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Abstract

For creating or adjusting credit scoring rules, usually only the accepted
applicant’s data and default information are available. The missing infor-
mation for the rejected applicants and the sorting mechanism of the pre-
ceding scoring can lead to a sample selection bias. In other words, mostly
inferior classification results are achieved if these new rules are applied to
the whole population of applicants. Methods for coping with this problem
are known by the term “reject inference.” These techniques attempt to get
additional data for the rejected applicants or try to infer the missing in-
formation. We apply some of these reject inference methods as well as two
extensions to a simulated and a real data set in order to test the adequacy
of different approaches. The suggested extensions are an improvement in
comparison to the known techniques. Furthermore, the size of the sample
selection effect and its influencing factors are examined.
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1 Introduction

Credit scoring methods used to separate good from bad risks are commonly used

for the scoring of standardized credit products. The aim of creating new selec-

tion rules is to find a mechanism that perfectly separates the applicants who will

fully repay from defaulters. Probably, a perfect mechanism cannot be found due

to certain, however small, default probabilities even for very good risks, but it is

worth trying to find or to improve a credit scoring system that is superior to other

possible ones. Another important reason for such a search is that a good-working

and bias-free rating system is one of the prerequisites required for an internal

ratings-based approach by the Basel Committee on Banking Supervision.1 The

use of such an internal approach can lead to a lower capital requirement in com-

parison with the exclusive application of external rating information, which leaves

many unrated positions and requires a higher demand of capital.

In general, the developer of a credit scoring system posseses solely the default

information of accepted applicants. Whenever the presently operating scoring

system is better than a random assignment of applicants to different groups, this

will lead to selection-based bias and to inferior classification results for the next

scoring model. Methods for coping with this problem are known as reject infer-

ence techniques. These techniques attempt to get additional data for rejected

applicants or try to infer the missing default information. Until now there has

been little literature that compares the effects of these methods empirically. Ex-

amples are Ash and Meester (2002), Banasik et al. (2003), and Crook and Banasik

(2004). The most common reject inference methods – enlargement, reweighting,

and extrapolation – will be applied here to a simulated and a real data set with

the aim of testing the adequacy of these different approaches. Additionally, two

new extensions to existing methods will be used for the correction of the sample

selection effect. These modifications achieve improved results in comparison to

the other techniques for our data samples. Due to unexpected and not yet fully

described outcomes arising from setting the sample size and cutoff, the sample

selection will be analyzed in the context of influencing factors.

1Basel Committee on Banking Supervision (2003), p. 72: “The rating definitions and criteria
must be both plausible and intuitive and must result in a meaningful differentiation of risk.”;
p. 74: “The model must be accurate on average across the range of borrowers or facilities to
which the bank is exposed and there must be no known material biases.”
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Section 2 describes the basic ideas of sample selection and summarizes the most

common performance measures for the classification success of a credit scoring

system. Different reject inference techniques are introduced in Section 3. These

techniques are then applied to the mentioned data sets in Section 4. In Section 5,

the determinants of the sample selection effect will be analyzed. The results will

be recapitulated in Section 6.

2 Sample selection bias

The term “credit scoring” describes statistical methods used for the classification

of credit applicants (see Hand and Henley, 1997). Credit scoring, as applied here,

assigns the potential borrower a score S (points) based on individual input data

Xij = (xi1, ..., xin). For the scoring process we use logistic regression. The calcu-

lated score Si(X) thus should be correlated with the probability of repayment πi.

Low values of Si are expected to correlate with low probabilities of repayment

and vice versa. It is the lender’s business to fix a special barrier c, which will

determine the applicant’s creditworthiness.

The examined credit scoring process consists of two stages illustrated by the

questions: Did the applicant obtain credit? Was the credit repaid? The granting

decision A depends, as mentioned, on c:

A =

0 if Si < c credit not granted

1 if Si ≥ c credit granted.

After issue of the credit and a defined time period t, we will get for the group of

accepted applicants (A = 1) two possible outcomes:

Y =

0 default

1 nondefault.

For building a new or adjusting the old scoring model we can use only the in-

formation for the population (A = 1) and their status information Y . Due to

sample selection induced by credit scoring we will get biased results, leading to
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a scoring rule suited for the population (A = 1) but not for the population of

applicants as whole (A = 1 and A = 0). This case is described by Greene (2003)

as “incidental truncation”.

Another common classification approach is that of Little and Rubin (1987). For

missing default information, they define three types of cases:

• MCAR (missing completely at random): The values of Y are missing at

random and the missing information does not depend on X. The probability

of being selected in group (A = 1) is identical for all cases.

• MAR (missing at random): The missing of the Y value and the probability

of being accepted depends on X. The fraction of (Y = 1) for each subgroup

(A = 1) and (A = 0) remains unchanged.

P (Y = 1|A = 1) = P (Y = 1|A = 0)

• MNAR (missing not at random): The missing of the Y characteristics de-

pends on X and Y . This is the described case of sample selection. The

selection is contingent on the use of a credit scoring model based on Y and

X. The fraction of (Y = 1) is changed due to sample selection.

P (Y = 1|A = 1) 6= P (Y = 1|A = 0)

In assessing credit scoring systems, one can distinguish counting measures from

separating measures. Separating measures include the Lorenz-curve and the

receiver-operating-characteristic, measures based on them such as the Gini-coef-

ficient and the accuracy-ratio, as well as the discriminatory power (see Kraft et

al., 2002). The simplest counting measure is the 2× 2 contingency table, shown

in Table 1. It represents the credit decision A tied to the credit status Y and

thus the success of the scoring system. The main diagonal (n1 and n4) of this

table shows the correctly classified applicants; the secondary diagonal (n2 and

n3) displays wrongly classified cases. Even though there is only limited use of the

2×2 contingency table in the real world, because of the unobservability of n1 and

n3, this form of presentation will be useful for the purpose of this examination.

For the simulated data used here, the outcomes Y of group (A = 0) are fully

3



A = 0 A = 1

Y = 0 n1 n2

Y = 1 n3 n4

Table 1: Example contingency table

observable.

3 Reject inference techniques

The simplest approach for coping with sample selection is to grant credit to all

applicants for a short time period (see, e.g., Rosenberg and Gleit, 1994). However,

this approach is not feasible in the real world because of its high financial risks.

Hand (2002) suggests a soft-accept-reject threshold for the improvement of credit

scoring models. On the basis of the applicant’s score Si, a probability p(Si) for

accepting or rejecting the credit request will be computed. Credit applicants

with lower values of Si have a lower chance of being granted credit. This method

attempts to improve model results through additional data, but again there exists

the possibility of financial risk due to accepting high-risk cases.

The reweighting method, in various realizations, is well known and widely ap-

plied. Crook and Banasik (2004) have described a method in which the accepted

applicants and their default information are used in the determination of the new

model with the inverse of the probability p(Si), hence 1/p(Si). This method gives

cases near the cutoff a higher weight, with the idea that these cases are nearer to

the credit situation of a rejected applicant.

Reclassification assigns the status Y = 0 to the x% lowest scores, with the as-

sumption that this group will definitely be defaulters. However, this method can

lead to a considerable bias because the x% lowest scores are not de jure defaulters

(see, e.g., Ash and Meester, 2002).

Various types of extrapolation are also used. For example, the method described

by Ash and Meester (2002), as well as by Crook and Banasik (2004), is based

on posterior probabilities of default, which were extrapolated for the rejected
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credit applicants. By setting a cutoff, the population (A = 0) will be divided into

good and bad risk cases. The information from this division, together with the

observed values Y from group (A = 1), determines the new model, but leads to

only small improvements (see Crook and Banasik, 2004).

Another method suggested by Ash and Meester (2002) is the Heckman approach.

Heckman (1979) considers the problem of sample selection as a problem of drop-

ped-down variables. Although this method is designed for continuous, not di-

chotomous, variables – what harms the assumptions made – the idea can be used

for model building by adding a variable representing the selection mechanism.

Further, Boyes et al. (1989) used a censored bivariate probit model to determine

the probabilities of default, a method based on the work of Poirier (1980). This

model understands the problem of sample selection as a case of partial unobserv-

ability. As with the Heckman approach, the underlying selection mechanism will

be incorporated, but in a bivariate probit estimation of scoring parameters.

Two extensions based on the techniques described above will be presented in this

work. The first approach combines the soft-accept-reject threshold suggested by

Hand (2002) with the reweighting technique of Crook and Banasik (2004). The

second concerns a modified extrapolation. The extrapolated posterior probabil-

ities of repayment were used for simulating the outcomes Y , which will be an

additional data basis for the parameter estimation of the new scoring model.

4 Reject inference techniques applied

4.1 Overview

In this section, some reject inference methods are applied to two different data

sets. We concentrate on the soft-accept-reject threshold, reweighting, and a com-

bination of both. Additionally, a version of extrapolation is used. The consider-

ation of granting a credit to all applicants and to build a scoring model on this

information and so get a model unbiased from sample selection is adopted as a

benchmark for performance measurement.

5



4.2 Simulated data

The analysis of this section is based on generated, normal-distributed data. Each

data set consists of 20,000 cases so as to achieve stable results and be fairly real-

istic. The sample is divided into a training and a test subsample, each consisting

of 10,000 cases. For every case i, four characteristics xj were generated. The

values of x1 represents the true but unobservable score, and the combined true

probabilities of repayment πi as well as the probability of default 1−πi. The idea

applied here is that in real life, the probability of default is unobservable, due

to many influencing factors x, such as personal characteristics, which are rarely

observable and/or incapable of measurement. The variables x2,3,4 represent ob-

servable parameters, such as income or fixed expenses, correlated up to a certain

degree with the true score x1. This connection can be displayed by the following

correlation-matrix:

ρ =


1 0.6 −0.7 0.2

1 −0.6 0.3

1 −0.7

1

 .

Using the true score and the logit distribution function

πi =
ex1

1 + ex1
,

the real probabilities of repayment are calculated. Then, the real outcome of

the credit status information Y is simulated out of πi with a random generator,

assuming that real life is random in a similar way. The random generator assigns

approximately 23.5% of the population as defaulters. To score the cases, we start

with the following rule:

Si = −0.2x2 − 0.8x3 + 0.6x4.

This rule is better than random assignment, but worse in comparison to a logit

model determinable from the whole data set. The probability of acceptance p(Si),
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estimable out of the observed variables with the help of Si, can be defined by

p(Si) =
eSi

1 + eSi
.

By setting a cutoff c after the 25% lowest scores, the sample will divided as de-

scribed into rejected (A = 0) and accepted (A = 1) applicants (see also Figure 1).

After the time period t has virtually elapsed, the generated outcome Y for the
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Figure 1: Example for the simulated data Y = 0 (dashed), Y = 1 (solid), and
the cutoff c (grey)

group (A = 1) can be used in combination with the variables xj to find new βj

for the logit-scoring function (Si = Xijβj). These new scoring parameters will

be applied to the test data set. The lowest 25% of the score values were again

declared as rejected applicants. For stable results, the simulation was run 100

times. The advantage of this simulation is that the correctness of the assignment

for all fields of the 2 × 2 contingency table can be compared to a perfect model

(derived from the whole data) simultaneously.

Table 2 shows a classification success of 71.8% for the first scoring function. The

term “classification success” is used to mean correctly allocated cases, which

means A = 0 ∩ Y = 0 or A = 1 ∩ Y = 1. Next, models were built based on

group (A = 1) data and on the whole data, which is, of course, impossible in

reality but feasible for this data set. Scoring the test data set with the different
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A = 0 A = 1

Y = 0 10.22% 13.12%

Y = 1 15.08% 61.58%

Table 2: Results of the first score function

rules leads to the results represented in Tables 3 and 4.

A = 0 A = 1

Y = 0 14.54% 8.84%

Y = 1 10.46% 66.16%

Table 3: Test data results based on the model derived from the full sample

A = 0 A = 1

Y = 0 13.34% 10.04%

Y = 1 11.66% 64.96%

Table 4: Test data results based on the model derived from the selected subsample

The full sample model achieved 80.7% correctly classified cases; the model from

the truncated data achieved only 78.3%. The results for the two models differ

2.4 percentage points due to the sample-selection-induced loss of information.

The classification success of these two models is hereafter used as a benchmark

for the applied reject inference methods.

Enlargement

The following section describes the application of Hand’s (2002) soft-accept-reject

threshold. By using the probabilities of acceptance p(Si), computed from the

score values of the first model, additional applicants from group (A = 0) were

selected into group (A = 1). Applying a random generator on p(Si), additional

19.5% of (A = 0) or, approximately 5% of the whole population, has an access

to credit. For a graphical presentation of the changed densities, see Figure 2.

The additional data leads to 79.12% correctly classified cases. This is 0.82 per-
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Figure 2: Granting of credit with a soft-accept-reject threshold

centage points better than the result reached by the pure subsample model. An

increase or decrease in additional data for the first scoring leads to improvement

or impairment of the test data results. For example, with a supplementary 1.95%

of the primarily rejected applicants, the results can be enhancend by only 0.18

percentage points.

Reweighting

To test the reweighting model, the method described by Crook and Banasik

(2004) was implemented. The selected subsample cases were reweighted by

1/p(Si) the inverse probability of acceptance refined from the first scoring func-

tion. This reweighting led to a melioration of 1.07 percentage points for the test

data sample.

Enlargement with reweighting

This section describes the combination of the soft-accept-reject threshold pro-

posed by Hand (2002) with the reweighting of 1/p(Si) used in Crook and Banasik

(2004). A priori accepted applicants (A = 1) are given the weight 1, because they

are, dependent on the cutoff, assured of being in group (A = 1). The cases ac-
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cepted on the basis of p(Si) were reweighted with the inverse of this probability,

on the theory that randomly picked cases can represent many cases around them

through reweighting. This will work well if the applicants around the chosen one

are highly homogeneous. With the already mentioned 19.5% of previously re-

jected applicants and applying the reweighting technique, a classification success

of 80.66% was reached. This is very little different from the results of the model

based on the full sample, which reached a classification success of 80.7%. By

applying only 10% of this additional data or 1.95% of the rejected applicants and

using the associated weights multiplied by 10, a result of 80.28% was reached.

With a few additional cases the results can be considerably improved.

Extrapolation

In the following the concept of extrapolation is used in a modified way. The pos-

terior probabilities of repayment were extrapolated for the rejected applicants.

However, instead of setting a cutoff, the status Y was simulated for the rejected

applicants. Here we assume that personal probability of default leads to repay-

ment or default by chance. The groups (A = 1) with the observed default status

and (A = 0) with the simulated status Y can be used to build a new scoring

model.

For the extrapolation, the group (A = 1) was sorted after the score values cre-

ated by the first score function. The sorted data were then divided into bands for

which the observed probability of repayment was calculated. These numbers, in

connection with the mean p(Si) of every band, were used for an OLS-parameter

estimation. With the derived parameters, the probabilities of being a good risk

were extrapolated for the scores of the rejected applicants. Based on these prob-

abilities, a random generator creates the status Y .

The new model based on the additional information achieves 80.48% correctly

classified cases for the test data set, results comparable to the improvements

obtained by the enlargement with reweighting method.
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4.3 Empirical Data

With the aim of verifying the results achieved so far, another real data set is

deployed. The data set, from Fahrmeir and Hamerle (1984), consists of 1,000

cases. The data set is stratified – 700 cases are good risks and are 300 bad –

in contrast to a real life accepted-only data set, which would normally have a

lower percentage of bad credit risks. However, this larger, more realistic fraction

of defaulters (nearer to a population of applicants) is useful for applying reject

inference methods. For simplification, only 7 out of 20 explanatory variables were

chosen and partly recoded for our purposes. The data set was used in the following

way. The sample was separated at random into a trainings sample with 600

cases, leaving the residual 400 cases as the test sample. For the training sample,

credit scoring was applied and the 150 cases with the lowest scores were assigned

to group (A = 0). The new scoring model was built based on the remaining

cases, and the reject inference techniques were applied. Through random group

composition and prior knowledge of the credit status Y , tests comparable to the

ones applied on simulated data could be run, but in contrast to the simulated

data set, binomial variables and even more predictor variables are used. However,

this data set is rather small and the results are somewhat unstable. The model

from the reduced data set works better in some simulation runs than the model

from the full data. Applying 100 simulation runs evinced the sample selection

effect in mean, but showed considerable variation in results. Raising the number

of simulations to 500 mitigated the fluctuation.

At the beginning, a first score function was determined by a logit model based

on a randomly chosen 250 elements of the full data sample. This function was

used to assign every case of the training data a score and the related probability

of acceptance p(Si). Next, the cases were sorted in order of their scores and

the lowest 150 or 25% of the training data were declared as rejected. The first

score function leads to 68.11% correctly classified cases. Again logit models were

built on the full data as well on the selected subsample and were adopted for the

test data set. The new model built on the full sample leads to 69.34% correct

assignments (see Table 5) and the function based on the reduced data achieves

68.21% (see Table 6), a difference of about 1.13 percentage points.
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A = 0 A = 1

Y = 0 11.96% 17.62%

Y = 1 13.04% 57.38%

Table 5: Test data results based on the model derived from the full sample

A = 0 A = 1

Y = 0 11.39% 18.18%

Y = 1 13.61% 56.82%

Table 6: Test data results based on the model derived from the selected subsample

Enlargement

Cases of the population (A = 0) were reallocated to group (A = 1) on the

basis of the probability of acceptance p(Si) computed by the first score func-

tion. Conditional on higher values of p(Si), for this data 60% of the formerly

rejected applicants were accepted for credit. This method delivers substantial

improvements (68.99% correctly classified cases) due to the high amount of sup-

plementary data, but it is unacceptable because of the occurrence of high risk one

has to accept. One-fifth of this data amount or 12% of (A = 0) leads to 68.40%

accurate assignments. Only small improvements are feasible for less extra data.

Again, a relationship between supplementary data and classification results can

be demonstrated.

Reweighting

According to the procedure for the simulated data, the cases from subgroup

(A = 1) were reweighted by 1/p(Si). The model computed from the reweighted

data reaches a result of 68.20% correctly classified cases. No improvements can

be observed from this method. A possible explanation is the high p(Si) values of

the accepted applicants near c, which gives them a smaller weight in comparison

to the nearly rejected of the simulated data. Another possibility is that the cases

near c have an inferior match to the rejected cases.
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Enlargement with reweighting

The supplementary cases selected with help of the probability p(Si) were re-

weighted with 1/p(Si). The cases selected in (A = 1), depending on the cutoff c,

were again weighted with 1. A slight correction to 69.05% in comparison to the

plain enlargement of the selected sample (68.99%) was shown. The use of 12%

additional data and, accordingly, multiplying the weight by a factor of 5 leads to

67.73% correctly classified cases. The technique leading to increased classification

success for the simulated data leads here to a result that is worse when compared

to the model based on the selected subsample. The reason for this might be found

in the variable characteristics for the simulated data: one selected case from the

simulated data is representative of many others around it. Using instead the 12%

additional cases in combination with basic reweighting, improvements (68.44%)

can be achieved in comparison to using only the extra data (68.40%).

Extrapolation

The same approach for extrapolation was used with the real data set as was used

for the simulated data. Classification success was 68.86%. The real data results

are not as intriguing as they were for the simulated data. Potential explanations

are a worse fitting linear regression and, again, the small number of cases. To

compensate for the small data basis, the variable Y was simulated three times

for the rejected applicants and consequently the logit model was computed three

times. From these parameter sets, the mean was taken and applied to the test

data. The results are an improvement (68.95% correctly assigned cases) com-

pared to the plain extrapolation. The extrapolation approach and enlargement

with reweighting (69.05%) differ little in their obtained results. The use of ex-

trapolation is preferred because this approach prevents the need for additional

data and the combined risk.
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5 The sample selection bias and its influencing

factors

During testing, the model based on the reduced sample occasionally produced

better classification results for the test data than the model built on the full

data sample (see results from the Fahrmeir and Hamerle (1984) data set). This

seemingly confusing result depending on sample size and other rationales will

be discussed in this section. The basis for the following simulations is the data

described in Section 4.2 with one distinction – the starting sample size is 1,000

instead of 10,000 cases. The differences of classification success reached by the

models based on the full and the reduced data set were calculated and presented

after sorting. Positive values of the differences represent the expected case, mean-

ing that the full data model works better than the one derived from the reduced

data set. Negative values mean the opposite.

Sample size

First, the variation in sample size and its influence on the results was analyzed.

The other factors were held constant. As can be seen in Figure 3, for small sample

sizes (500 or 1,000 cases), the mentioned phenomenon occurs that is, the selection

rules from the subsample (A = 1) achieve better results. A possible explanation

for this pattern is that with small samples the true nature of the dependence

between the variables and the outcome Y is not completely revealed. The pro-

duced models work better on the test sample by chance. This can be observed in

the simulations based on the data set from Fahrmeir and Hamerle (1984), which

is rather small. Another finding is that for large data sets, ceteris paribus, a

selection effect will occur within a small bandwidth of variation.

Cutoff c

By changing the cutoff c, the amount of data selected in the group of accepted

applicants can be changed. The different outputs are represented in Figure 4.

Obviously, if all applicants are accepted for credit, there will be no difference

in classification success. Also, common knowledge is the displayed circumstance
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such that with a decreasing selected subsample, the gap between classification

results grows, and with an increasing subsample, the gap narrows.

Change of default frequency

In this analysis, the propensity to default was altered, leaving all other variables

unchanged. The random generator was adjusted in a way that more or less cases

defaulted on the same probabilities of repayment. The described adjustment was

deployed on the training and the test data in the same way. Figure 5 shows the

change of default frequency
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Figure 5: Selection effect and default frequency

differences in classification success, depending on the proportion of good credit

risk applicants. For higher proportions of “good” applicants, the differences in

classification success increase. The variability of the differences was unaffected.

This can be explained as follows. If the proportion of “bad” is very small in the

sample, given a fixed cutoff c there is hardly any information about the defaulters

in the selected subsample. This leads to an increased bias for the scoring model

due to the reduced data set. In conjunction with the cutoff, default frequency

can be a considerable problem in real life. If for the creation of a new scoring
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model only data with a small proportion of defaulters, dependent on the cutoff,

is available, the calculated model will be inferior compared to one computed from

a full data set.

A change in default frequency could be used to demonstrate the effects of an eco-

nomic change over time. Hence, models that were estimated in a good economic

environment were tested under inferior or superior conditions. It was assumed

that the creditor perceives the economic changes and can adjust the cutoff to

reflect the new proportion of defaulters in the whole population. The left side of
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Figure 6: Selection effect and variable default frequency

Figure 6 shows that the differences induced by sample selection are not influenced

at all by changing economic conditions. However, such change has an impact on

the model from the full and the reduced data set in the same way. The right side

of Figure 6 represents this circumstance for the full data model. If the proportion

of good risk cases decreases, the results of the model deteriorated. This shows

that aside from the sample selection effect, there are other considerations that

constrain the efficiency of a scoring system.
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6 Conclusions

In this work, the problem of sample selection in the context of building or

recalibrating credit scoring systems was analyzed. Methods for coping with this

problem were presented and applied to two data samples. As found by others,

reweighting appears unsuitable for the purpose of bias reduction. Without an

exact knowledge of the default propensity of the rejected applicants, this method

leads to improvements only by chance. Granting credit depending on the soft-

accept-reject threshold described by Hand (2002) leads to advances subject to the

amount of supplementary data. By combining this approach with reweighting,

the results were improved. Even though this method leads to better classifica-

tion, it should not be forgotten that these results were obtained from additional

high-risk cases. The question is whether the gains from better case assignment

outweigh the losses of additional credit amounts. The extrapolation method as

described in this work needs no additional risk and combined default cost and led

to a remarkable improvement for the data here used. In future research it would

be interesting to test the efficacy of the suggested extensions on further data sets

and with different scoring approaches.

Many factors influence the scale of sample selection bias, including the size of the

sample, different settings of the cutoff c, or the default frequency. For high cutoffs

and small quantities of bad risk in the accepted applicant subsample, in combina-

tion with a large sample size, reject inference techniques could be very interesting.

Besides these obvious factors there are rationales, such as the change of the eco-

nomic environment over time, which leave the distortion between the model based

on the full and the one based on the reduced data unchanged. Nonetheless, this

factor influences the success of both models in the same way. Further, override of

the scoring systems by employees of the credit granting organization or changes

in the population of credit applicants (see Phillips and Yezer, 1996) are other

possible sources of bias.

Although sample selection has only a small influence on classification results, in

combination with other factors the distortions can cause considerable effects on

the results of a credit portfolio and should not be ignored by credit granting

organizations. These effects should be utilized in building or calibrating scoring

models.
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