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1 Introduction

Fractional Brownian motion as a model of a self-similar process with sta-
tionary increments was originally introduced by Mandelbrot and van Ness
(1968), who also suggested its usage in financial models in order to easily
capture long-range dependencies or persistence.

After the success of riskneutral valuation in the Markovian models of
Black, Scholes and Merton, it was hoped to extend the famous option pricing
formula and make it usable in a fractional context. In the course of the 90s
however, it turned out, that arbitrage-free pricing in the fractional market
model based on pathwise integration should not be possible (see Rogers
(1997) or Shiryayev (1998)).

The research interest in this field was re-encouraged by new insights in
stochastic analysis using a definition of integration with respect to fractional
Brownian motion based on the Wick product. In the last years many of the
useful tools applied in the classical Markovian case could be translated to
the fractional, Wick-calculus based world, like a fractional Itô theorem, a
fractional Girsanov theorem or a fractional Clark-Ocone formula, to name
only the most important results (for a detailed survey see Bender (2003)).
As a consequence, efforts on deriving no-arbitrage based valuation methods
have been reinforced and several arbitrage-free models have been proposed.

However, Delbaen and Schachermayer (1994) proved for the continuous
case, that irrespective of the choice of integration theory a weak form of
arbitrage called free lunch with vanishing risk can only be excluded if and
only if the underlying stock price process S is a semimartingale. It is though
easy to verify that, due to their persistent character, processes driven by
fractional Brownian motion are not semimartingales. For a motivating ac-
cess to this topic, see the discussion of the discrete framework of Sottinen
(2001). Moreover, Cheridito (2003) constructs explicite arbitrage strategies
in a fractional Black-Scholes market.

Actually, the above statement of Delbaen and Schachermayer (1994)
holds true as long as the definitions of the fundamental concepts as arbi-
trage, self-financing properties and admissibility remain unchanged. Hence,
concepts have been proposed to overcome the existing difficulties by modifi-
cation of the underlying definitions, among them the approaches due to Hu
and Øksendal (2003) and Elliot and van der Hoek (2003). They extended
the idea of Wick calculus beyond integration theory and changed the def-
initions of the portfolio value and/or the property of being self-financing,
incorporating the Wick product. As Bjørk and Hult (2005) showed recently,
these concepts lead to some problems concerning economic interpretation.

Cheridito (2003) proposes a different modification of the framework: He
shows, that – when postulating the existence of an arbitrarily small mini-
mal amount of time that must lie between two consecutive transactions –
all kinds of arbitrage opportunities can be excluded. But, while the assump-
tion of non-continuous trading strategies doesn’t seem to be too restrictive
when thinking of real markets, it entails one problem: Though excluding
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arbitrage, no arbitrage option pricing approaches continue to fail, as now
the possibility of a continuous adjustment of the replicating portfolio is no
longer given.

In this paper we link the modified framework of Cheridito (2003) – which
by absence of arbitrage makes sure that the financial model in general and
option pricing in particular make sense – with a switch-over to a preference
based pricing approach. This introduction of risk preferences allows us to
renounce continuous tradability.

The advantages of a transition to a preference based pricing approach
will turn out to be the following: The use of conditional expectation in its
traditional sense will make it possible to point out the problems arising in
valuation models when dealing with path-dependent processes. Moreover,
advances in stochastic analysis will be used to plausibly illustrate the fea-
tures of fractional Brownian motion and to make fractional option pricing
comparable to the classical Brownian model. Especially, the consequences of
the existence of long-range-dependence on option pricing should be clarified.

The rest of the paper is organized as follows: After giving a short review
about some important results with respect to fractional Brownian motion
in section 2, we’ll go into details concerning conditionality of distributional
forecasts, in particular, we will recall and interpret the results of Gripen-
berg and Norros (1996). Section 3 will be devoted to this. In the sequel,
we’ll focus in section 4 on a risk preference based option pricing approach
exemplified by the assumption of risk-neutral market participants. The de-
rived pricing formulae will be interpreted in order to underline the necessity
of capturing memory in models using fractional Brownian motion. More-
over, we’ll examine the effect of the Hurst parameter on the option price
deriving its partial derivative with respect to H. The main results will be
summarized in the conclusion at the end of the paper.

2 The setup of the fractional Brownian market

We use the definition of fractional Brownian motion via its original pre-
sentation as a moving average of Brownian increments. For 0 < H < 1,
fractional Brownian motion {BH

t , t ∈ R} is the stochastic process defined
by:

BH
0 (ω) = 0 ∀ω ∈ Ω

BH
t (ω) = cH

[∫
R

(
(t − s)H− 1

2
+ − (−s)H− 1

2
+

)
dBs(ω)

]

where {Bs, s ∈ R} is a two-sided Brownian motion, H is the so-called Hurst
parameter and

cH =

√
2HΓ ( 3

2 − H)
Γ ( 1

2 + H)Γ (2 − 2H)
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is a normalizing constant. Note that for t > 0, BH
t can be rewritten by

BH
t = cH

[∫ 0

−∞

(
(t − s)H− 1

2 − (−s)H− 1
2

)
dBs +

∫ t

0

(t − s)H− 1
2 dBs

]

Obviously, for H = 1
2 , B

1
2
t coincides with classical Brownian motion. On

the other hand, the cases 0 < H < 1
2 and 1

2 < H < 1 can be identified with
the occurence of anti-persistence and persistence respectively. To account
for the latter phenomenon, regard a fractional increment

∆BH(t) = BH
t+∆t − BH

t

= cH

∫ t+∆t

t

(t + ∆t − s)H− 1
2 dBs

+ cH

∫ t

−∞

[
(t + ∆t − s)H− 1

2 − (t − s)H− 1
2

]
dBs

As can be seen, in the case 1
2 < H < 1, a fractional Brownian increment

positively depends on all historical increments of its generating Brownian
motion, where recent changes have a greater influence than older ones.
Throughout this paper we’ll focus on this persistent case, however, drawing
from time to time comparisons to the classical Brownian theory.

This kind of memory of the process can also be illustrated using the
covariance properties of fractional Brownian motion. It is easy to verify
(see Mandelbrot/ van Ness (1968)) that BH

t is the unique Gaussian process
satisfying

E(BH
t ) = 0 ∀ t ∈ R

E(BH
t BH

s ) =
1
2

[|t|2H + |s|2H − |t − s|2H
] ∀ t, s ∈ R.

Again, in the limit case H = 1
2 , the moment properties of classical Brownian

motion can be obtained. For H > 1
2 , define the sequence

rn = E
(
BH

1 (BH
n+1 − BH

n )
)

As easily follows from the covariance property, we observe that
∑∞

n=1 rn =
∞, which justifies the use of the term long-range dependence.

Based on the definition of fractional Brownian motion, we look at a
fractional Brownian market consisting of a riskless asset or bond A(t) with
dynamics

dA(t) = rA(t)dt (1)

as well as of a risky asset or stock S(t) with dynamics

dS(t) = µS(t)dt + σS(t)dBH
t . (2)

The process satisfying the latter equation is called geometric fractional
Brownian motion. The parameters r and σ are assumed to be constant, sym-
bolizing the interest rate and the volatility respectively. The drift parameter
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µ may be varying over time, but has to satisfy the condition of integrability.
The mathematical interpretation of equation (2) depends on the assumed
integration theory, by name pathwise integration or Wick-based integration
respectively. Throughout this paper we’ll focus on the latter concept.

Based on the Wick product, Duncan (2000) introduced a fractional Itô
theorem using Malliavin calculus. Bender (2003) pointed out the limitations
of the derived results and generalized the theorem by using a concept called
S-transform. In the special case needed for our purposes, the result reads as
follows (see Bender (2003), Theorem 2.6.5):

Theorem 1 Let St be a geometric fractional Brownian motion as above.
Let F (t, St) be once continuously differentiable with respect to t and twice
with respect to St. Under certain regularity conditions it holds:

F (T, ST ) = F (t, St) +
∫ T

t

∂

∂s
F (s, Ss) ds +

∫ T

t

∂

∂x
F (s, Ss)µsSs ds

+ σ

∫ T

t

∂

∂x
F (s, Ss)Ss dBH

s + Hσ2

∫ T

t

s2H−1 ∂2

∂x2
F (s, Ss)S2

s ds

(3)

For the limit H → 1
2 the well-known Itô formula can be obtained. We’ll

need a version of this theorem in section 4, slightly modified to the case of
a conditional stochastic process.

3 The conditional distribution of fractional Brownian motion

3.1 Prediction based on an infinite knowledge about the past

In this section we focus on the distribution of fractional Brownian motion
given all information concerning the history of the path. Specially we regard
E[BH

T |FH
t ], T > t, where FH

t = σ(BH
s , s ≤ t) is the σ-field generated by all

BH
s , s ≤ t. In the first instance E[BH

T |FH
t ], T > t is a random variable, a

coarsening of BH
T , yielding in each case the expected value over all ω ∈ Ω

having the same path on (−∞, t]. Knowing this kind of equivalence class
[ω1]t = {ω ∈ Ω|BH

s (ω) = BH
s (ω1),∀s ∈ (−∞, t]} from the observance of

the past, as we will see, the distribution of future realizations will again
be normal. Furthermore, we’ll be able to specify the distribution by use of
the available information yielding an adjustment of the expected value as
well as a variance reduction. As a first step, the following theorem gives a
representation formula for conditional expectation.

Theorem 2 Let BH
s , s ∈ R be a fractional Brownian motion with 1

2 < H <
1. For each T > t > 0, the conditional expectation of BH

T based on FH
t can

be represented by:

B̂H
T,t = E[BH

T |FH
t ] = BH

t +
∫ t

−∞
g(T − t, s − t)dBH

s (4)
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where

g(v, w) =
sin(π(H − 1

2 ))
π

(−w)−H+ 1
2

∫ v

0

xH− 1
2

x − w
dx

=
sin(π(H − 1

2 ))
π

(
1

H − 1
2

(
−w

v
)−H+ 1

2 − βv/(v−w)

(
H − 1

2
,
3
2
− H

))

and β·(·, ·) is the incomplete Beta function.

The result is due to Nuzman and Poor (2000) and is an extension of the
result of Gripenberg and Norros (1996) who proved the theorem for the
case t = 0. Note that for technical reasons we translated the formula of
Nuzman and Poor (2000) to the original notation of Gripenberg and Norros
(1996). The proof uses both the self-similarity and the Gaussian character
of fractional Brownian motion.

For prediction purposes we are interested in the conditional distribution
of BH

T within its equivalence class resulting of the observation of the histor-
ical path. Let ω1 be a representative of this equivalence class. We state the
following theorem:

Theorem 3 The conditional distribution of BH
T based on the observation

[ω1]t is normal with the following moments:

E[BH
T |FH

t ](ω1) = BH
t +

∫ t

−∞
g(T − t, s − t)dBH

s (ω1) := BH
t + µ̂T,t (5)

V ar
[
BH

T |FH
t

]
(ω1) = E

[
(BH

T − B̂H
T,t)

2|FH
t

]
(ω1) = ρH(T − t)2H := σ̂2

T,t (6)

with

ρH =
sin(π(H − 1

2 ))
π(H − 1

2 )
Γ ( 3

2 − H)2

Γ (2 − 2H)
(7)

For the proof, see Appendix A.

0
t

Figure 1 The concavity of µ̂T,t

0
t

Figure 2 The convexity of σ̂2
T,t
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The dependence of the first moment on the forecasting horizon τ = T − t
is qualitatively of order τH− 1

2 and therefore implies concavity, whereas the
relation between τ and σ̂2

T,t apparently is of order τ2H which yields a convex
curve (see Figure 1 and Figure 2).

Figure 3 shows the shape of ρH for 1
2 < H < 1. Obviously, the fac-

tor is between 0 and 1, confirming the narrowing of conditional variance
mentioned above. Note that as H tends to 1

2 , ρH tends to 1 as well as
g(T − t, u− t) and therefore µ̂T,t equals zero, yielding N(BH

t , T − t) as limit
distribution. So, again the limit of the fractional case coincides with the
results of the Markovian case where conditional equals unconditional distri-
bution and the present value is the best forecast of the future. On the other
hand, as H tends to 1, ρH nears zero, suggesting a deterministic process in
the limit of perfect dependence.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H

ρ H

Figure 3 Shape of the narrowing factor ρH

We also point out, that, whereas the conditional variance only depends on
H, the conditional mean is really path-dependent and has to be calculated
by means of equation (5) which actually means evaluating the past. How-
ever, it seems to be quite difficult to make observations of an infinite past.
In the next section we focus on a finite observation interval.

3.2 Prediction based on a partial knowledge about the past

For practical purposes it is desirable to make predictions that are based on
only a part of the past and to go back only to a finite point of time t − a,
that is we restrict ourselves to a finite observation interval of length a and
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regard the distribution of BH
T conditional on FH

t,a = σ(BH
s , t − a ≤ s ≤ t)

which is the σ-field generated by all BH
s , t − a ≤ s ≤ t.

We state the following theorem concerning this kind of conditional ex-
pectation, denoted by B̂H

T,t,a:

Theorem 4 Let BH
s , s ∈ R be a fractional Brownian motion with 1

2 < H <
1. For all T, t, a > 0, the conditional expectation of BH

T based on FH
t,a can

be represented as follows:

B̂H
T,t,a = E[BH

T |FH
t,a] =

∫ t

t−a

ga(T − t, s − t)dBH
s (8)

where

ga(u, v) =
sin(π(H − 1

2 ))
π

(−v)−H+ 1
2 (a + v)−H+ 1

2

∫ u

0

xH− 1
2 (x + a)H− 1

2

x − v
dx

Again, we can derive statements concerning conditional distribution of frac-
tional Brownian motion, this time based on limited knowledge about the
past, which is expressed by the restriction to the equivalence class [ω1]at =
{ω ∈ Ω|BH

s (ω) = BH
s (ω1),∀t − a ≤ s ≤ t}:

Theorem 5 The conditional distribution of BH
T based on the observation

[ω1]at is normal with the following moments:

µ̂T,t,a = E[BH
T |FH

t,a](ω1) =
∫ t

t−a

ga(T − t, s − t)dBH
s (ω1) (9)

σ̂2
T,t,a = V ar

[
BH

T |FH
t,a

]
(ω1) := E

[
(BH

T − B̂H
T,t,a)2|FH

t,a

]
(ω1)

= (T − t)2H(1 − ρH,a) (10)

with

ρH,a := 1 − H

∫ a
T−t

0

g a
T−t

(1,−s)
(
(1 + s)2H−1 − s2H−1

)
ds

The proof of theorem 4, can be seen in Nuzman and Poor (2000), however
in a different notation, as we used again a representation referring to that
of Gripenberg and Norros (1996), who derived the result for t = 0. The
argumentation of the proof of theorem 5 is equivalent to the case of infinite
historical information and can be omitted at this point.

It’s worth noting that Gripenberg and Norros (1996) showed that as soon
as the observation interval becomes as large as the interval that should be
predicted, ρH,a tends to ρH or σ̂2

T,t,a to σ̂2
T,t respectively. So, concerning the

variance, a limited historical observation interval is justified, whereas the
influence of additionally observed historical increments on the conditional
mean won‘t vanish, yet is decreasing.
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4 Risk preference based option pricing in a fractional Brownian
market

4.1 Fractional European option prices

In this section we look again at the fractional Brownian market presented
in section 2. In the sequel we are further interested in the price at time t of
a European call on S with maturity T and strike K.

As mentioned above, the existence of a minimal amount of time lying
between two consecutive transactions, takes it toll in regard to the feasibility
of pricing approaches based on no-arbitrage arguments with a continuously
adjusted replicating portfolio. Therefore it seems to be natural to focus
on preference based equilibrium pricing approaches. We do this in a very
simple but all the more illustrative way, assuming risk-neutral investors,
yet possessing and using information about the past. We hence regard the
discounted conditional expected value of a contingent claim based on the
observation of [ω1]t:

CT,H(t) = e−r(T−t)E
[
max(ST − K)|FH

t

]
The calculation is an analogon to the case of Brownian motion, however us-
ing the respective tools of fractional calculus. First we want to consider the
conditional distribution of ST given [ω1]t = {ω ∈ Ω|BH

s (ω) = BH
s (ω1),∀s ∈

(−∞, t]}. For that purpose we introduce the notation of the conditional
process S̃s = Ss|[ω1]t, that is we restrict the process to a part of the prob-
ability space (Ω,A, P ), namely to the space generated by the equivalence
class [ω1]t, which is ([ω1]t, σ([ω1]t), P̃ ). The probability measure P̃ of course
equals the conditional probability P̂ so that for any process X the accor-
dance of Ẽ(X̃T ) and E[XT |FH

t ](ω1) immediately follows. We further look
at the dynamics of ln(S̃T ), applying a conditional version of the fractional
Itô theorem 1:

Theorem 6 For s > t let S̃s be the conditional process of geometric frac-
tional Brownian motion as above. For F (s, S̃s) once continuously differen-
tiable with respect to s and twice with respect to S̃s we obtain under certain
regularity conditions:

F (T, S̃T ) = F (t, S̃t) +
∫ T

t

∂

∂s
F (s, S̃s) ds

+
∫ T

t

µ(s)
∂

∂x
F (s, S̃s)S̃s ds + σ

∫ T

t

∂

∂x
F (s, S̃s)S̃s dB̃H

s

+ ρHHσ2

∫ T

t

(s − t)2H−1 ∂2

∂x2
F (s, S̃s)S̃2

s ds

For the proof, see the Appendix B. With F (s, S̃s) = ln S̃s we get

ln
(
S̃T

)
= ln S̃t +

∫ T

t

µ(s) ds − 1
2
ρHσ2(T − t)2H + σ(B̃H

T − B̃H
t )
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The first three terms being deterministic at time t, we obtain the distribu-
tion of ln

(
S̃T

)
by means of the foregoing considerations and application of

theorem 3. We deduce that the logarithm of the conditional process S̃T is
normally distributed with the following moments:

m = Ẽ
(
ln

(
S̃T

))
= E

[
ln

(
S̃T

)
|FH

t

]
(ω1) (11)

= ln St +
∫ T

t

µ(s) ds − 1
2
ρHσ2(T − t)2H + σµ̂T,t

v = Ẽ
(
ln(S̃T ) − m

)2

= E
[
(ln

(
S̃T

)
− m)2|FH

t

]
(ω1) (12)

= ρHσ2(T − t)2H

where µ̂T,t and ρH are as in section 3.
From now on, the necessary steps for the derivation of the pricing for-

mulae are well-known. We assert that, ln(S̃T ) being N(m, v) distributed
on ([ω1]t, σ([ω1]t), P̃ ), S̃T must be log-normally distributed thereon with
moments

M = exp(m +
1
2
v) = Ste

∫ T
t

µ(s) ds+σµ̂T,t

V = exp(2m + 2v) − exp(2m + v) = S2
t e2

∫ T
t

µ(s) ds
(
eρHσ2(T−t)2H − 1

)
For equilibrium reasons, a risk-neutral investor should be indifferent be-
tween buying the stock and holding the amount St of the riskless asset.
That is, expectations must be equal, or more formally

E(S̃T |FH
t ) = E(Ste

r(T−t)) or

Ste
∫ T

t
µ(s) ds+σµ̂T,t = Ste

r(T−t).

This leads to
∫ T

t

µ(s) ds = r(T − t) − σµ̂T,t. (13)

The latter equation can be interpreted in the following way: The expected
return of the stock can be split up into a deterministic part

∫ T

t
µ(s) ds and

one that is due to the stochastics of fractional Brownian motion, which is the
historically induced shift of the distribution σµ̂T,t. For instance, a positive
historical trend results in a distributional upward shift, that is an increased
mean for the stochastic part of geometric fractional Brownian motion. But,
as we assumed the interest rate r to be constant over time, in equilibrium,
this effect will be compensated by a converse adjustment of the deterministic
part of the stock process. So the sum of

∫ T

t
µ(s) ds and σµ̂T,t must always

equal the riskless interest rate.
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In combination with equations (11) and (12) we obtain

m = ln St + r(T − t) − 1
2
ρHσ2(T − t)2H (14)

v = ρHσ2(T − t)2H . (15)

Note that as H → 1
2 the limits of these moments are

m = lnSt + (r − 1
2
σ2)(T − t)

v = σ2(T − t)

So, as expected, in the Brownian case, the conditional distribution coincides
with the unconditional one.

The associated density of the conditional process S̃T – which naturally
is the conditional density of ST based on the observation [ω1]t– is as follows:

f(x)|[ω1]t =
1

x
√

2πv
e−

1
2

(lnx−m)2

v I[x>0]

The well-known calculations lead to the following presentation for the price
of the European call:

CT,H(t) = e−r(T−t)E
[
max(ST − K)|FH

t

]
= Ste

m+ 1
2 v−r(T−t)Φ(d1) − Ke−r(T−t)Φ(d2)

where

dH
1 =

m + v − lnK√
v

dH
2 =

m − lnK√
v

= d1 −
√

v

Inserting the terms for m and v of equations (14) and (15) we obtain the
pricing formula for the fractional European call:

Theorem 7 The price of a fractional European call with strike K and ma-
turity T valued by a risk-neutral investor is given by the following formula:

CT,H(t) = StΦ(dH
1 ) − Ke−r(T−t)Φ(dH

2 ) (16)

where

dH
1 =

ln(St

K ) + r(T − t) + 1
2ρHσ2(T − t)2H

√
ρHσ(T − t)H

dH
2 =

ln(S0
K ) + r(T − t) − 1

2ρHσ2(T − t)2H

√
ρHσ(T − t)H

= dH
1 −√

ρHσ(T − t)H
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Following the same arguments as in the derivation of theorem 7, we receive
the price of the appropriate European put:

PT,H(t) = Ke−r(T−t)Φ(−dH
2 ) − StΦ(−dH

1 ) (17)

Again, consider the limit as H → 1
2 , where the familiar risk-neutral valua-

tion formulae are obtained.
We take a first look at the values of the fractional European call option

for different Hurst parameters H. Apparently in the case displayed in Figure
4, an increase of dependence comes along with a decrease of the option value.
But that is only half the truth as will be shown in the following subsection.
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Figure 4 Price of the fractional European call with varying Hurst parameter H
(chosen parameters: r = 0.02, K = 100, σ = 0.2, T − t = 0.25)

4.2 The fractional Greeks

As we showed in the preceding section, in the course of our simplified anal-
ysis assuming risk-neutral investors, the equilibrium condition rules out the



13

influence of the conditional mean on the fractional call price, that is we
can focus on the variance effects. Table 1 gives an overview of the partial
derivatives of the call price formula, the so-called fractional Greeks.

Table 1 The fractional Greeks

∆H = ∂CH
∂S

Φ(dH
1 )

ΓH = ∂2CH
∂S2

ϕ(dH
1 )

St
√

ρHσ(T−t)H

ΘH = ∂CH
∂t

−H
Stϕ(dH

1 )
√

ρHσ

(T−t)1−H − rKe−r(T−t)Φ(dH
2 )

�H = ∂CH
∂r

KTe−r(T−t)Φ(dH
2 ) − (T − t)StΦ(dH

1 )

ΛH = ∂CH
∂σ

Stϕ(dH
1 )

√
ρH(T − t)H

The proof of the formulae is straightforward. We underline that as H →
1
2 , (T − t)H becomes

√
T − t, ρH tends to 1 and dH

1 becomes d1 and the
well-known parameters of the Markovian case are obtained. So again, the
fractional solution in the limit also yields the results of classical Brownian
theory.

By means of these partial derivatives it is furthermore possible to illus-
trate that also a special case of the Feynman- Kac formula can be translated
to the fractional context. At time t, the price V (t, St) of a derivative – condi-
tional mean of a payoff function p(T, ST ) discounted under risk-neutrality–

V (t, St) = e−r(T−t)E
[
p(T, ST )|FH

t

]
(ω1)

is the solution of the partial differential equation

rStVS(t, St) + Vt(t, St) + HρHσ2S2
t (T − t)2H−1VSS(t, St) − rV (t, St) = 0

The proof is similar to the classical case, using the conditional version of
the fractional Itô Theorem. Insertion of the derived partial derivatives and
the formula of the call price confirms the validity of equation (16).

The preceding results confirm the high degree of transferability of the
classical concepts into the fractional framework. However, an aspect of ad-
ditional interest arises from the consideration of the partial derivative with
respect to the Hurst parameter H, which will be denoted by η. To get an
ex ante idea of what we examine, recall that the Hurst parameter indicates
the process-immanent level of persistence. While H = 1

2 ensures indepen-
dent increments and hence a Markovian process, larger values of H exhibit
a certain extent of dependence. The question is, in which manner such an
increase of dependence influences the price of the fractional call.
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Figure 5 The digamma function on R+

We thus differentiate equation (16) with respect to H and get

η =
∂C

∂H
= Stϕ(dH

1 )
∂dH

1

∂H
− Ke−r(T−t)ϕ(dH

2 )
∂dH

2

∂H

= Stϕ(dH
1 )

∂
(√

ρHσ(T − t)H
)

∂H

= Stϕ(dH
1 )

∂
√

v

∂H

(18)

We further look at ∂v
∂H and obtain

∂v

∂H
= ρHσ2(T − t)2H

(
ψ0(1 − H) − ψ0(H +

1
2
) + 2 ln 2 + 2 ln(T − t)

)
(19)

where ψ0 denotes the digamma function. For the proof of the latter equality
see Appendix C.

Note that the digamma function ψ0(x) for x > 0 is strictly monotonic
increasing but concave, the negative axis of ordinates being vertical asymp-
tote as x tends to zero (see Figure 5).

Therefore the difference ψ0(1 − H) − ψ0(H + 1
2 ) is strictly monotonic

decreasing for 1
2 < H < 1 and its maximum is received for H → 1

2 . In this
case we get

lim
H→ 1

2

[
ψ0(1 − H) − ψ0(H +

1
2
)
]

= ψ0(
1
2
) − ψ0(1)

= −γ − (2 ln 2 + γ) = −2 ln 2
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where γ denotes the Euler-Mascheroni constant.
Summarizing we can state the following theorem, denoting by τ the time

to maturity, that is τ = T − t.

Theorem 8 The partial derivative of the fractional call price C with respect
to the Hurst parameter H is given by

η = Stϕ(dH
1 )

√
ρHσ(T − t)H

(
ψ0(1 − H) − ψ0(H + 1

2 ) + 2 ln 2 + 2 ln(T − t)
)

2
and has the following properties:

1. For a fix τ ≤ 1, it holds:

∂C

∂H
(H) < 0 ∀ 1

2
< H < 1

2. For a fix τ > 1, there exists a critical Hurst parameter 1
2 < H̄ < 1, so

that:
∂C

∂H
(H̄) = 0

∂C

∂H
(H) > 0 ∀ 1

2
< H < H̄

∂C

∂H
(H) < 0 ∀ H̄ < H < 1

The results are immediate consequences of the preceding observations as
well as of the properties of the natural logarithm. In order to be able to
explain this phenomenon we recall that according to equation (19) the main
effect arises from the product ρH(τ)2H , which is the variance v of the normal
distribution of the conditional logarithmic stock price. But, with increasing
H, the factors of v generate converse effects. The factor ρH concentrates
the distribution – what we from now on call narrowing effect –, whereas
the higher exponent of τ for τ > 1 tends to enlarge the variance – which
is further referred to as the power effect. The resulting effect thus depends
on the scale of τ . For small τ , which means nearby distributional forecasts,
both effects have a variance-reducing character so the call price decreases.
On the other hand for τ > 1, starting from the classical case H = 1

2 , the call
price increases with higher level of persistence due to the power effect, but
only up to the critical parameter H̄, where this effect is fully compensated
by the narrowing effect caused by ρH . With a further increase of H this
confining character of ρH overbalances the power effect and the call price
decreases.
Figure 6 illustrates these characteristics graphically, showing the relation
between the Hurst parameter H and the call price for a fix initial price St.
A brief look at the limit of the call price as H tends to 1 provides another
fact that confirms our intuition with regards to fractional Brownian motion.
With an increasing Hurst parameter, we obtain an increasing level of depen-
dence, that is, the future price of the underlying becomes less volatile or un-
certain. In the limit, we distinguish between two cases. For S > e−r(T−t)K,
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Figure 6 Maturity effect on the relation between Price of the fractional European
call and Hurst parameter H (chosen parameters: r = 0.02, S = 100, K = 100,
σ = 0.2).

dH
1 and dH

2 tend to infinity and for the call price we actually receive the
difference between the initial stock price and the discounted strike price.
On the other hand, if we have S < e−r(T−t)K, dH

1 and dH
2 tend to −∞, and

the call price tends to zero. So in the case of perfect dependence, either the
contracts value is zero right from the beginning or we get a simple forward
contract under certainty.

5 Conclusion

The nature of fractional Brownian motion, especially its non-martingale
property, doesn’t allow for no arbitrage pricing methods within the com-
mon framework. Albeit restricting trading strategies to be non-continuous
ensures absence of arbitrage, this non-continuity of trading strategies still
rules out the common arbitrage pricing approach. In this paper we suggest a
preference based pricing approach which allows us to renounce continuous
tradability. This approach makes it reasonable and necessary to evaluate
the historical information from the path of the stock price process.

The derived formulae draw their attractiveness from the fact, that the
fractional pricing model includes the traditional Markovian case, so that
the existing parallels enhance the understanding of fractional option pric-
ing. Moreover the analysis of the partial derivative with respect to the Hurst
parameter made it possible to point out the fractional particularities of the
formulae. By name, these are the variance-based narrowing and power ef-
fects, which accord with the economic intuition concerning the phenomenon
of persistence.

Appendix A: Proof of Theorem 3

The normality of the conditional distribution is an immediate consequence
of the Gaussian character of the process BH

t . It is well known that Gaussian
processes like multivariate normal distributions assure the normality of all
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kinds of conditional densities. Intuitively, the mean of the conditional dis-
tribution should be defined by

∫
ω∈[ω1]t

BH
T (ω)dP̂ (ω) where P̂ (ω) = P (ω)

P ([ω1]t)

is the conditional probability of ω. The characterization of the conditional
mean given in theorem 3 then easily follows from theorem 2 and the fact
that the conditional expectation by definition satisfies:∫

ω∈[ω1]t

BH
T (ω)dP (ω) =

∫
ω∈[ω1]t

B̂H
T (ω)dP (ω)

as [ω1]t ∈ FH
t . B̂H

T being constant on [ω1]t we can rewrite this by∫
ω∈[ω1]t

BH
T (ω)dP (ω) = B̂H

T (ω1)P ([ω1]t)

or

B̂H
T (ω1) =

∫
ω∈[ω1]t

BH
T (ω)d

(
P (ω)

P ([ω1]t)

)
=

∫
ω∈[ω1]t

BH
T (ω)dP̂ (ω)

Respectively, the conditional variance should be defined by

σ̂2
T,t =

∫
ω∈[ω1]t

[
BH

T (ω) − B̂H
T (ω)

]2

dP̂ (ω)

which can be rewritten – applying the same argument as above – by

σ̂2
T,t = E

[
(BH

T − B̂H
T (ω1))2|FH

t

]
(ω1)

But B̂H
T is the orthogonal projection of BH

T on the span of {BH
s , s ≤ t}.

So the coprojection (BH
T − B̂H

T ) or ((BH
T − BH

t ) − µ̂T,t) respectively as
well as the squared terms are orthogonal to and therefore independent of
{BH

s , s ≤ t}, so that the conditional expectation E
[
(BH

T − B̂H
T (ω1))2|FH

t

]
is non-random. Hence we can omit the argument ω1 in the sequel, add
expectation operators and write:

σ̂2
T,t = E

[
(BH

T − B̂H
T )2|FH

t

]
= E

(
E

[
((BH

T − BH
t ) − µ̂T,t)2|FH

t

])
= E

(
E

[
(BH

T − BH
t )2|FH

t

] − 2E
[
(BH

T − BH
t )µ̂T,t|FH

t

]
+ E

[
µ̂2

T,t|FH
t

])
= E(BH

T − BH
t )2 − 2E(µ̂T,t)2 + E(µ̂T,t)2 = E(BH

T − BH
t )2 − E(µ̂T,t)2

We now look at

E(µ̂T,t)2 = E

(∫ t

−∞
g ((T − t), (s − t)) dBH

s

)2

=
∫ t

−∞

∫ t

−∞
g ((T − t), (v − t)) g ((T − t), (w − t)) φH(v, w)dvdw

=
∫ ∞

0

∫ ∞

0

g ((T − t), (−x)) g ((T − t), (−y)) φH(x, y)dxdy

= (T − t)2H(1 − ρH),
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where φH(a, b) = H(2H − 1)|a − b|2H−2 and where we used Proposition
2.2 of Gripenberg and Norros (1996) and then substituted x = t0 − v and
y = t0−w. The correctness of the last equality is carried out in the proof of
Corollary 3.2 of Gripenberg and Norros (1996) where we refer to for more
details.
With that and

E((BH
T − BH

t )2) = E(BH
T )2 − 2E(BH

T BH
t ) + E(BH

t )2

= T 2H − (T 2H + t2H − (T − t)2H) + t2H = (T − t)2H

we get

σ̂2
T,t = (T − t)2H − (T − t)2H(1 − ρH) = ρH(T − t)2H

which completes the proof.

Appendix B: A conditional version of the fractional Itô Theorem

We sketch the derivation of theorem 6 modifying the proof of Bender (2003)
for the unconditional case. For 1

2 < H < 1, the Riemann-Liouville fractional
integrals are defined by

I
H− 1

2− f(x) =
1

Γ (H − 1
2 )

∫ ∞

x

f(s)(s − x)H− 1
2 ds

I
H− 1

2
+ f(x) =

1
Γ (H − 1

2 )

∫ x

−∞
f(s)(x − s)H− 1

2 ds.

The operators MH
± are defined by

MH
± f = KHI

H− 1
2± f

where KH = Γ (H +
1
2
)

√
2HΓ ( 3

2 − H)
Γ (H + 1

2 )Γ (2 − 2H)
.

The fractional Girsanov formula reads as follows:

Theorem 9 Let 1
2 < H < 1 and BH

s be a fractional Brownian motion
with respect to the measure P . Furthermore let Qf be the measure with
dQf

dP = exp(
∫

R
f(u) dBu − 1

2

∫
R

f(u)2 du), where Bu is the generating Brow-
nian motion. Then B̆H

s , defined via

B̆H
s = BH

s −
∫ s

0

MH
+ f(u) du

is a fractional Brownian motion with respect to Qf .
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Using this formula and according to section 4, we obtain the distribu-
tion of the [ω1]t - restricted process B̃H

T with respect to Qf to be nor-
mal with mean m̆T,t +

∫ t

0
MH

+ f(s) ds and variance ρH(T − t)2H , where
m̆T,t = B̆H

t +
∫ t

−∞ g(T −t, s−t)dB̆H
s (ω1) is the conditional mean of the frac-

tional Brownian motion B̆H
s abd B̆s is the generating Brownian motion of

B̆H
s . Knowing this, we can replace the moments of the unconditional case by

those of the conditional case and successively modify theorems 1.2.8, 2.6.3
and 2.6.5 of Bender (2003). In particular we can take theorem 2.6.5 and
replace the unconditional variance term |MH

− (1[0,s])σ|20 – which as expected
for a constant σ equals σ2s2H – by the conditional variance ρHσ2(s− t)2H .
We obtain theorem 6.

Appendix C: The partial derivative ∂vT

∂H

Recall that vT = σ2ρH(T − t)2H . We first look at ∂ρH

∂H and differenti-
ate the nominator n(H) = sin(π(H − 1

2 ))Γ ( 3
2 − H)2 and the denomina-

tor d(H) = π(H − 1
2 )Γ (2 − 2H) separately. For that purpose, note that

Γ ′(x) = Γ (x)ψ0(x) where ψ0 denotes the digamma function. We get

∂n

∂H
= π cos(π(H − 1

2
))(Γ (

3
2
− H))2

− sin(π(H − 1
2
))2Γ (

3
2
− H)Γ (

3
2
− H)ψ0(

3
2
− H)

= (Γ (
3
2
− H))2 sin(π(H − 1

2
))

[
π cot(π(H − 1

2
)) − 2ψ0(

3
2
− H)

]
∂d

∂H
= πΓ (2 − 2H) − 2π(H − 1

2
)Γ (2 − 2H)ψ0(2 − 2H)

= πΓ (2 − 2H) [1 − (2H − 1)ψ0(2 − 2H)]

Using the quotient rule, we obtain

∂ρH

∂H
= ρH

[
π cot(π(H − 1

2
)) − 2ψ0(

3
2
− H) − 1

H − 1
2

+ 2ψ0(2 − 2H)
]

We further make use of the following properties of the digamma function
(see Abramowitz and Stegun (1972), section 6.3):

π cot(πx) = ψ0(1 − x) − ψ0(x)

ψ0(x + 1) = ψ0(x) +
1
x

ψ0(2x) =
1
2

(
ψ0(x) + ψ0(x +

1
2
) + 2 ln 2

)
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Thus we can write

∂ρH

∂H
= ρH

(
ψ0(

3
2
− H) − ψ0(H − 1

2
) − 2ψ0(

3
2
− H)

+ψ0(1 − H) + ψ0(
3
2
− H) + 2 ln 2

)

= ρH

(
ψ0(1 − H) − ψ0(H − 1

2
) − 1

H − 1
2

+ 2 ln 2
)

= ρH

(
ψ0(1 − H) − ψ0(H +

1
2
) + 2 ln 2

)
.

Finally we can calculate ∂vT

∂H :

∂vT

∂H
=

∂σ2ρH(T − t)2H

∂H

= σ2

(
ρH(ψ0(1 − H) − ψ0(H +

1
2
)

+2 ln 2)(T − t)2H + ρH2 ln(T − t)(T − t)2H
)

= ρHσ2(T − t)2H

(
ψ0(1 − H) − ψ0(H +

1
2
) + 2 ln 2 + 2 ln(T − t)

)
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