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1 Introduction

The portfolio approach pioneered by Markowitz is one of the cornerstones of mod-

ern portfolio management. A broad knowledge has been accumulated about the

performance, the strengths, and the weaknesses of this approach when applied to

equity portfolios. However, much less is known about portfolio optimization in bond

markets.

There are at least two reasons for this observation: First, at the time when

Markowitz’s approach became more widely recognized as a useful tool for portfolio

management, interest rates were not particularly volatile and a portfolio approach

seemed somehow unnecessary. However, this observation has changed over the last

decades. Even if one concentrates on government bonds of highly rated countries

and leaves default risk aside, there are very substantial risks in bond investments

due to possible changes in interest rates. Given that many different bonds with

different maturities are available, it is a natural issue to think about the potential

for risk diversification.

Second, severe difficulties to implement Markowitz’s approach might have discour-

aged further work on µ − σ optimization of bond portfolios.1 In particular, there

are two major problems, one general problem and one bond-specific problem. The

general issue concerns the large number of parameters needed in the Markowitz

approach if the number of assets increases. Here, recent research has shown that

restrictions with respect to the parameters and portfolio weights are useful for im-

proving the performance of optimized portfolios.2 The bond specific issue concerns

the variation of moments over time, which precludes simple historical estimation

based on the assumption of stationarity. For example, in a high-interest-rate period

the returns of bonds are supposed to be higher than in a low-interest-rate period.

Therefore, if interest rates decline during a period, the average return during this

period seems to overstate the return during the succeeding period with (probably)

1In the 1960s and 1970s, several papers dealt with bond portfolio problems in the context of
µ− σ analysis, e.g. Cheng (1962), Roll (1971), Yawitz, Hempel and Marshall (1976), Yawitz and
Marshall (1977), and Kaufman (1978). Later on, the literature has taken a different route and has
mainly focussed on risk management and immunization strategies. See e.g. Fabozzi (2004) for a
discussion of these latter issues.

2One approach has applied shrinkage estimators, as proposed e.g. by Jobson and Korkie (1980),
Jorion (1986) and Frost and Savarino (1986). Another suggestion put forward by Pastor (2000)
and Pastor and Stambaugh (2000) is the usage of additional information from equilibrium asset
pricing models in a Bayesian framework. The effect of short sale constraints has been studied e.g.
by Frost and Savarino (1988) and Jagannathan and Ma (2003).
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lower interest rates. Moreover, bonds change their characteristics over time. For

example, the local riskiness of a default-free bond depends crucially on the time to

maturity.

To mitigate the problems mentioned above, term structure models could be very

useful. These models have an economic foundation either based on the no-arbitrage

or the equilibrium concept and have been successfully applied to price interest rate

dependent securities over the last decades. For the purpose of bond portfolio opti-

mization, term structure models have two major advantages. First, depending on

the complexity of the model, i.e. the number of factors and the complexity of their

dynamics, term structure models might impose severe restrictions on the moments

of bond returns. However, they can also be very flexible with respect to the implied

moments. Second, term structure models consider that moments of bond returns

are time varying and capture the effects of a decreasing time to maturity.

This paper proposes the use of term structure models for constructing optimized

bond portfolios according to the Markowitz approach. Such a suggestion is not a

new one. As early as in 1980, Brennan and Schwartz wrote:3 “It is hoped that

conditional prediction models (i.e. term structure models) such as this will play

the same role in bond portfolio management as Sharpe’s [1963] diagonal model and

subsequent elaborations thereof have played in the management of stock portfolios.”

Wilhelm (1992) also propagates using term structure models for portfolio selection

and derives the required means, variances, and covariances of discrete holding period

returns for a CIR type model. However, to our knowledge, our paper is the first one

which implements such portfolio strategies and tests them in an empirical study.

Our empirical study for the German government bond market over the period of

1974 to 2004 addresses several important questions: Which risk-return trade-off can

we achieve if we restrict our attention to investments in government bonds? What

are the diversification effects if we use bonds with different times to maturity? How

many bonds do we need? How much complexity should we allow for the term

structure model? When do we need more flexibility and when do we need more

restrictions?

To answer these questions, Section 2 sets the ground by introducing the class of

multi-factor Vasicek type term structure models we use in our empirical study. Based

on these models, we derive the implied expected values, variances, and covariances

of discrete holding period bond returns that are needed to solve the portfolio opti-

mization problem. Section 3 provides the empirical study. Following a description

3See Brennan and Schwartz (1980), p. 406.
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of the bond data set in Section 3.1, the estimation procedure for the parameters

of the term structure models and the design of the empirical study is outlined in

Section 3.2. Section 3.3 provides first results concerning the risk-return profiles of

optimized portfolios by looking at the predictions made by different specifications of

the term structure model. Section 3.4 contrasts these predictions with the realized

risk-return profiles obtained in an out-of-sample study.

The main result of the paper is that optimized bond portfolios exhibit very attractive

risk-return profiles. As long as the number of risky bonds in a portfolio is moderate

and the number of stochastic factors of the term structure model is limited, this

result holds both for the predictions made by the model and for the out-of-sample

performance.

2 Portfolio Selection Based on Term Structure

Models

We analyze the portfolio problem of an investor who uses the traditional Markowitz

approach, i.e. he or she seeks to select a µ−σ efficient portfolio. The portfolio is set

up at time t = 0 and held until the planning horizon t = T without rebalancing. Such

a static strategy has relatively low transactions and monitoring costs. The investor

can invest in government bonds with different maturities. For concreteness and to

highlight maturity diversification, we assume that the investment opportunity set

comprises N +1 default-free zero-coupon bonds which mature at times T0, T1, ..., TN ,

with T = T0 < T1 < ... < TN . The bond that matures at time T0 can be understood

as a risk-free investment from time t = 0 to the planning horizon T .

To determine the required values of the expected return and the variance-covariance

matrix of returns of these bonds, we use a multi-factor term structure model of

the Vasicek type. The main advantages of this model are the closed-form solutions

for zero-bond prices and the straightforward maximum likelihood estimation of the

unknown model parameters by means of the Kalman filter algorithm.

We assume that each factor Xk (t), k = 1, ..., K, follows an Ornstein-Uhlenbeck

process and has a long-term mean of zero. Moreover, each factor exhibits a constant

risk premium λk. As a consequence, the process followed by each factor under the

risk-neutral measure reads

dXk (t) = κk · (λk −Xk (t)) · dt + σk · dzk (t) , for all k = 1, ..., K.
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As usual, κk is the speed of reversion, σk stands for the local volatility of the incre-

ment of factor k, and zk (t) denotes a standard Wiener process under the risk-neutral

measure. We further assume that all factors Xk (t), k = 1, ..., K, are mutually inde-

pendent. The current value of the short rate r (t) is assumed to equal the sum of a

fixed term r and the values of the factors Xk (t):

r (t) = r +
K∑

k=1

Xk (t) . (1)

The price at time t of a zero bond P (t, τ) that pays its face value of one at time τ

results from the expectation EQ
t (·) under the risk-neutral measure in a well-known

manner:

P (t, τ) = EQ
t

(
e−

R τ
t r(s)ds

)
.

The evaluation of this expectation leads to the following price of a zero bond:

P (t, τ) = e−A(t,τ)−r·(τ−t)−PK
k=1{Xk(t)·Bk(t,τ)}, (2)

with

A (t, τ) =
K∑

k=1

{(
σ2

k

2 · κ2
k

− λk

)
· (Bk (t, τ)− (τ − t)) +

σ2
k

4 · κk

Bk (t, τ)2

}
,

Bk (t, τ) =
1− e−κk·(τ−t)

κk

.

To solve the investors portfolio problem, we need the expected return µi, i =

1, . . . , N , of every risky bond and the covariance matrix Ω =
{
s2

i,j

}
, i, j = 1, . . . , N ,

under the physical rather than the risk-neutral measure. The (discrete) expected

return µi and the return covariance s2
i,j of bond i and bond j for the period from

t = 0 to T are given by

µi =
EP

0 (P (T, Ti))

P (0, Ti)
− 1,

s2
i,j = CovP0

(
P (T, Ti)

P (0, Ti)
,
P (T, Tj)

P (0, Tj)

)
.

To determine the above moments, we need to know the moments of the factors. For

the dynamics of the factors Xk (t) under the real measure, we consider the following

representation:

dXk (t) = κk · (−Xk (t)) · dt + σk · dz′k (t) , for all k = 1, ..., K,

where z′k (t) is a standard Wiener process under the real measure.
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The expectation EP
0 (Xk (T )) and the variance V arP0 (Xk (T )) of the value of the

k−th factor at the planning horizon t = T under the physical measure result from

the well-known properties of the O-U process:

EP
0 (Xk (T )) = Xk (0) · e−κk·T ,

V arP0 (Xk (T )) =
σ2

k

2 · κk

(
1− e−2κk·T )

.

We recall that the factors are mutually independent and therefore the covariance of

two distinct factors equals zero.

Given the realizations of the factors and a set of constant model parameters, the term

structure model completely determines all bond prices. In the real world, however,

there will in general be pricing errors at the planing horizon. These pricing errors,

which reflect the model risk, are another source of uncertainty that should be taken

into account in the portfolio problem. Therefore, we assume that the zero bond

prices at the planning horizon T for maturities τ > T are affected by a further

source of uncertainty, denoted by ετ , in the following way:

P (T, τ) = e−A(T,τ)−r·(τ−T )−PK
k=1{Xk(T )·Bk(T,τ)}+ετ (T ). (3)

The error terms ετ (T ) are assumed to be normally distributed with zero mean and

variance s2 (ετ ), and error terms that refer to different maturities τ are mutually

independent by assumption. When discussing the estimation of the term structure

model in Section 3.2, we show how the pricing error variances s2 (ετ ) can be jointly

estimated with the other model parameters by maximum likelihood.

Under the stated assumptions, the expected return µi, the variance s2
i, i, and the

covariance s2
i,j can be calculated directly. The resulting moments are given by

µi =
eM(1)(Ti)+

1
2
S(1)(Ti)

2

P (0, Ti)
− 1,

s2
i, i =

e2·M(1)(Ti)+S(1)(Ti)
2 ·

(
eS(1)(Ti)

2 − 1
)

P (0, Ti)
2 , (4)

s2
i,j =

eM(2)(Ti,Tj)+
1
2
S(2)(Ti,Tj)

2 − eM(1)(Ti)+M(1)(Tj)+
1
2(S(1)(Ti)

2+S(1)(Tj)
2)

P (0, Ti) · P (0, Tj)
, for i 6= j,
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with

M (1) (Ti) = A (T, Ti)− r · (Ti − T )−
K∑

k=1

{
EP

0 (Xk (T )) ·Bk (T, Ti)
}

,

S(1) (Ti) =

√√√√
K∑

k=1

{
V arP0 (Xk (T )) ·Bk (T, Ti)

2} + s2 (εTi
),

M (2) (Ti, Tj) = −A (T, Ti)− A (T, Tj)− r · (Ti + Tj − 2T )

−
K∑

k=1

{
EP

0 (Xk (T )) · (Bk (T, Ti) + Bk (T, Tj))
}

,

S(2) (Ti, Tj) =
√√√√

K∑

k=1

{
V arP0 (Xk (T )) · (Bk (T, Ti) + Bk (T, Tj))

2} + s2 (εTi
) + s2

(
εTj

)
.

If the vector of expected returns and the variance-covariance matrix of returns is

available, µ − σ efficient portfolios can easily be determined, as outlined e.g. by

Merton (1972) or Huang and Litzenberger (1988), Chapter 3.

To provide some intuition for the kind of efficient frontiers that result from the term

structure model, Figure 1 shows a typical example of a µ − σ diagram in the case

of two factors and an investment horizon of one year. The investment opportunity

set contains three risky bonds (four, seven, and ten years to maturity) and a risk-

free bond (one year to maturity). The parameters of the interest rate process were

estimated by using the whole data set described in the next section. The values of

the factors X1 (0) and X2 (0) are set to zero, which equals the factors’ long-term

means.

Like in this example, we generally find in our empirical study that zero bonds with a

longer time to maturity have a higher standard deviation of discrete holding period

returns. This finding is quite intuitive, as bonds with a longer time to maturity have

a higher exposure to the common factors Xk (T ). If we interpret the coefficients

Bk (T, Ti) as factor loadings, we see that for a longer time to maturity Ti these

coefficients are higher and therefore the bond price is more strongly affected by

changes in Xk (T ). Moreover, we find in our empirical study that different risky

zero bonds usually have a rather high correlation above 0.9. Therefore, the risky

bonds almost lie on a line. Whether this line has a positive slope or a negative slope

depends on the risk premia λk. Usually, the higher λk is, the greater is the slope of

the line. As a further consequence of the high correlations between risky bonds, the

standard deviation of the global minimum variance portfolio of risky bonds is close

to zero.
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Figure 1: µ− σ diagram

The figure depicts µ − σ combinations for three risky zero bonds (thick dots), that mature
in four, seven, and ten years, respectively. An investment horizon of one year is assumed.
The zero bonds with longer time to maturity correspond to the higher standard deviation
σ. The dashed curve shows the frontier portfolios obtained form the three risky bonds. The
solid line shows the efficient portfolios if in addition to the risky bonds a risk-free bond
with time to maturity of one year is available. The following parameter values are used:
r = 0.0256, λ1 = 0.0210, κ1 = 0.4203, σ1 = 0.0177, λ2 = 0.0533, κ2 = 0.0311, σ2 = 0.0126,
s (εT1) = 0.00229, s (εT2) = 0.00148, s (εT3) = 0.000366, X1 (0) = 0, and X2 (0) = 0.

0 0.1 0.2 0.3 0.4 0.5

0

0.1
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3 Empirical Study

3.1 Government Bond Data

Our empirical study analyzes investment strategies in German government bonds.

According to a bond market study by Merril Lynch (2002), the German market

has established itself as the third biggest bond market in the world, having an out-

standing total nominal value equal to e 2350 billion in 2001. Within the important

Euroland bond market, the German market is by far the biggest one, with a volume

almost twice as high as that of the second biggest market.

The German government bond market is well known as the benchmark bond market

in Euroland. Since 1985, government bonds have been attributing between 30 to 40

percent to the whole German bond market. The continuous issue process ensures
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the availability of a sufficient number of bonds in all relevant maturity classes and a

high liquidity. Government bonds are typically issued up to three times a year with

a nominal volume between e 15 billion to e 25 billion and a time to maturity of

ten years. Recently, some 30-year bonds have also been placed. In addition, futures

contracts on government bonds such as the prominent Bund Futures and the Bobl

Futures are actively traded, which facilitates taking short positions.

In our study, we use data from the period between 1974/1/1 to 2004/9/30. Before

1974, yield curves were strongly affected by the regulated currency regime of Bretton

Woods. Therefore, we exclude earlier observations. The results of monthly term

structure estimations are provided by the Deutsche Bundesbank. They are based

on the approach suggested by Svensson (1994), which presents the yield curve as a

function of six parameters, β0, β1, β2, β3, τ1, and τ2. The current spot rate y (l) for

an investment over l years takes the following form:

y (l) =
1

100
·
(

β0 + β1
1− e

− l
τ1

l
τ1

+ β2

(
1− e

− l
τ1

l
τ1

− e
− l

τ1

)
+ β3

(
1− e

− l
τ2

l
τ2

− e
− l

τ2

))
.

From the yield curves provided by the Deutsche Bundesbank, we use the spot rates

y (2) , y (3) , ..., y (10)

for maturities from two to ten years to determine the corresponding zero bond prices

1

(1 + y (2))2 ,
1

(1 + y (3))3 , ...,
1

(1 + y (10))10 .

The one-year rate y (1) acts as the risk-free rate. Since typically ten-year bonds are

issued, our choice covers the available set of government bonds. Although primarily

coupon bonds are traded in the market, we base our analysis of investment strategies

on the prices of ‘synthetical’ zero bonds. The use of zero bonds is the most intuitive

way to analyze the effect of diversification with respect to different times to maturity.

3.2 Parameter Estimation

The risk-return profiles of bond portfolios derived from term structure models

depend on the unknown model parameters that have to be estimated. To es-

timate these parameters we use a maximum likelihood approach that combines

time series and cross sectional information. It is based on the state space repre-
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sentation of a term structure model and the Kalman filter algorithm.4 Assume

that there is an estimation period from time t to time t, preceeding the invest-

ment period. The estimation period is split into m equally spaced intervals of

length h, and at each point t = t, t + h, . . . , t + mh we observe the (N+1)-vector

[ P (t, t + T0), P (t, t + T1), . . . , P (t, t + TN) ] of zero bond prices with N+1 different

times to maturity T0, T1, . . . , TN .

The state space representation of a model consists of measurement equations and

transition equations. The measurement equations show how observed prices are

related to the unobserved factors. Based on the pricing formula (3) of the multi-

factor Vasicek model, we obtain the following measurement equations, one for each

maturity:5

ln(P (t, t + Ti)) = −A (Ti)−r·Ti−
K∑

k=1

{Xk (t) ·Bk (Ti)}+εTi
(t), i = 0, . . . , N. (5)

The transition equations describe the evolution of the stochastic factors over discrete

time intervals of length h. For factors following a zero mean Ornstein-Uhlenbeck

process, the following transition equations result, one for each factor:

Xk(t) = e−κkh Xk(t− h) + ωk(t), k = 1, . . . , K. (6)

As a consequence of our assumptions about the term structure model, the error

terms ωk(t) are serially and cross-sectionally uncorrelated normal random variables

with zero means and variances equal to (1− e−2κkh)σ2
k/2κk.

The likelihood function of the above state space model can be computed recursively

by means of the Kalman filter algorithm, which allows for straightforward numerical

maximization with respect to the unknown model parameters. If the model para-

meters have been obtained, the values of the unobserved factors can be estimated

in a second step.6

Actual estimation is carried out using a rolling data window of ten years and a

monthly data frequency. The rather long estimation period of ten years is chosen

to capture the cyclical behavior of interest rates. Given our data set, the first esti-

mation period covers data from January 1974 to December 1983. For each month

4See e.g. Chen and Scott (1993), Pearson and Sun (1994), Duffie and Singleton (1997), and
Babbs and Nowman (2001) for similar applications of the Kalman filter algorithm to the estimation
of term structure models.

5For the state space representation of the multi-factor Vasicek model see also Babbs and Now-
man (2001).

6See e.g. Harvey (1989) and Gourieroux and Monfort (1997), Chapter 15, for details.
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ten different contracts with maturities from one year to ten years are used. Thus,

combining time series and cross-sectional information delivers 1.200 data points for

estimation. We estimate three model variants, with one, two, and three stochastic

factors, respectively. Once a model has been estimated, we calculate the vector of

expected returns and the variance-covariance matrix of returns according to equa-

tions (4) for an investment horizon of one year. These moments are used to form

different optimized portfolios, as explained in the next section. Then the estimation

window is moved one month further, i.e. the second estimation period covers data

from February 1974 to January 1984. The whole process is repeated until September

2003, the starting date of our final investment period. This procedure ultimately

delivers for each model variant 238 estimates of the model parameters, the mean

vectors, and the variance-covariance matrices of yearly zero bond returns.

Table 1 provides some information on the size of the model parameters. The table

shows averages taken over the parameter estimates of all 238 estimation periods.

Two observations are worth mentioning. First, the error variances σε considerably

decline if we move from the one-factor model to the two-factor model and further

to the three-factor model, i.e. the in-sample explanation of zero bond prices clearly

improves with the number of factors. Whether or not this observation translates into

a better portfolio choice of multi-factor models is a central question of the empirical

study. Second, the estimates of the κ-parameters show that for all three model

variants at least one factor possesses considerable mean reversion. Mean reversion

is highly relevant for our mean-variance analysis, because it implies at least some

degree of state dependence and predictability of expected returns. An important

issue for portfolio choice is whether the mean reversion of certain factors is stable

over time. Figure 2 provides some information on this question. The figure shows

the time series of the parameter estimates for the 238 estimation periods. As can

be seen, there is some variation of the different κ-parameters over time. However,

qualitatively, we always obtain a medium size κ-parameter for the one-factor model,

one medium size and one small κ-parameter for the two-factor model, and one

medium size, one large, and one small parameter for the three-factor model.

3.3 Predicted Risk-Return Profiles

Table 2 shows the ex ante attractiveness of efficient bond portfolios. In this table we

report the average (over the 238 starting dates of the investment period) expected

return of portfolios that maximize expected return for a fixed standard deviation of

20%. In addition we report the Sharpe ratios. The portfolio construction is based

11



Table 1: Estimated parameters of the term structure models

This table shows the average parameter values obtained from the rolling estimation procedure
(average over the 238 values from the different estimation periods).

1-Factor Model 2-Factor Model 3-Factor Model

r 0.0488 r 0.0272 r 0.0438

λ1 0.0311 λ1 0.0159 λ1 0.00271

κ1 0.258 κ1 0.397 κ1 1.29

σ1 0.0124 σ1 0.0176 σ1 0.0288

λ2 0.0611 λ2 0.348

κ2 0.0385 κ2 0.0286

σ2 0.0131 σ2 0.0235

λ3 -0.00104

κ3 0.256

σ3 0.0236

σε2 0.00246 σε2 0.00173 σε2 0.00102

σε3 0.00358 σε3 0.00200 σε3 0.00073

σε4 0.00420 σε4 0.00183 σε4 0.00031

σε5
0.00460 σε5

0.00153

σε6 0.00488 σε6 0.00121 σε6 0.00017

σε7 0.00511 σε7 0.00090 σε7 0.00024

σε8 0.00529 σε8 0.00060 σε8 0.00022

σε9 0.00546 σε9 0.00030 σε9 0.00014

σε10 0.00562
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Figure 2: Evolution of mean-reversion parameters (κ)

The three diagrams show the evolution of the estimated κ-coefficients over time for the three
model variants (one-factor, two-factor, three-factor). The horizontal axis refers to the end
dates of the 238 ten-year estimation periods.
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on moments obtained from interest rate models with either one, two or three factors.

To analyze the impact of the number of different bonds combined in a portfolio, we

also varied this number. Since government bonds in the German market typically

have a time to maturity of up to ten years, we considered bond portfolios within this

maturity range. As the risky asset in a portfolio consisting of the risk-free instrument

and one risky bond, we chose the seven-year zero bond. The portfolio with two risky

bonds includes the four-year and ten-year zero bonds as risky instruments, i.e. the

average time to maturity of these two risky bonds is equal to that of the risky bond

in the portfolio with one risky asset. The portfolio with three risky bonds contains

all instruments from the portfolios with one and two risky bonds, which are the one-

year, four-year, seven-year, and ten-year zero bonds. Finally, we added the results

for a portfolio with one risk-free and nine risky bonds, which covers all maturities

in the data set.

The expected portfolio returns in Table 2 range from 8.56% to 16.91% and the

corresponding Sharpe ratios from 0.17 to 0.59. Especially for the one-factor model,

the risk return profile is very attractive. Also the two-factor model and the three-

factor model produce high Sharpe ratios if the number of risky bonds is not very

low. This result might be quite surprising. Since bonds are supposed to be less

profitable than e.g. stocks, one might expect less attractive expected returns and

Sharpe ratios. However, we find that with only a few risky zero bonds we can achieve

more attractive predicted risk-return profiles than with many well diversified bond

and equity portfolios, as analyzed e.g. by DeMiguel, Garlappi and Uppal (2004).

These authors report Sharpe ratios between 0.16 and 0.4.

Clearly, the more bonds we include in our portfolio the more attractive the portfolio

becomes and the higher the Sharpe ratios must be. A closer examination of Table

2 shows that attractive risk-return profiles can be achieved for any variant of the

interest rate model if at least as many risky bonds are used as there are stochastic

factors. For the one-factor model, we see that the Sharpe ratios are almost unaffected

by the number of risky bonds we consider. For the two-factor model there is a strong

increase of the Sharpe ratio from 0.3 to 0.43 when we move from one to two risky

bonds. However, the potential for further improvements of the Sharpe ratio by

adding more risky bonds is rather small. Similarly, for the three-factor model, we

find that the Sharpe ratio increases from 0.17 to 0.39 if three risky bonds are used

instead of one. However, adding six more risky bonds increases the Sharpe ratio by

no more than 0.07.
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Table 2: Expected returns and Sharpe ratios

This table shows the mean (over the 238 investment periods) expected annual return in
percentage points and the Sharpe ratio of efficient portfolios with an annual standard
deviation of 20%. All portfolios contain the risk-free instrument. In addition they either
contain a zero bond that matures at time T1 = 7 (one risky bond), zero bonds that mature
at times T1 = 4 and T2 = 10 (two risky bonds), zero bonds that mature at times T1 = 4,
T2 = 7, and T3 = 10 (three risky bonds), or zero bonds with maturities T1 = 2, T2 = 3, ...,
T9 = 10 (nine risky bonds).

# Risky Bonds Return Sharpe Ratio

Panel A (1-Factor Model)

9 16.91 0.59

3 16.19 0.55

2 16.15 0.55

1 16.10 0.55

Panel B (2-Factor Model)

9 13.88 0.44

3 13.76 0.43

2 13.73 0.43

1 11.21 0.30

Panel C (3-Factor Model)

9 14.37 0.46

3 12.91 0.39

2 9.18 0.20

1 8.56 0.17
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This observation is quite intuitive. Bond portfolios are exposed to one or more risk

factors, depending on the variant of the term structure model. If the number of

available zero bonds is below the number of factors, one cannot achieve arbitrary

combinations of exposures for each factor. If the relation between risk exposures

and portfolio weights were linear, the number of non-redundant risky bonds would

have needed to be equal to the number of factors to span every combination of risk

exposures. In other words, as long as the number of risky bonds is below the number

of risk factors, every additional bond is likely to lead to a substantial improvement

with respect to the possible choices of risk exposures. Therefore, the attractiveness of

the portfolios, i.e. the expected return and Sharpe ratio, will substantially increase.

However, note that additional bonds do generally increase the Sharpe ratio, at least

to some extent, even if the number of available bonds already exceeds the number

of risk factors. One reason for this finding is that the relation between bond prices

and risk factors is not linear but log linear, as can be seen from equation (3). A

second reason is the existence of the pricing errors εTi
.

Another interesting empirical result states that as long as the number of different

risky bonds is fixed, it does not matter which bonds (i.e. which maturities) are

chosen. This conclusion is based on additional analyses with varying sets of bonds.7

The stated robustness result is in line with our notion that risky zero bonds are

primarily used to set the risk exposure with respect to different factors. Since all

zero bonds depend on the same factors, the choice among them is almost irrelevant.

Finally, it is interesting to see how the predicted expected return behaves over time,

i.e. how it changes with the estimation period and the starting date of the investment

period. Figure 3 provides the corresponding results for portfolios with three risky

bonds. In addition to the expected returns derived from the three model variants

(one to three factors), the figure shows the one-year interest rate. As can be seen,

the expected portfolio return strongly varies over time and takes values between

7.7% and 24.4%. The average expected return over all investment periods and all

three model variants is 14.3%. Moreover, we observe that the evolution of expected

returns over time is similar for the three model variants. The strongest relation is

between the two-factor model and the three-factor model, with a correlation between

expected returns of 0.8.

In addition, it turns out that the expected return of the considered bond portfolios

is much higher than the one-year interest rate. The average one-year spot rate lies

at about 5.1%, which is far below the average expected return of 14.3%. However,

7The corresponding detailed results are available upon request from the authors.
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Figure 3: Evolution of expected portfolio returns

The diagram shows the evolution of yearly expected portfolio returns over time, as they are
predicted by the three model variants (one-factor, two-factor, three-factor). The horizontal
axis refers to the start dates of the 238 one-year investment periods. The investment
opportunity set contains a risk-free bond (one-year bond) and three risky bonds (four-,
seven-, and ten-year bond). The portfolios are efficient ones with a predicted return
volatility equal to 20%.

Dec-1983

0.1

0.2

0

2-Factor Model

Expected Return/1-Year Spot Rate

3-Factor Model

1-Factor Model

Nov-1993 Sep-2003

End of Estimation Period

1-Year Spot Rate

the one-year interest rate clearly moves together with the expected return derived

from each of the three model variants. For example, the correlation of the expected

portfolio return derived from the one-factor model and the one-year interest rate

equals 0.53. In this sense, we can say that the optimized portfolios have a higher

expected return if interest rates are high.

3.4 Realized Risk-Return Profiles

The essential question concerning the success of different term structure models for

portfolio optimization is whether the predicted risk-return profiles are attainable

out of sample. Therefore, we compare predicted and realized returns. For every

month from January 1984 to September 2003 different optimized portfolios were set

up corresponding to different model variants and different numbers of risky bonds.

We then calculated for all portfolios the returns they earned over the following year,

which is the investment period. Then we subtracted the predicted expected returns
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from the realized returns in each period. We recall that — as seen in Figure 3 —

the predicted expected return does not only depend on the model variant but is

also state dependent, i.e. it varies over time. The resulting excess returns, however,

have the same expected value of zero and the same volatility of 20% in every period,

provided that the portfolio optimization procedure works perfectly. Deviations from

a mean of zero can be detected by looking at the average excess return, with averages

taken over the 238 excess returns of a portfolio.

Detecting deviations from the volatility of 20% is a bit more difficult. To achieve

this, we first took a potential bias (deviation of the average excess return from zero)

of the portfolio strategies into account and subtracted the average excess return

from the excess returns. Second, we calculated the absolute values of these excess

returns corrected for bias and averaged over the 238 observations. This procedure

provides us with an estimate of the volatility of the strategies. Standard deviations

for the mean excess returns and the mean absolute deviations were calculated with

the Newey and West (1987) estimator. We used 11 lags to take into account that

the return intervals have an overlap of 11 months. The Newey-West standard er-

rors allow us to test whether the realized values are significantly different from the

predicted values.

Table 3 provides our results. To facilitate a comparison with the predictions pre-

sented in Table 2, we added the average predicted return to the average excess

return. Thus, the bold numbers in the second column of Table 3 provide the total

average return in percentage points. The predictions of Table 2 are repeated below.

The third column provides the absolute deviations and the fourth column shows the

Sharpe ratios, calculated from the values of the second and third columns, using

the average one-year interest rate of 5.11%. Again, realized values are in bold face,

predicted values are given below.

Panel A shows the results of the portfolio strategies derived from the one-factor

model. A striking point to note is that the realized returns of the portfolio with nine

risky bonds strongly deviate from the predictions with respect to both the expected

return and the volatility. The performance of this strategy is clearly unacceptable.

With as many as nine risky assets we are close to a situation where some assets are

redundant. The near singularity8 of the variance-covariance matrix leads to rather

extreme portfolios with a high volume of short sales. Table 4 supports this statement

8Note that the variance-covariance matrix can never be exactly singular because bond prices
are non-linear functions of the factor and the pricing errors εTi are assumed to be uncorrelated
between different maturities.
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Table 3: Realized returns, absolute deviations, and Sharpe ratios

This table shows the mean (over the 238 investment periods) annual realized returns, the mean
absolute deviation of realized returns from expected returns, and the Sharpe ratios of the different
portfolios (bold numbers). For comparison reasons the predicted values from Table 2 are repeated.
In addition, we report the results of the strategies using the DAX and REX. An asterisk indicates
whether the realized value significantly differs from the predicted value on a 5% significance level.

# Risky Bonds Return Abs. Dev. Sharpe Ratio

Panel A (1-Factor Model)

9 43.48 122.52∗ 0.31

16.91 20 0.59

3 22.20 25.19 0.68

16.19 20 0.55

2 21.47 23.49 0.69

16.15 20 0.55

1 19.43 19.32 0.74

16.10 20 0.55

Panel B (2-Factor Model)

9 10.61 18.42 0.29

13.88 20 0.44

3 13.87 20.96 0.41

13.76 20 0.43

2 13.45 19.72 0.42

13.73 20 0.43

1 13.55 11.44∗ 0.73

11.21 20 0.30

Panel C (3-Factor Model)

9 2.88∗ 23.62 -0.10

14.37 20 0.46

3 9.00 21.00 0.18

12.91 20 0.39

2 7.41 9.74∗ 0.23

9.18 20 0.20

1 9.49 6.24∗ 0.69

8.56 20 0.17

DAX

REX

12.19

12.09

12.75

19.75

25.75

20

19.06

20

0.24

0.43

0.40

0.72
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by showing the short sale volume of different strategies. Strategies with nine risky

bonds require on average short positions with an absolute value that is between 45

and 211 times higher than the total portfolio value. The rather extreme portfolios

composed of nine risky bonds lead to some ex ante improvement in performance.

However, it is not very surprising that their performance is not robust out of sample.

The same problem arises for the two-factor model and the three-factor model. As

we see from the last column of Table 3, portfolios with nine risky assets have the

highest ex ante Sharpe ratio by construction, but always have the lowest out-of-

sample Sharpe ratio within their panel. Therefore, a first important result from

the out-of-sample study is that one should not use too many different bonds with

different maturities.

With respect to the other portfolios shown in Panel A, we see that the out-of-sample

return is generally much higher than the predicted value. This result also shows up

in the very high Sharpe ratios of the strategies. If a one-factor model is used for

portfolio selection, the differences between strategies with one, two, or three risky

bonds are minor. Basically, we find that as long as a moderate number of different

bonds is used, we obtain very successful strategies with respect to the Sharpe ratio

even out of sample.9 However, the realized returns are somehow not in line with the

predictions.

Panel B reports the results for the two-factor model. If the number of risky bonds

is kept reasonably low, these results are very promising. For portfolios with two

and three risky bonds we achieve both high Sharpe ratios and very small deviations

between predicted and realized values. It is striking that the high accuracy of the

predictions not only refers to the Sharpe ratio. Also the values for the expected

return and volatility, that determine the Sharpe ratio, are accurately predicted by

the two-factor model. If only one risky bond is used, the results are similar to the

ones for the one-factor model. The reason for this finding is that the corresponding

strategies are quite similar too. If one risky bond is used, most of the time one takes

a short position in the risk-free bond and a long position in the risky bond.

The results for the three-factor model are provided in Panel C. The portfolio with

nine risky assets shows a very poor performance like that of the one-factor and two-

factor model, but the portfolios with two and three risky bonds also have relatively

low Sharpe ratios. Moreover, realizations are often not in line with predictions.

Note that for the three-factor model we can reject the hypothesis of no difference

9Such high out-of-sample Sharpe ratios are very difficult to achieve. For example, none of the
strategies analyzed by DeMiguel, Garlappi and Uppal (2004) does come close to a value of 0.7.
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Table 4: Short sale volume

This table shows the mean (over the 238 investment periods) short sale volumes of the
different portfolio strategies. The short sale volume of a portfolio is defined as the value of
all short positions as a multiple of the total portfolio value.

# Risky Bonds 1-Factor Model 2-Factor Model 3-Factor Model

9 45.44 45.05 211.23

3 6.68 11.90 63.05

2 6.10 9.83 3.87

1 4.84 1.44 0.31

between prediction and realization in three cases, compared to only one case for the

one-factor model and the two-factor model. Note also that the three-factor model

leads to portfolio strategies with the highest and second highest short sale volume

according to Table 4. If only one risky bond is used, we obtain similar strategies

and similar results as for the other model variants. Therefore, the results of Panel

C indicate that a three-factor model might already be over-parameterized. It seems

that rather strong restrictions both in terms of model complexity and the number

of risky bonds are necessary to obtain stable out-of-sample results.

Finally, it is instructive to compare the optimized bond portfolios with some simple

benchmark strategies. The lines below Panel C show the corresponding results.

A first strategy uses the German stock index DAX as the single risky asset. The

expected return and variance of this index are estimated historically for the rolling

data window under the assumption of stationarity. Once the expected return and

variance is available for the 238 periods, portfolio optimization is done in the same

way as for the bond portfolios, i.e. the risky asset is combined with the risk-free

asset in order to maximize the expected return for a given volatility of 20%. The

second benchmark strategy uses the German bond index REX10 as the single risky

asset. Although the assumption of stationarity is clearly wrong in bond markets,

such a benchmark strategy might still be interesting for diversified bond portfolios

because of its simplicity. Table 3 shows that the DAX strategy promises a quite

high Sharpe ratio of 0.43 but realizes only a Sharpe ratio of 0.24, a value that is

much lower than the values obtained for rather simple bond portfolios based on the

one-factor and two-factor models. The REX strategy predicts the best risk-return

profile of all strategies (Sharpe ratio of 0.72), but cannot keep the promise out of

10The index consists of 30 different bonds and is available as a price index and a performance
index. We used the performance index in our study.
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sample. In this respect strategies based on a one-factor or two-factor model using up

to three risky bonds are clearly preferable. Therefore, bond portfolio optimization

adds some value compared to the benchmark strategies.

4 Conclusions

This paper has proposed to use term structure models for bond portfolio optimiza-

tion. We believe that such an approach has clear merits. By choosing a particular

term structure model, i.e. selecting the number of factors and the complexity of

their dynamics, one can impose reasonable restrictions on the bond price dynamics.

Because term structure models do consistently price bonds with different maturities,

they are particularly suited for portfolio considerations.

On the theoretical side, we have shown how the inputs needed for portfolio selec-

tion — expected returns, variances and covariances of discrete holding period bond

returns — can be calculated for a multi-factor Vasicek model. On the empirical

side we have tested the performance of different portfolio strategies in a study based

on German government bond data. By means of this study we address a variety

of interesting questions. Which risk-return trade-off can we achieve with German

government bonds? What are the diversification effects if we use bonds with differ-

ent times to maturity? How many different bonds should be used? How should we

choose the complexity of the term structure model, i.e. how many stochastic factors

should it contain? How reliable are the predicted risk-return profiles out of sample?

Our results show that the predicted risk-return profiles are quite promising. For

example, if three risky bonds and a risk-free asset are included in a portfolio, rather

high Sharpe ratios between 0.39 (three-factor model) and 0.55 (one-factor model)

result. From an ex ante perspective it is advisable to have at least as many risky

bonds in the portfolio as there are factors in the term structure model. However, if we

look at the out-of-sample performance, one should not use too many different bonds

with different maturities. If many different bonds are considered, the corresponding

strategies become rather extreme and require a large volume of short sales. These

extreme portfolios perform very poorly out of sample. Another important result

states that one should also not rely on a term structure model with too many

factors, since the three-factor model has the worst out of sample performance and

its predictions can be rejected in three out of four cases. For the one-factor model

and the two-factor model, however, the out-of-sample results are more accurate. The

two-factor model comes very close to the prediction and achieves an out-of-sample
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Sharpe ratio of 0.41 with three risky bonds. The one-factor model does understate

the expected return, however, very high out-of-sample Sharpe ratios of about 0.7

are reached. Finally, comparisons with simple benchmark strategies based on the

DAX stock index and the REX bond index show that optimized portfolios perform

better as long as not too many bonds and not too many factors are used.

This paper presents only a first step towards an understanding of bond portfolio

selection by means of term structure models. Our goal was to demonstrate the

potential of such an approach and therefore we kept the empirical setting as simple

as possible. Of course, this procedure ignores a couple of practical issues that have

to be addressed in the future. These issues primarily concern the implementation

of portfolio strategies with securities actually traded in the market and not with

“synthetical” zero bonds. At this point problems like the liquidity of certain bonds

and the different tax treatment of coupon payments and capital gains come into

play. The requirement of short sales is another challenging issue that might be dealt

with by means of derivatives products.

We can think of several extensions of the approach presented and empirically tested

in this paper. Many term structure models have been developed in the literature,

which potentially differ in their power to explain prices in sample and in their sta-

bility out of sample. In principle, every term structure model could be used as

the basis for portfolio selection. Obviously, there is still much to learn about the

predictions that different models make about expected returns, variances and co-

variances and about the out-of-sample performance of the corresponding strategies.

Another field for extensions is to look at different national bond markets. In this

respect one could also think of portfolio strategies that invest in different markets

simultaneously. Such strategies could be derived from international term structure

models. Further extensions could add equity to the investment opportunity set. As

first results show, our optimized bond portfolios have a rather low correlation with

the stock market. Therefore, further valuable opportunities for diversification would

arise.
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