant interest rate, then

V0

(
CT

X

)
= IE

(
e−rT e

PT
i=1 gi+δ[ξi−gi]

+
)

= IE
(
e−rT e

PT
i=1(gi

W
(δξi+(1−δ)gi))

)

= IE
(
e−rT e

PT
i=1((δgi

W
δξi)+(1−δ)gi)

)

= e
PT

i=1(1−δ)giIE
(
e−rT e

PT
i=1(δgi

W
δξi)

)

= e
PT

i=1(1−δ)gi

T∏

i=1

IE
(
e−reδgi

∨
eδξi

)

The expectation can be written

IE
(
e−reδgi

∨
eδξi

)
= e−rIE

([
eδξi − eδgi

]+
+ eδgi

)
(3)

= e−rIE

([
eδξi − eδgi

]+
)

+ eδgi−r

The first term corresponds to a European call option on a modified security
with strike eδgi and payoff eδξi at maturity.

2.3 Black-Scholes asset specification

For the standard Black Scholes model we have

dAt = At(rdt + σdWt).

This implies

ξt =
(

r − 1
2
σ2

)
+ σ(Wt −Wt−1).

Thus
IE

(
eδξt

)
= eδ(r− 1

2
σ2)+ 1

2
δ2σ2
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and the volatility of the modified asset is δσ. So we obtain for the expecta-
tion in (3)

e−rIE

([
eδξi − eδgi

]+
)

+ eδgi−r

= e−reδ(r+ 1
2
(δ−1)σ2)Φ

(
r +

(
δ − 1

2

)
σ2 − gi

σ

)

− eδgi−rΦ

(
r − gi − 1

2σ2

σ

)
+ eδgi−r

= e−reδ(r+ 1
2
(δ−1)σ2)Φ

(
r +

(
δ − 1

2

)
σ2 − gi

σ

)

+ eδgi−rΦ

(
−r + gi + 1

2σ2

σ

)

The fair valuation equation (2) implies

V0

(
CT

X

)
= e

PT
i=1(1−δ)gi×

×
T∏

i=1

(
e(δ−1)(r+ 1

2
δσ2)Φ

(
r +

(
δ − 1

2

)
σ2 − gi

σ

)

+ eδgi−rΦ

(
−r + gi + 1

2σ2

σ

))

= 1

If we assume (as typical) constant guarantee g, then we obtain

V0

(
CT

X

)
= e(1−δ)gT

×
(

e(δ−1)(r+ 1
2
δσ2)Φ

(
r +

(
δ − 1

2

)
σ2 − g

σ

)

+ eδg−rΦ

(
−r + g + 1

2σ2

σ

))T

= 1.

This is equivalent to the condition
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1 = e(1−δ)(g−r− 1
2
δσ2)Φ

(
r +

(
δ − 1

2

)
σ2 − g

σ

)
eg−rΦ

(
g − r + 1

2σ2

σ

)
. (4)

Thus the fairness condition is independent of the time horizon.
Figure 1 shows the fair sets of participation rates against guarantees for

a Black-Scholes model for different volatilities σ. Participation rates are
in percentage points. The yellow curve corresponds to σ = 0.1, the green
curve corresponds to σ = 0.2, the blue curve corresponds to σ = 0.3 and the
purple curve corresponds to σ = 0.4. The riskless interest rate, here and in
what follows, is r = 0.1. The figure shows clearly that lower volatility of the
underlying asset process leads to higher participation rates. However, with
none of the above volatility specifications the German regulatory environ-
ment of g = 2.75 % and δ ≥ 90 % is matched, i.e. such a contracts does not
satisfy the fair value requirement! (Observe that we also assumed a very
high riskfree rate, i.e. the situation is even worse for the current interest
rate regime.)

20 40 60 80 100
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0.04

0.06

0.08

0.1

Figure 1: Isoquants for the Black-Scholes-model under different volatilities
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3 Fair valuation for Lévy-type models

3.1 Basic results on Lévy-type models

Recall that in the standard Black-Scholes model the asset price dynamics
are defined via the stochastic differential equation (SDE)

dSt = St(µdt + σdWt),

with constant coefficients and a standard Brownian motion W . The solution
of the SDE is

St = S0 exp
{

µt− σ2

2
t + σWt

}
.

Hence log returns are normally distributed. However, empirical densities of
log returns exhibit stylized facts which are not consistent with normal dis-
tributions, i.e. they show more mass near the origin, less mass in the flanks
and considerably more mass in the tails. This has motivated to consider
Lévy-type models, i.e. asset price models, which generate more realistic
log return distributions. We consider here general exponential Lévy process
model for asset prices

St = S0 exp(Lt),

with a Lévy process L that satisfies some integrability condition. Exam-
ples of such models are, e.g. the generalized hyperbolic model, see Eber-
lein (2001), with the normal inverse Gaussian model, see Barndorff-Nielsen
(1998), as a special case. The Meixner model, see Schoutens (2003) and the
Variance-Gamma model, see Madan and Seneta (1990) and Carr, Chang,
and Madan (1998). For a more complete overview see Schoutens (2003) or
Cont and Tankov (2004).

3.1.1 Generalized hyperbolic model

This is based on the generalized hyperbolic distributions for log returns. For
these distributions the densities are given by:

dGH(x; λ, α, β, δ, µ) = a(λ, α, β, δ, µ) (5)

×(δ2 + (x− µ)2)(λ−
1
2
)/2

×Kλ− 1
2
(α

√
δ2 + (x− µ)2)

× exp{β(x− µ)}
where

a(λ, α, β, δ, µ) =
(α2 − β2)λ/2

√
2παλ− 1

2 δλKλ(δ
√

α2 − β2)
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and Kν denotes the modified Bessel function of the third kind

Kν(z) =
1
2

∫ ∞

0
yν−1 exp

{
−1

2
z(y + y−1)

}
dy

We will consider the Normal Inverse Gaussian Distribution (NIG), where
the parameter λ = −1/2. So the density is

dNIG(x) =
α

π
exp

{
δ
√

α2 − β2 + β(x− µ)
}

×
K1

(
αδ

√
1 +

(x−µ
δ

)2
)

√
1 +

(x−µ
δ

)2
.

3.1.2 The Meixner model

Here the Lévy-type asset model is based on Meixner(α, β, δ,m)-Process. Re-
call that the density of Meixner(α, β, δ) is

fM (x; α, β, δ) =
(2 cos(β/2))2δ

2απΓ(2δ)
exp(βx/α)

∣∣∣∣Γ
(

δ +
ix

α

)∣∣∣∣
2

(6)

where α > 0,−π < β < π, mδ > 0 with semi-heavy tails. One can define a
Lévy process X with distribution of Xt being Meixner(α, β, δt). It is possible
to add a drift term to obtain

Yt = Xt + mt

which we denote as Meixner(α, β, δt,mt)

3.1.3 Option pricing

As Lévy type models typically exhibit incomplete market models we need to
choose an equivalent martingale measure for option pricing. Standard meth-
ods to choose such a measure lead to the so-called Esscher and the mean-
correcting measure. The methodology is explained in detail in Schoutens
(2003). We review briefly the Esscher case. We need the following assump-
tions

• L1 possesses a moment-generating function M(z, 1) = IE(exp(zL1))
on some open interval (a, b) with b− a > 1.
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• There exists a real number θ∗ ∈ (a, b− 1) such that

M(θ∗, 1) = M(θ∗ + 1, 1).

We call a change of measure IP to a locally equivalent measure QQ an Esscher
transform if

dQQ

dIP

∣∣∣∣
Ft

= Zθ
t =

exp(θLt)
M(θ, t)

.

Then there exists an equivalent martingale measure QQ such that the dis-
counted asset price process e−rtAt is a QQ-martingale. The density process
leading to such a martingale measure is given by Zθ∗

t .

3.2 Lèvy asset models

We use the Meixner model as our main example. So we assume

At = A0 exp(Xt)

Then
ξt = Xt −Xt−1

are Meixner(α, β, δ,m). Under the Esscher measure ξt are Meixner(α, β +
αθ∗, δ,m) with

θ∗ = − 1
α
×

(
β + 2arctan

(
− cos(α

2 ) + e((m−r)/(2δ))

sin(α
2 )

))

Now the first term in the expectation equation (see (3)) is

e−rIE

([
eδ̄ξi − eδ̄gi

]+
)

This corresponds to a European call option on a modified security with
strike eδ̄gi and payoff eδ̄ξi at maturity where ξt is Meixner(α, β + αθ∗, δ,m)
under the pricing measure. Thus

IE
(
eδξt

)
=

[
cos((α + βθ∗)/2)

cosh(−i(αδ̄ + α + βθ∗)/2)

]2δ

where δ̄ is the participation rate, and the volatility of the modified asset is
δσ
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3.3 Fair valuation analysis in Lévy models

We start by looking at the sensitivities of the fair value approach towards the
choice of the pricing measure. Figure 2 shows the fair sets of participation
rates against guarantees for a Meixner model for the parameter set α =
0.2 ·√2, β = 0 and δ = 1 (notation as in Schoutens (2003)). The green curve
was calculated under the Esscher measure, the blue curve under the mean-
correcting martingale measure. Since there are hardly any visible differences
we will concentrate for the subsequent analysis on valuation based on the
Esscher measure.

20 40 60 80 100

0.02

0.04

0.06

0.08

0.1

Figure 2: Isoquants for the Meixner-model under the Esscher- and the mean-
correcting martingale measure

We now investigate the impact of changing the kurtosis on the fair val-
uation parameter sets. We start with a Meixner model that replicates the
Brownian case. In figure 3 the fair sets of participation rates against guaran-
tees (denoted in percentage points) for a Meixner model under the Esscher
measure for different values of α are shown. For all curves, we chose β = 0
and δ = 1. The yellow curve corresponds to α = 0.1 · √2, the green curve
corresponds to α = 0.2 · √2, the blue curve corresponds to α = 0.3 · √2, the
purple curve corresponds to α = 0.4 · √2. The above choice of parameters
results in the standard deviations (volatilities) being 0.1, 0.2, 0.3 and 0.4,
respectively. Skewness is always zero, kurtosis always 4.

Similar to figure 1 we see that higher risk taking of the insurance com-
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Figure 3: Isoquants for the Meixner-model under the Esscher-measure for
different volatilities and low kurtosis

pany in terms of asset returns, i.e. higher volatility of the asset returns,
requires a reduction of the participation rate. More importantly, we also
observe that by matching the first four moments of the underlying distribu-
tion we observe a similar behaviour of the isoquants, although the Meixner
model requires for all four choices of volatility a slightly higher compen-
sation for the guarantees, i.e. the participation rate needs to be reduced.
Again none of the above volatility specifications implies that settings of the
German regulatory environment of g = 2.75 % and δ ≥ 90 % correspond to
the fair value requirement!

In contrast to figure 3, we choose in figure 4 parameter sets that result
in a much higher kurtosis. Figure 4 shows the fair sets of participation
rates against guarantees for a Meixner model under the Esscher measure
for different values of α. For all curves, we chose β = 0 and δ = 0.1. The
yellow curve corresponds to α = 0.1 · √20, the green curve corresponds to
α = 0.2 · √20, the blue curve corresponds to α = 0.3 · √20, the purple curve
corresponds to α = 0.4·√20. Again, the above choice of parameters results in
the standard deviations (volatilities) being 0.1, 0.2, 0.3 and 0.4, respectively.
Skewness is always zero, however kurtosis always 13. A comparison with
figure 3 shows that kurtosis does matter. In particular, we see that higher
kurtosis allows the insurance company to increase participation rates.

As an alternative to the Meixner model we use the NIG-model as Lévy
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Figure 4: Isoquants for the Meixner-model under the Esscher-measure for
different volatilities and high kurtosis

model in figure 5. Again this figure shows the fair sets of participation rates
against guarantees for an NIG-model under the Esscher measure for different
values of the parameters. For all curves, we chose α = 0 and β = 0. The
yellow curve corresponds to δ = 0.01, the green curve corresponds to δ =
0.04, the blue curve corresponds to δ = 0.09, the purple curve corresponds to
δ = 0.16.1 The above choice of parameters results in the standard deviations
(volatilities) being 0.1, 0.2, 0.3 and 0.4, respectively. Skewness is always zero,
however the values of kurtosis are 303, 78, 36.33 and 21.75, respectively.
Compared to the isoquants with identical volatility we can again observe an
increase in participation rates with increasing kurtosis.

Figure 6 is based on the following idea. We fixed a Meixner-distribution
with parameters α = 0.5, β = −1 and δ = 0.1. On the basis of this dis-
tribution, we priced a European call option with time to maturity 1 and
moneyness 1 under the Esscher-measure. As always, r = 0.1. Then we cal-
culated the implied volatility of above option, which was σ = 0.124672.
Then we contrasted the isoquant based on the Black-Scholes-model with
σ = 0.124672 with the isoquant based on the Meixner model with above
parameters. Figure 6 displays the result. Our Meixner-distribution has
standard deviation 0.127399, skewness -2.14406 and kurtosis 17.597. The

1Parameterization as in Schoutens (2003).
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Figure 5: Isoquants for the NIG-model under the Esscher-measure for dif-
ferent volatilities and high kurtosis

two isoquants, though calibrated to the same option price, show a different
behaviour and even intersect, indicating a change in model implied riskiness.

The effect of the underlying model is even more visible in figure 7 which
is based on the same idea as figure 6. The parameters for the Meixner-
distributions are given in table 1. Calibration is done as outlined above.
The corresponding Black-Scholes implied volatilities σ are displayed in table
2. The curves, though calibrated to match the same option prices, differ
significantly.

For our analysis below we will use the following set of parameters

dashed red line dashed green line dashed blue line dashed purple line
α 0.4 1 1.6 2.2
β -1 -1 -1 -1
δ 0.1 0.1 0.1 0.1

std deviation 0.101919 0.254799 0.407678 0.560557
skewness -2.14406 -2.14406 -2.14406 -2.14406
kurtosis 17.597 17.597 17.597 17.597

Table 1: Parameters and moments for Meixner-distributions

The above investigation show clearly, that the distributional assumptions
underlying the fair-value calculations do matter! Using solely Black-Scholes
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Figure 6: Meixner-isoquant under Esscher-measure versus BS-isoquant for
calibrated implied volatility
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Figure 7: Meixner-isoquant under Esscher-measure versus BS-isoquant for
calibrated implied volatility
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solid red line solid green line solid blue line solid solid solid purple line
σ 0.107511 0.205834 0.300866 0.401245

Table 2: Black-Scholes Implied volatilities

may pose a potential threat to insurance companies, since it may lead to a
mispricing of options embedded in insurance contracts!

4 The extended model

We consider now the inclusion of a bonus account B. We start with a model
introduced in Miltersen and Persson (2001). Here we first define the insurer’s
account C as

Ct = Ct−1 + At−1

(
eδ(ξi−gi)

+ − 1
)

(7)

Since the initial balance of the account C is zero, we can write

Ct =
t∑

i=1

Ai−1

(
eδ(ξi−gi)

+ − 1
)

.

The bonus account is the determined as the residual amount

Bt = Xe
Pt

i=1 ξi −At − Ct. (8)

In this model the insurer has to cover any deficit on the bonus account at
time T . The fair value principle now requires

V0(CT )− V0(B−
T ) = 0,

implying the condition

X = V0(AT )− V0(B+
T ). (9)

A variant of the above approach is used to generate a more realistic
model (resembling the German practice). We assume that the insurer sets
a maximal rate z > g internally. Then the rate paid in period t is

r̃t = g + min {max(δξt − g, 0), z − g} .

Also only a fraction y of the true market return of the assets is used to
calculate the rate paid. However, any differences are paid back at maturity
via the bonus account.

In the final version we will evaluate the above two contract specifications
for different types of Lévy process specification (Meixner, NIG) and discuss
their parameter sensitivities.
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5 Conclusions

All models imply that the current German regulatory environment forces the
insurance companies to misprice contracts with respect to the fair valuation
principle.

Changing the underlying asset model will imply a significant change in
prices for the guarantees.

However, different guarantees require different participation rates inde-
pendent of the underlying modelling assumptions.

The bonus account allows to smooth return rates and reduces the costs
for guarantees.
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