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Abstract

Intra-day financial market trading is typically organized using two major mech-

anisms: quote-driven and order-driven trading. Under the former, all orders are

arranged through dealers; under the latter, orders are usually arranged via a public

limit order book. These two mechanisms generate different outcomes with respect

to trading activity, liquidity, and price behavior, as has been well-documented em-

pirically. We provide a theoretical model to compare the two systems and show

that the mechanism-intrinsic sequencing of trades and quotes generates most of

the observed differences in trading outcomes, even in a frictionless environment.

Our analysis shows in particular that large orders in the quote-driven segment of

a hybrid market have lower information content, that price impacts are larger for

trades in the order-driven segment, and that the quote-driven segment absorbs

most large trades, whereas the order-driven segment absorbs small trades.
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1 Introduction

The literature on financial market microstructure distinguishes two trading mechanisms

for the arrangement of intra-day trading: order- and quote-driven trading. Order-driven

markets are usually exchanges with a public limit order book, the cleanest examples

being Electronic Communication Network (ECN) platforms such as INET or Archipelago

and the consolidated limit order books of the Toronto Stock Exchange (TSX) or Paris

Bourse. The textbook definition for a quote-driven market is a trading system in which

only dealers are allowed to post quotes so that all trades are arranged through these

institutions (see, for example, Harris (2003)). Examples of quote-driven markets are

bond- or foreign exchange markets (until very recently) or Nasdaq before 1997.

There are several potential conceptual differences between quote and order driven

systems, including the level of market transparency, the degree of competition, the im-

portance of repeat interactions among market participants, and the physical speed of

order execution. Many of these differences result from market imperfections and the lit-

erature has focusses primarily on the impact of these frictions. Yet as new technologies

eliminate imperfections, it becomes all the more important to identify the core con-

ceptual differences between the mechanisms that underly the specific trading platforms

and to understand how these differences affect major economic variables such as prices,

trading costs, liquidity (and measures of liquidity), price efficiency, price volatility, and

trading volume.

Absent frictions, the key conceptual difference between order and quote driven trad-

ing is the sequencing of actions. To see this, observe that a trade requires two parties:

one who wishes to trade and thus demands liquidity, and one who then supplies liquid-

ity.1 In the order-driven market, liquidity is supplied without knowledge of the liquidity

demand. In a quote-driven market, liquidity is supplied after the demand is revealed.2

Therefore, in order-driven markets, quotes precede orders, in quote-driven markets it is

the reverse.

The contribution of our paper is to provide a frictionless model that highlights this

core conceptual difference. We study the mechanisms and their implications both when

they are operated in isolation and when they compete in a hybrid market, and we

obtain sharp predictions about the sequencing’s impact on the aforementioned major

observable economic variables. Results from our analysis will allow the profession to

understand what measurable differences between quote and order driven trading remain

1An exception is the case where two liquidity demanders meet accidentally and their orders ‘cross’.
2In Appendix A we discuss some institutional features in detail.
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when controlling for all frictions.

Before we explain the details of our approach, we will change the expositional lan-

guage. The terms “order-driven” and “quote-driven” do not admit an unambiguous

intuition for their definition — one can argue that whether a market is driven by quotes

or orders is in the eye of the beholder. As the terms are also semantically close, we

shall avoid confusion by identifying the mechanisms with the environments in which

they commonly occur. We will thus refer to order-driven markets as limit order markets

and to quote-driven markets as dealer markets.

Our model has the following structure. Liquidity in both the limit order and the

dealer markets is supplied by uniformed and risk-neutral institutions which compete for

the order flow. This is the case in the standard market microstructure models in the

tradition of Kyle (1985) and Glosten and Milgrom (1985). Liquidity demanders trade

either for reasons outside the model (e.g., to rebalance their portfolio or inventory, to

hedge, or to diversify), or they have private information about the fundamental value of

the security.

In the dealer-market, the liquidity providers observe the order flow and then compete

for the order in a Bertrand fashion. The equilibrium price then aggregates the informa-

tion contained in the order flow, and the liquidity provider absorbs the order by taking

the other side of the transaction. In the limit order market, liquidity providers post a

schedule of buy- and sell limit orders, each for the purchase or sale of a specific number

of units. These prices incorporate the information revealed when the respective limit

order is “hit” by a market order.3 One additional contribution of our paper is thus in

formulating a model that tractably integrates both a limit order and a dealer market in

a Glosten-Milgrom sequential trading setup.

Informed investors receive private binary signals of heterogenous precisions, or qual-

ities, and the quality of investor i’s signal is i’s private information. The underlying

continuous structure allows a simple and concise characterization of the equilibrium by

marginal trading types.4 In equilibrium, the price is set so that traders best-respond by

buying (selling) if their private signal is sufficiently encouraging (discouraging). More-

over, the higher is the quality of their private information, the larger is the size of their

order.

3Other authors (e.g. Back and Baruch (2007)) refer to such prices as “upper-tail”– and “lower-tail”–
expectations as each price accounts for the fact that the true order size may be larger.

4On a theoretical level, this is a ‘purification’ approach. One can construct a model in which people
receive signals of different, discrete qualities. When using such a setup, however, one may have to
describe behavior with mixed strategies and all their inherent (interpretational) complications. Our
approach delivers cleaner insights.
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When the mechanisms operate in isolation, we find that —from the investor’s per-

spective— small size orders are cheaper in a dealer market, whereas large size orders are

cheaper in a limit order market. Volume is higher in limit order markets, and, if there

are sufficiently many traders, prices in the limit order market are more volatile and less

informationally efficient.

The intuition underlying these results is that liquidity providers in dealer markets are

intrinsically better at pin-pointing the information content of a transaction because they

know the order size before setting the price. While this lowers traders’ information rents,

those with lower quality information are better off being identified. For in the limit order

market, very well informed traders hide among the less well informed ones and thus earn

a rent at their expense.5 Since well informed traders submit orders more aggressively,

volume in limit order markets is larger, while the dealer’s superior information extraction

power causes price volatility to be smaller in dealer markets.

The above result on the cost difference has implications for standard (empirical)

measures for liquidity. We predict that the effective spread, which is the spread implied

by the transaction prices (and not by the quotes, which may be merely indicative) is

smaller in the dealer market. The price impact, which is commonly understood as the

change in the price triggered by the order flow, is larger in the limit order market.

Our analysis further shows that the behavior of traders in a dealer market is not

stationary. For instance, as prices drop, favourably informed traders submit buy orders

more aggressively, thus acting as contrarians. Unfavourably informed investors submit

sell-orders less aggressively. Consequently, one must be careful not to make implicit

stationarity assumptions when estimating the probability of informed trading (PIN), a

standard measure for the information content of trades (see, Easley, Kiefer, O’Hara, and

Paperman (1996)).

While the classification of trading mechanisms into quote- and order driven is useful

as a benchmark, most real-world markets share features of both trading systems and

are thus hybrids. NYSE, for instance, is a hybrid market because traders can either

send orders directly to the limit order book or they can arrange trades via floor brokers.

Similarly, on the TSX, trades can be send to the consolidated limit order book or they

can be arranged via an ‘upstairs’ dealer. On Nasdaq, trades can be made on INET (an

ECN) or with a dealer. Moreover, even systems that can be classified as a pure limit

order or pure dealer market may compete with a venue of a different kind, so that the

two markets together are a hybrid. One example is Paris Bourse (a limit order market)

5The result that small trades are cheaper on dealer markets has been previously noted by, for
instance, Glosten (1994) or Seppi (1997).
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and London Stock Exchange (a dealer market until 1997) which compete for cross-listed

stocks (see de Jong, Nijman, and Roell (1995)). In other words, the two trading systems

usually co-exist and compete.

It is therefore important to understand the impact of each mechanism when both are

in operation in a hybrid market. In our frictionless setting, equilibrium trading costs

in different segments of the hybrid market must coincide. Then two kinds of equilibria

emerge: in the first, there is market specialization in the sense that all large orders

are traded in one system and all small orders in the other. In the second, which is

economically more appealing, orders of all sizes are traded in each market segment, but

the information content of trades differs endogenously. Specifically, large trades are more

informative in the limit order market segment and small trades are more informative in

the dealer market segment. As a corollary, we show that there will be more large orders

in the dealer segment of the market and more small orders in the limit order segment.

Standard empirical findings from hybrid market are as follows: De Jong, Nijman and

Roell (1995) find that markets are deeper and that there are more large transactions

on LSE relative to Paris Bourse. According to Viswanathan and Wang (2002), large

orders on NYSE are filled by dealers, whereas small orders are filled by involving the

limit order book. Smith, Turnbull, and White (2001), Booth, Lin, Martikainen, and Tse

(2002), and Bessembinder and Venkataraman (2004), respectively, find for the Toronto

Stock Exchange, the Helsinki Stock Exchange, and Paris Bourse that upstairs trades

(in the dealer segment) have lower information content and smaller price impacts than

downstairs trades (in the limit order segment). The main insight of our theoretical

analysis is that the sequencing of orders and quotes alone explains these empirically

observed differences in trading outcomes.

The remainder of this paper is organized as follows. In Section 2, we discuss the re-

lated theoretical literature. In Section 3, we introduce the general model. In Section 4,

we derive the limit order market equilibrium, in Section 5, the dealer market equilib-

rium. In Section 6, we compare the two mechanisms when they operate in isolation. In

Section 7, we discuss hybrid markets. Section 8 concludes. The appendix contains the

details of the institutional background, the signal distributions and the proofs.

2 Related Theoretical Literature

Our dealer-market setup is similar to Easley and O’Hara (1987) who employ a setting

in the tradition of Glosten and Milgrom (1985) and allow trades of different sizes. In

their setup the trader, equipped with a signal of a fixed quality, chooses whether to
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submit a large or a small order size and usually chooses a mixed strategy. The trader

behavior in our dealer market is, effectively, a purification of the mixed-strategy behavior

in Easley-O’Hara.

The mechanics of the limit order market pricing schedules in our paper coincide

with those in Glosten (1994), which is one of the first papers to formally model limit

order markets.6 While Glosten (1994) contains a system comparison, the broker there

strategically acts against the electronic book, potentially trying to undercut certain

quotes. Consequently, this dealer still operates under a limit order mechanism.

The two classic comparative theoretical studies of trading mechanisms are Grossman

(1992) and Seppi (1990). Grossman studies the relation of upstairs (or dealer) markets

and downstairs (or limit order) markets. In his model some traders choose not to pub-

licly reveal their willingness to trade. Leaving a non-binding indication to trade allows

the knowing upstairs traders to tap into this “unexpressed liquidity” if occasion arises.

Grossman finds that if sufficiently many traders submit orders upstairs, then an infor-

mational advantage of an upstairs dealer about the displayed order flow is so large that

the upstairs market will dominate.

In Seppi (1990) the non-anonymous nature of upstairs trading and repeat interactions

ensure that informed and uninformed trading is segmented into downstairs and upstairs

markets, respectively. Routing an informed order to an upstairs liability trader may

trigger a penalty on future transactions. In equilibrium, informed trades are sent to the

limit order book, while uninformed trades clear upstairs.

The contribution of our paper is on a different level. We assume that all liquidity is

observed and we abstract from repeat interactions. Our focus is on the inherent outcomes

that are generated by the two trading mechanisms in isolation and in combination. This

affords a clear view of the impact of the systems themselves, the bottom line being that

even if, say, a revolutionary new regulation could force the display of all liquidity and

remove the consequences of repeat interactions, there would still be differences.

Two more recent comparative studies are Viswanathan and Wang (2002) and Back

and Baruch (2007). Viswanathan and Wang focus on non-information based trading

and the effects of risk aversion. Back and Baruch study a model in which a single,

perfectly informed trader chooses whether to work an order (i.e. submit a series of small

trades) or whether to submit a large block trade. They find an equivalence between

the dealer and limit order market. Specifically, the prices charged on the dealer market

resemble the upper-tail-expectation prices in the limit order market as dealers anticipate

6Biais, Martimort, and Rochet (2000) is a more recent contribution that studies a version of Glosten
with imperfect competition.
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that the informed trader works his order. Our study complements theirs in several

aspects. First, Back and Baruch have a single informed trader, while we have a series

of imperfectly informed traders who, however, cannot work orders.7 Second, Back and

Baruch allow traders in the dealer market to remain anonymous even when repeatedly

submitting orders. We rule this out deliberately so that in our model an order in a

dealer market could not be worked. Our major focus is to understand and explain the

observed differences with respect to price impacts and the information content of trades,

and we show how these differences prevail even in a frictionless hybrid market.

Comparisons between different systems have also been made regarding the level of

market transparency: Pagano and Roell (1996) compare transparency of a uniform

price auction with a dealer market system. Brown and Zhang (1997) formulate a model-

hybrid of a Kyle (1985)-style and a Rational Expectations-style setup to study dealers’

decisions to participate in a market, and to describe how dealers’ decisions to supply

liquidity affect the informational efficiency of prices.

Another strand of the theoretical market microstructure literature studies the strate-

gic provision of liquidity (whereas liquidity suppliers in our model are non-strategic).

Most papers on the strategic provision of liquidity are based on either Parlour (1998) or

Foucault (1999). Examples of studies that compare different market structures in this

framework are Seppi (1997), Parlour and Seppi (2003), and Buti (2007); for an extensive

up-to-date survey of the literature on limit order markets see Parlour and Seppi (2008).

Our framework complements these studies by considering the effects of strategic market

order submission by heterogeneously informed investors.

The important insight that our analysis provides is that the sequencing of events,

namely, whether liquidity is offered continuously or supplied only on demand, natu-

rally generates observed patterns in order submission behavior and price characteristics.

While other market characteristics most certainly play a role, we believe that it is im-

portant to fully understand the benchmark case that we provide here.

3 The Basic Setup

General Market Organization: We consider a stylized version of security trading

in which informed and uninformed investors trade a single asset by submitting market

orders. Liquidity is supplied by uninformed, risk-neutral liquidity providers who compete

7Ideally, one would like a a combination of both our and their setups to one with multiple informed
traders who can trade repeatedly. Yet this is highly non-trivial and, to the best of our knowledge, such
a model with endogenous trade-timing with multiple informed traders has not yet been successfully
attempted (see also the experimental paper by Bloomfield, O’Hara, and Saar (2005) for a discussion).
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for order order flow. At each discrete point in time there is exactly one trader who

arrives at the market according to some random process. This individual trades upon

their arrival and only then. Short positions are filled at the true value. In the limit

order market, the liquidity providers post a series of limit buy orders at which they are

willing to buy the security and a series of sell-orders at which they are willing to sell the

security. The former constitutes a series of ask-prices, the latter a series of bid-prices.

Each price is for a single unit (i.e. a round lot). The investor posts his market order

after observing these prices.8 In the dealer market, the investor posts his market order

first and the liquidity providing dealers then compete in a Bertrand fashion in the price

for this order. In both systems, liquidity providers are subject to perfect competition

and thus set prices so that they make zero expected profits.

Security: There is a single risky asset with a liquidation value V from a set of two

potential values V = {V , V } ≡ {0, 1}, with Pr(V ) = 1/2. The prior distribution over V

is common knowledge.

Investors: There is an infinitely large pool of investors out of which one is drawn

at each point in time at random. Each investor is equipped with private information

with probability µ > 0; if not informed, an investor becomes a noise trader (probability

1 − µ). The informed investors are risk neutral and rational.

Noise traders have no information and trade randomly. These investors are not

necessarily irrational, but they trade for reasons outside of this model, for example to

obtain cash by liquidating a position.9 To simplify the exposition, we assume that noise

traders make trades of either direction and size with equal probability.

Trade Size: All trades are market orders for round lots and thus the number of

shares traded is discrete. The order at time t is denoted by ot where ot < 0 indicates a

sell-order and ot > 0 is a buy-order. Traders can also abstain from trading, so that ot = 0.

We focus on order sizes ot ∈ {−2, . . . , 2}.

Public Information. The structure of the model is common knowledge among all

market participants. The identity of an investor and his signal are private information,

but everyone can observe the history of trades and transaction prices. The public in-

formation Ht at date t > 1 is the sequence of orders ot and realized transaction prices

at all dates prior to t: Ht = ((o1, p1), . . . , (ot−1, pt−1)). H1 refers to the initial history

before trades occurred.

Whether a trader is informed or noise at time t is independent of the past history Ht

8When referring to a liquidity provider in singular, we will use the female form and for liquidity
demanders we will use the male form.

9Assuming the presence of noise traders is common practice in the literature on micro-structure with
asymmetric information to prevent “no-trade” outcomes à la Milgrom-Stokey (1982).
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and the underlying fundamental V , as is the quality of each informed investor’s informa-

tion. Payoff-relevant public information at time t can thus be summarized by a time-t

public belief that the security’s liquidation value is high (V = 1). Since the liquidity

providers must break even in expectation, this public belief coincides with the time-(t−1)

transaction price, denoted by pt−1.

Liquidity Providers’ Information. In the dealer market, the liquidity providers

know the public history Ht and the order ot. In the limit order market, liquidity providers

do not know which order will be posted at time t, and their information is only Ht.

Informed Investors’ Information. We follow most of the GM sequential trading

literature and assume that investors receive a binary signal about the true liquidation

value V . These signals are private, and they are independently distributed, conditional

on the true value V . Specifically, informed investor i is told “with chance qi, the liqui-

dation value is High/Low (h/l)” where

Pr(signal|true value) V = 0 V = 1

signal = l qi 1 − qi

signal = h 1 − qi qi

In contrast to most of the GM literature, we assume that these signals come in a con-

tinuum of qualities. This qi is the signal quality and it is trader i’s private information.

The distribution of qualities is independent of the asset’s true value and can be under-

stood as reflecting, for instance, the distribution of traders’ talents to analyze securities.

Figure 1 illustrates the distribution of noise and informed traders and the information

structure.

In the subsequent analysis it will be convenient to combine the signal and its quality

in a single variable, which is trader i’s private belief πi ∈ (0, 1) that the asset’s liquidation

value is high (V = 1). This belief is the trader’s posterior on V = 1 after he learns his

signal quality and sees his private signal but before he observes the public history.

This private belief is obtained by Bayes Rule and coincides with the signal quality

if the signal is h, πi = Pr(V = 1|h) = qi/(qi + (1 − qi)) = qi; or if the signal is l, it is

πi = 1 − qi. In what follows we will use the distribution of these private beliefs. Let

f1(π) be the density of beliefs if the true state is V = 1, and likewise let f0(π) be the

density of beliefs if the true state is V = 0. Appendix B fleshes out how these densities

are obtained from the underlying distribution of qualities.

Example of private beliefs. Figure 1 depicts an example where the signal

quality q is uniformly distributed. Conditional densities are f1(π) = 2π and f0(π) =

2(1 − π), yielding distributions F1(π) = π2 and F0(π) = 2π − π2. The figure also

8 Trading Mechanisms & Market Dynamics



2

1

f1

f0

1

1

F1

F0

Figure 1: Plots of belief densities and distributions. Left Panel: The densities of beliefs for
an example with uniformly distributed qualities. The densities for beliefs conditional on the true state
being 1 and 0 respectively are f1(π) = 2π and f0(π) = 2(1 − π); Right Panel: The corresponding
conditional distribution functions : F1(π) = π2 and F0(π) = 2π − π2.

illustrates the important principle that signals are informative: recipients in favor of

state V = 0 are more likely to occur in state V = 0 than in state V = 1.

4 Trading in Limit Order Markets

Prices in the Limit Order Market. The liquidity providers post a series of limit

orders that constitute the bid- and ask-prices: the first ask-price, ask1

t is for the first unit

that is being sold by liquidity providers, and ask2

t is for the second unit; similarly for

bid-prices. At each price, the zero-profit condition must hold so that the price coincides

with the expectation of the true value, conditional on the trading history and on the

current transaction. In particular, the ask-price ask2

t accounts for the fact that the trade

size is 2 (not 1). With zero expected profits, it must hold that

ask1

t = E[V | investor buys ot ≥ 1 units at {ask1

t , ask
2

t}, public info at t],

ask2

t = E[V | investor buys ot = 2 units at {ask1

t , ask
2

t}, public info at t].

This equilibrium pricing rule is common knowledge.

A market order in a order driven market ‘walks the book’, that is, it picks up the

best-priced limit orders on its side of the market. Once this is accomplished, all posted

limit orders adjust to reflect the information contained in the recent market order.

The total execution cost of a buy-order ot ≥ 1 and the total cash flow from a sell-

order ot ≤ −1 is then computed as the sum of all the prices at which portions of the
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order are cleared:

Ct =
ot
∑

n=1

askn
t or Ct =

|ot|
∑

n=1

bidn
t .

Examples for limit order markets are the NYSE’s public limit order book (maintained

by the specialist) or the TSX consolidated limit order book (note that prices listed on

Nasdaq are usually not considered standing limit orders but ‘trade-indications’).

Trader’s Decision in a Limit Order Market. An informed investor receives his

private signal, observes all past trades, and can only trade in period t. Upon observing

the posted prices he chooses the order size to maximize his expected profits. He abstains

from trading if he expects to make negative trading profits. To simplify the exposition,

we will from now on focus on the buy-side of the market. Analogous theorems apply to

the sale-side of the market.

We focus on monotone decision rules. Namely, we assume that an insider uses a

‘threshold’ rule: he buys two units if his private belief πi is at or above the time-t buy

threshold π2

t , πi ≥ π2

t , he buys one unit if his belief is above π1

t but below π2

t , πi ∈ [π1

t , π
2

t ),

and he does not buy otherwise; similarly for selling.

Consider the decisions of the marginal buyer π2

t , who is indifferent between buying 2

and 1 units, and type π1

t , who is indifferent between trading and not trading. We will

compress notation by writing E[V |Ht, π
j
t ] = Etπ

j
t . For these marginal types it must hold

that

2 · Etπ
2

t − (ask1

t + ask2

t ) = 1 · Etπ
2

t − ask1

t ⇔ ask2

t = Etπ
2

t , and Etπ
1

t − ask1

t = 0.

The liquidity providers anticipate the traders’ behavior and post prices that take the

information content of the trades into account, given the marginal trading types π1

t , π
2

t .

Let λ := (1− µ)/4 denote the probability of a noise buy or sell of any size order and

let βj
v denote the probability that there is a buy of j ∈ {1, 2} units when the value of

the security is v ∈ {0, 1}. Then

β1

v = λ + µ(1 − Fv(π
2

t )) + λ + µ(Fv(π
2

t ) − Fv(π
1

t )) = 2λ + µ(1 − Fv(π
1

t )),

β2

v = λ + µ(1 − Fv(π
2

t )).

The probability that a given trader is informed is independent of other traders’ identities

and the security’s liquidation value. Since private beliefs are independent conditionally

on the security’s value, so are investors’ actions. The ask prices for unit j ∈ {1, 2} and
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the expectation of type πj
t can then be written explicitly as

ask
j
t =

βj
1
pt

βj
1
pt + βj

0
(1 − pt)

, Etπ
j
t =

πj
t pt

πj
t pt + (1 − πj

t )(1 − pt)
, (1)

and Etπ
j
t = ask

j
t simplifies to

πj
t =

βj
1

βj
1
+ βj

0

. (2)

Hence, in any equilibrium in Period t, the threshold decision rules are independent of

the public belief about the security’s liquidation value, pt. In other words, investors’

actions in Periods t = 1, . . . , t − 1 do not affect actions in Period t.

Since necessarily the level of noise trading for the first unit is larger than for the sec-

ond unit, it intuitively holds that π1

t < π2

t and thus ask1

t < ask2

t . Equilibrium thresholds

are determined by two independent equations.

Theorem 1 (Trading in Limit Order Markets)

There exist a unique symmetric equilibrium with marginal buying types 1

2
< π1

t < π2

t < 1

and monotone decision rules so that investors with private belief π < π1

t do not buy,

investors with private belief π ∈ [π1

t , π
2

t ) buy one unit and investors with belief π ∈ [π2

t , 1]

buy two units. Thresholds π1

t , π
2

t are time invariant: for t′ 6= t, πi
t = πi

t′, i = 1, 2.

In limit order markets, both buying-thresholds maximize the ask-price as a function of

the marginal trading type.10

Lemma 1 (Thresholds maximize the Bid-Ask-Spread)

The ask-price ask
j
t , j ∈ {1, 2}, as a function of the marginal buying type, is maximized

at the equilibrium buying threshold πj
t .

The above result is intuitive. In equilibrium, the ask price is set so that it averages signal

qualities over a range and coincides with the marginal trader’s expectation. Loosely

speaking, the average quality (plus noise) must thus coincide with the marginal quality.

As in many economic problems this occurs when the average (i.e. the ask price as a

function of the marginal trader’s belief) is maximal.

10This result is similar to one in Herrera and Smith (2006) who derive it in a different context; they
do not use it to compare trading systems but to analyse trade-timing in a unit-size system. They kindly
allowed us to study their private notes; we attempted a proof for our setting after we observed their
result and we do not claim novelty; the proof techniques differ. The intuition for their result and ours
coincides, and we borrow the intuition that they provide.
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5 Trading in Dealer Markets

Prices in the Dealer Market. Since liquidity providers are competitive, they make

zero expected profits. Consequently, prices at date t are set to coincide with the expec-

tation of the fundamental, conditional on all available information

pt = E[V |ot, Ht].

Traders thus pay a uniform price pt for each unit that they buy and they receive a

uniform price pt for each unit that they sell. The total execution costs of order ot is thus

Ct = |ot| · pt.

This pricing rule is identical to the one used in Easley and O’Hara (1987) and it is also

similar to the one in Kyle (1985), except that in our model the liquidity providers know

precisely how much each single trader orders.

It is without loss of generality that traders do not know the price of their transaction

before posting an order. In what follows we will show that the trader can perfectly

anticipate the ultimate transaction price. We comment more on this issue and on the

institutional background in Appendix A.

In light of this, we will henceforth refer to prices that are set for buy orders, ot ∈ {1, 2}

as ask-prices, and prices that are set for sell-orders as bid-prices. As before, we will focus

on the buy-side of the market. Then,

ask1

t = E[V | investor buys ot = 1 unit at {ask1

t}, public info at t],

ask2

t = E[V | investor buys ot = 2 units at {ask2

t}, public info at t].

The Trader’s Decision in the Dealer Market. An informed investor enters the

market in period t, receives his private signal and observes history Ht. He then chooses

the order size ot to maximize his expected profits. The trader publicly posts the desired

quantity (a market order) and the liquidity suppliers respond with a zero-profit price

that they offer for the order quantity ot.

To describe the equilibrium we seek two marginal belief-types. The first is trader

type, π2

t , is indifferent between purchasing quantity ot = 2 and quantity ot = 1. The

next trader type π1

t is indifferent between purchasing 1 unit and not trading at all. Since

we assume that noise traders trade any quantity with equal probability, denoted by λ

as before, the probabilities of a buy order of size j ∈ {1, 2} when the true value of the
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security is v ∈ {0, 1} are as follows

β2

v = λ + µ(1 − Fv(π
2

t )), β1

v = λ + µ(Fv(π
2

t ) − Fv(π
1

t )), with λ = (1 − µ)/4.

In equilibrium, the trader perfectly anticipates the prices. Consequently, type π2

t must

be indifferent between buying two shares at price ask2

t and one share at price ask1

t :

2 ·
(

Etπ
2

t − ask2

t

)

= 1 ·
(

Etπ
2

t − ask1

t

)

⇔ ask2

t =
1

2
(Etπ

2

t + ask1

t ).

Further, for ot = 1 the marginal trader is indifferent between buying one unit and

abstaining. Thus we have

Etπ
1

t = ask1

t .

These two conditions yield a system of two equations with two unknowns. We show

that there exists a unique symmetric solution to the system, which is consequently the

equilibrium.

Theorem 2 (Equilibrium in the Dealer Market)

For any prior pt ∈ (0, 1) there exist a unique symmetric equilibrium with marginal buying

types 1/2 < π1

t < π2

t < 1 and monotone decision rules such that investors with private

belief π < π1

t do not buy, investors with belief π ∈ [π1

t , π
2

t ) buy one unit and investors

with belief π ∈ [π2

t , 1] buy two units.

Note also that π1

t maximizes the ask-price for the single quantity in the same way as

depicted in Lemma 1 for the limit-order ask-prices; π2

t , however, has no such property

as we argue in what follows.

6 Comparison of the Two Trading Mechanisms

In what follows, we will omit time subscripts and use L for outcomes in the limit order

market and D for those in the dealer market. In this section, we assume that the two

markets operate in isolation and do not compete against each other. Further, Ci(n)

denotes the execution cost of an order of size n under trading regime i ∈ {L, D}.

At first blush it may seem that the outcomes and the behavior in limit order and

dealer markets must be the same. Traders pay ask1

L and ask1

D for the first unit or the small

size order in the limit and dealer markets respectively, and they pay CL(2) = ask1

L + ask2

L

and CD(2) = 2 · ask2

D for two units in the limit order and dealer markets. One might

think that prices satisfy CL(1) = CD(1) and CL(2) = CD(2) so that ask1

D = ask1

L and
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Figure 2: Marginal Limit Order and Dealer Markets. Both panels plot the private expectation
of a trader as a function of his belief π; this is the monotonically increasing line. The curves depict the
ask price as a function of the marginal buyer’s signal quality. The left panel plots the price-expectation
relation for the two-unit price (dealer market) or the price of the second unit (limit order market) (the
two have the same functional form). The right panel plots the respective ask price curves for the first
unit in the limit order market (blue) and the dealer market (red) and illustrates that the single or first
ask-price is lower in the dealer market.

ask2

D = (ask1

L + ask2

L)/2. Alas, looking at systems in isolation, this naive intuition is

incorrect — price ask1

D assumes that the single unit is sold exclusively to investors with

lower quality signals whereas in the limit order market, ask1

L assumes that the first unit is

also traded by traders with high quality information. Figure 2 illustrates the difference

in prices, Proposition 1 offers a formal comparison of the execution costs.

We will first compare the trading mechanisms with respect to their impact on the

bid-ask spread and price impact, which are the standard liquidity measures used in the

literature. The bid-ask-spread is the difference between the lowest quoted ask price and

the highest quoted bid price. The price impact of a trade is the change in the price that

a transaction triggers. Finally, we also look at the execution cost of an order, which is

the total dollar cost of trading quantity ot.

Comparing the outcomes of the two different trading arrangements we find

Proposition 1 (Liquidity Measures and Execution Costs)

(a) Bid-ask-spreads are larger in the limit order market, ask1

L − bid1

L > ask1

D − bid1

D.

(b) The price impact of a trade of any size is smaller in the dealer market,

ask2

L > ask2

D and ask1

L > ask1

D.

(c) The total execution cost for small trades is higher in the limit order market,

CL(1) > CD(1), and for large trades in the dealer market, CL(2) < CD(2).
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Marginal traders of two units make a profit in both markets. In the dealer market, this

marginal trader makes a profit on each of the units, and thus his expectation exceeds the

ask-price for the two units. In the limit order market, the marginal trader breaks even

on the second unit but benefits on the first. As the price for the second unit is maximal

when it coincides with the expectation of the marginal two-unit buyer by Lemma 1, we

have that in equilibrium ask2

L > ask2

D. Figure 2’s left panel illustrates this argument.

The result on trading costs may seem counterintuitive because the price impact of

each unit in the limit order market is larger than in the dealer market. To see why the

result holds, consider the perspective of a liquidity provider after the order has been

executed in the limit order market. Suppose that the order was for a single unit. Then

after the fact, the liquidity provider knows that she sold to someone who had information

quality in [π1, π2). Had she known this, she would have charged a lower price (due to

perfect competition) — but now she actually made a profit on this trade. Likewise, if

the quantity traded was the large one, then the liquidity provider knows that she sold

the first unit too cheaply and thus made a loss on it.

The second unit, however, is priced “fairly” in the sense that the liquidity provider

would charge the same price before and after observing the trade. Since the profits of

the liquidity providers are losses for the traders and vice versa, on average traders make

a profit on large quantities and a loss on small quantities. In contrast, in the dealer

market, there is no difference between the ex-post and the ex-ante payoff of the liquidity

provider — it is always zero.

Dynamic Behavior. In the limit order market, the history of trades does not affect a

trader’s decision to buy or sell. In the dealer market the behavior is history dependent.

Proposition 2 (Behavioral Dynamics in Dealer and Limit Order Markets)

In the dealer market, as pt traverses from 0 to 1, all trading thresholds increase. In the

limit order market, the prior does not affect traders’ behavior.

One could imagine that as the prior favours a trader’s opinion, he becomes more con-

vinced and needs a lower signal quality to trade (a “herding” effect). Alternatively,

one can also argue that the value of a trader’s information decreases so that he needs

better quality information (a “contrarian” effect). In the dealer market, the latter effect

dominates. To a degree, this is in line with empirical observations in that (allegedly)

informed traders (such as institutional investors) tend to act as contrarians.

An immediate implication of this proposition is that one must be careful when ag-

gregating or collecting trades of different sizes during the trading day. Depending on
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Figure 3: Volume in Order and Quote-Driven Markets. Both panels are based on the class of
quadratic quality distribution functions that are centered at and symmetric around 1/2. The left panel
plots the volume for both limit order (blue dots) and dealer markets (red dots) as a function of the
amount of noise µ and the distribution parameter θ. The right panel plots the difference between the
volume proxy for the limit order market and the one for the dealer market. As can be seen from both
graphs, volume is larger in the limit order market.

trading histories, these trades would have been initiated by different signal types and

thus have different informational contents. Any analysis of the “Probability of Informed

Trading” (PIN) as introduced by Easley, Kiefer, O’Hara, and Paperman (1996) must

thus account for this dynamic behavior.

Volume. A simple measure for the extent of trading activity is volume. While our

model describes single trader arrivals each period, we can still proxy volume by the

probabilities of the different units being traded. We can then determine the expected

quantity traded in each period. For instance, a small sale will be initiated by noise

traders or by informed traders with signal in (1 − π2, 1 − π1] so that the probability of

a small sale in state v is λ + µ(Fv(1 − π1) − Fv(1 − π2)). Combining all cases we have

volume =
1
∑

v=0

(2λ + µ(Fv(π
2) − Fv(π

1) + Fv(1 − π1) − Fv(1 − π2)))Pr(V = v)

+2 ·

1
∑

v=0

(2λ + µ(1 − Fv(π
2) + Fv(1 − π2))Pr(V = v).

While we have not found an analytical result, we computed volume numerically, using

the quadratic quality distributed that is outlined in Appendix B. Figure 3 illustrates

the finding.
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Numerical Observation (Volume)

The expected volume in each period is larger in limit order than in dealer markets.

Information Efficiency. Prices in our framework follow a martingale process, irre-

spective of the trading mechanism. Consequently, prices converge to the truth when

there are sufficiently many trades. Yet the question remains if one trading system is

faster or more accurate at revealing the true value.

We approached this question by simulations and asked two questions. First, does

one trading mechanism yield average prices that are closer to the true value and second,

does one mechanism display persistently larger price dispersion?

The first question can be answered by analyzing whether the average end-price of a

sequence of trades is closer to the true value for one mechanism than for the other. To

answer the second question, we first compared the variances of end-prices and found that

the price variance in the limit order market is larger. We then expanded the analysis

and investigated whether the higher dispersion in limit order markets is systematic in

the sense of second order stochastic dominance. Formally, let the empirical distribution

of prices under trading mechanism x be Fx(p). Then the empirical distribution Fy of

prices second order stochastically dominates the empirical distribution Fx if and only if

∫ z

0

[Fx(p) − Fy(p)] dp ≥ 0 ∀z ≤ 1. (3)

Denote by pL and pD the end-prices for limit order and dealer markets respectively, and

use FL and FD for the respective distributions of end-prices and av(p), stdev(p) for the

averages and standard errors.

We employed the following data generation procedure for the simulations: we fixed

the true value to V = 1, the level of informed trading to µ = .5. So prices are closer

to the true value if they are larger. We then obtained 50,000 observations for each of

the Poisson arrival rates ρ ∈ {7, 10, 13, 17, 20, 25, 30}.11 The underlying signal quality

distribution was uniform.

For each series, we first drew the number of traders for the session and performed

the random allocation of traders into noise and informed.12 The informed traders were

then equipped with a signal quality and a draw of the high or low signal for that quality,

conditional on V = 1. Noise traders were assigned a random trading role. We then

determined a random entry order (the order is irrelevant for limit order markets because

11A Poisson arrival rate of, for instance, ρ = 20 implies that, on average, there are 20 traders.
12Thus overall there were, for instance, about 1,000,000 trades for ρ = 20 and 500,000 for ρ = 10.
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ρ average price standard error

entry rate limit order dealer limit order dealer

7 .7625 .7570 .2395 .2238
10 .8211 .8173 .2308 .2160
13 .8617 .8603 .2180 .2028
17 .9025 .9025 .1921 .1780
20 .9246 .9254 .1741 .1601
25 .9521 .9534 .1407 .1278
30 .9668 .9682 .1212 .1096

Table 1: Means and Variance of the Price Distributions. This table is based upon the simula-
tions described in the main text; the underlying true value is V = 1. As can be seen, for low entry rates
(i.e. a small expected numbers of traders), the prices from the limit order trading on average are closest
to the truth, those for dealer markets are furthest. Yet the average price under limit order trading
deviates further from the truth as the entry rate increases. The variance of the limit order prices is
always larger.

marginal types are history invariant, but it matters in the dealer market). Finally, we

computed the end-price that would result from the two trading sessions under both

trading regimes and compared these final prices. Table 1 displays the details of the

simulation results.

Numerical Observation (Price Informativeness and Dispersion)

(a) Prices are more efficient in the limit order market for small entry rates,

av(pL) > av(pD), and in the dealer market for large entry rates, av(pL) < av(pD).

(b) Prices in the limit order market are more volatile, stdev(pL) > stdev(pD).

(c) For a high enough entry rate, ρ ≥ 17, FD second order stochastically dominates FL.

To understand the finding, observe that theoretically a trade in the dealer market reveals

a trader’s information more precisely. Consequently, if there are sufficiently many trades,

as occurs for large ρ, then dealer market prices should be closer to the mark. Limit order

trading has a higher variance because, by Proposition 1, prices react stronger to each

trade and thus move faster towards the extremes.

For part (c) observe first that price impact of a large trade is stronger in the limit

order market. This generates two opposing effects: ‘correct’ trades push prices stronger

towards the correct value, but ‘wrong’ trades push prices away stronger. Since the

trading threshold for large sales is relatively less extreme in the limit order market,

1 − π2

D < 1 − π2

L, a large trade there is also more likely to be in the ‘wrong’ direction.

Figure 4 displays the plots for the left hand side of equation (3) applied to the

empirical price distributions, with x being the limit order market and y being the dealer

market. We observe that full-fleshed second order stochastic dominance first ρ ≥ 17. For
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Figure 4: Second Order Stochastic Dominance of Prices. The three panels plot equation (3) for
three entry rates. In the left panel, ρ = 10, cumulation distribution weight for large prices is relatively
large for quote driven prices and thus the value for equation (3) dips below zero for large prices. For
ρ = 17 (middle panel) this no longer occurs and for ρ = 25 (right panel) the relation is very clean.

smaller ρ the left hand side of equation (3) applied to FL and FD dips below zero for high

prices. This outcome is intuitive: if there are only a few people, then each investor’s trade

has a relatively large price impact. Since price movements with limit order trading are

more extreme, prices will move faster towards both ‘wrong’ and ‘correct’ values, leading

to a higher concentration of probability weight at the extremes.

In summary, prices in the limit order market are more volatile and on average less

efficient than those in the dealer market.

7 Equilibrium in Hybrid Markets

So far we have assumed that the two trading systems operate in isolation. Most real

world markets, however, are hybrid markets where investors have the choice of either

arranging their trade with a dealer or posting it to the limit order book.13 For instance,

on the TSX or Paris Bourse traders can approach an upstairs dealer or they can send

their order directly to the consolidated limit order book. It is therefore natural to ask,

what happens when investors can choose the trading regime for their order.

Two types of equilibria arise. First, there could be corner solutions, in which market

systems specialize in the quantity that they trade. The second, and arguably more

realistic scenario is one where both small and large quantities are traded in both market

segments.

13Some systems are more convoluted: for instance, on NYSE, a market order that arrives at the
specialist’s desk could be filled with the current book, with the specialist, or with floor brokers who
opt to participate, or the specialist may auction the order to floorbrokers. In Nasdaq, small orders are
routed to dealers according to much debated systems of rules. We abstract from these institutional
subtleties, and focus on the main distinction between the two general systems.
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7.1 Corner Solutions: Market Specialization.

Observe first that the pricing problem in a combined market with specialization resem-

bles that of the dealer market so that the ask price for one unit is always ask1

D and that

for the two units is ask2

D, irrespective of the trading mechanism.

In the first corner solution, all single unit trades occur in the dealer segment at price

ask1

D. Two unit trades occur in the limit order segment at price ask2

D, which is charged

for both the first and the second unit. The price for the two unit trade in the dealer

segment is anywhere strictly above ask2

D.

The second corner solution is the reverse of the first. All small trades occur in the

limit order segment, all large orders in the dealer segment. In the limit order segment,

the equilibrium ask-price for first unit is ask1

D, and any price strictly above 2ask2

D − ask1

D

is an equilibrium price for the second unit. The ask-price for a single unit in the dealer

segment is any price that is strictly larger than ask1

D, and the price for a two unit trade

is ask2

D. The following proposition summarizes.14

Proposition 3 (Hybrid Market Equilibrium with Market Specialization)

There are two kinds of equilibria with specialization in hybrid markets: in the first, all

large trades occur in the limit order market, all small trades in the dealer market. In

the second, all large trades occur in the dealer market and all small trades in the limit

order market.

7.2 Non-Specialization.

The economically more appealing outcome is one in which trades of all sizes are nego-

tiated in all market segments. In such an interior solution, the costs of order execution

must be identical across the two market segments, otherwise traders would switch to

the cheaper market. Trade cost equalization then implies that the marginal informed

investors are the same in both markets. To see this, observe that traders have the choice

between markets and between large and small orders. If a trade of a particular size is

cheaper in one market, then traders will choose that market for their trade.

Without loss of generality, we assume that informed investors trade in each system

with equal probability and compute the proportions of noise traders in each market

segment that ensure equal costs. Let λj
i denote the probability that an order of size

j ∈ {1, 2} in market i ∈ {L, D} stems from a noise trader.

14Technically, the equilibrium involved is the Perfect Bayesian Equilibrium and thus requires out-of-
equilibrium beliefs and best-responses. For the simplicity of the exposition we follow the tradition of
omitting the full and notationally involved description.
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Theorem 3 (Hybrid Market Equilibrium without Specialization)

There exists a unique equilibrium in which both quantities are traded on both exchanges.

In equilibrium, trading costs coincide for both mechanisms, prices for the small size

orders coincide for both trading mechanisms, ask1

L = ask1

D, and prices for the large size

orders satisfy 2 · ask2

D = ask1

L + ask2

L. There are more noise traders for small size orders

in the limit order segment, λ1

L > λ1

D, and more noise traders for the large size orders on

the dealer segment, λ2

D > λ2

L.

The proof of this result requires a careful construction because changes in trading be-

havior for one trade size affect the prices for both sizes. Yet the intuition is simple.

Consider the market segments in isolation. The ask price for two units in the dealer

segment is lower than the ask price for the second unit in the limit order segment. At

the same time, the cost of the two unit trade is higher in the dealer segment. To equalize

costs, the cost in the limit order segment must rise and it must fall in the dealer segment.

Intuitively, to lower cost for trade in the dealer segment the noise level there must rise.

This leads to λ2

L < λ2

D. A similar argument applies to the single unit case.

Notably, as 2 · ask2

D = ask1

L + ask2

L and ask1

L = ask1

D, we have ask2

L > ask2

D. In other

words, the price for the second unit in the limit order segment is larger than the price for

the two-unit trade in the dealer segment. So a two unit trade in the limit order market

continues to cause a higher price impact.

Theorem 3 provides a theoretical basis for the empirical finding that upstairs markets

—which loosely correspond to our dealer markets— are better at identifying uninformed

trades. Our result shows that the co-existence of different structures of trading neces-

sarily implies that more uninformed traders seek to trade large quantities on a dealer

market.

The information content of trades implied by Theorem 3 is similar to that in Seppi

(1990), but the driving force in our model is different. In Seppi (1990), dealer markets

are ‘better at screening out the informed traders’ due to repeated interactions. In our

model, traders self-select into different markets in such a manner that the information

content of large trades is smaller in dealer than in limit order markets.

Volume. While the fraction of the informed traders in either market segment is the

same, there are more small noise trades in the limit order segment and more large noise

trades in the dealer segment of the hybrid market. This immediately yields the following

corollary of Proposition 3.
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Corollary (Volume in Hybrid Markets)

In a hybrid market, there are more large transactions in the dealer segment and more

small transactions in the limit order segment.

Dynamic Behavior. We have already established that the behavior of traders in the

dealer market is not stationary. The hybrid market exhibits a similar non-stationarity.

Corollary (Behavioral Dynamics in Hybrid Markets)

As pt traverses from 0 to 1, the proportion of large order noise buyers increases in the

dealer segment, and the proportion of small order noise buyers increases in the limit

order segment; the reverse is true for noise sellers.

The intuition is analogous to that for Proposition 2, though more subtle. Suppose pt

increases to pt+∆. If the dealer market were operated in isolation, then by Proposition 2

the trading thresholds in the dealer market would increase. Since in the hybrid market,

thresholds are identical for both dealer and limit order segments, the threshold in the

limit order segment must also increase. This requires that noise trading there decreases.

8 Conclusion

To the best of our knowledge, we are the first to provide a comprehensive theoreti-

cal comparison of order and quote driven markets using a unifying frictionless model.

Stripped of all possible market imperfections, the major conceptual difference between

the two mechanisms is the sequencing of actions. In quote-driven markets, dealers know

the size of the order before setting a price, whereas liquidity providers in an order-driven

markets learn the full size of an order that hit their quote only after the fact. Since large

orders are posted usually by better informed traders, dealers in quote-driven markets

can better assess the information content of the order flow. Our analysis then shows that

many empirically identified differences in the trading outcomes of the two mechanisms,

regarding price impacts, volume or information contents of orders, can be traced back

to the intrinsic difference of the sequencing of orders and quotes.

A Appendix: The Institutional Background

Our treatment of price formation in the dealer market is stylized: effectively, people sub-

mit their market orders without knowing the price and there are no standing quotes from

dealers. Of course, in real markets dealers do post quotes, but they usually quote only
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a single bid and a single ask price. Moreover, for most markets, dealers are commonly

required to trade a guaranteed minimum number of units at this price (for instance,

on Nasdaq a quote must be good for 1000 shares for most stocks). Alternatively, on

exchanges such as the TSX or Paris Bourse, the upstairs dealers are required to trade at

the best bid or offer (BBO) that is currently on the book, unless the size of the trade is

very large. Finally, trading systems or exchanges that include small-order routing (i.e.

small orders are given to different dealers according to a pre-determined set of routing

rules) require dealers to do price improvement, that is they require dealers to give small

order customers the best price that is currently quoted.

None of these institutional details contradict our setup. First, the defining feature

of dealer markets is that the dealer will know the size of the trade when quoting the

uniform price for the order. Thus the dealer quotes cannot be ‘hit’ in the same way as a

standing limit order in a consolidated limit order book. Next, in the theoretical analysis

of our paper we describe that the dealer charges different prices for different quantities.

The bid- and ask-prices that she quotes would be for the minimum quantity that he must

trade — and this quantity may well be “large”; in other words, the quoted ask price may

be ask2

D, but when facing a small order, the dealer may offer ask1

D. Third, in our model

traders accurately anticipate the price that they will be quoted. Consequently, quotes

will be self-fulfilling. Finally, the BBO requirement in upstairs-downstairs markets is

trivially satisfied in the hybrid market that we discuss in Section 7.

The important distinction between the two market mechanisms is that when posting

prices in a limit order market, the liquidity provider only knows the distribution of order

sizes whereas on the dealer market the liquidity provider observes the realized order size

prior to posting the price. The main insight of our paper is that this difference alone

yields many of the empirical observations in the literature, for instance concerning the

information content or the price impact of trades under different trading systems.

B Appendix: Quality and Belief Distributions

The standard parametric approach to signal quality has the quality in [1/2, 1]. Yet

to derive the distributions of beliefs it is mathematically convenient to normalize the

quality so that it is distributed on [0, 1] according to distribution G(q) with continuous

density dG(q) = g(q). We further assume that g is symmetric around 1/2. With this

specification, signal qualities q and 1−q are equally useful for the individual: if someone

receives signal h and has quality 1/4, then this signal has ‘the opposite meaning’, i.e. it

has the same meaning as receiving signal l with quality 3/4. Assuming symmetry around
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1/2 is thus without loss of generality. Signal qualities are assumed to be independent

across agents, and independent of the security’s liquidation value V .

Beliefs are derived by Bayes Rule, given signals and signal-qualities. Specifically, if

a trader is told that his signal quality is q and receives a high signal then his belief

is q/[q + (1 − q)] = q (respectively 1 − q if he receives a low signal), because the prior

is 1/2. The belief π is thus held by people who receive signal h and quality q = π and by

those who receive signal l and quality q = 1−π. Consequently, the density of individuals

with belief π is given by f1(π) = π[dG(π) + dG(1 − π)] in state V = 1 and analogously

by f0(π) = (1 − π)[dG(π) + dG(1 − π)] in state V = 0.

Smith and Sorensen (2008) prove the following property of private beliefs:

Lemma 2 (Symmetric beliefs, Smith and Sorensen (2008))

With the above the signal quality structure, private belief distributions satisfy F1(π) =

1 − F0(1 − π) for all π ∈ (0, 1).

Proof: Since f1(π) = π[dG(π) + dG(1 − π)] and f0(π) = (1 − π)[dG(π) + dG(1 − π)],

we have f1(π) = f0(1 − π). Integrating, F1(π) =
∫ π

0
f1(x)dx =

∫ π

0
f0(1 − x)dx =

∫

1

1−π
f0(x)dx = 1 − F0(1 − π). �

The belief densities also satisfy the monotone likelihood ratio property because

f1(π)

f0(π)
=

π[dG(π) + dG(1 − π)]

(1 − π)[dG(π) + dG(1 − π)]
=

π

1 − π

is increasing in π.

While not used in the paper, the reader may be interested to know how one can

obtain the distribution of qualities on [1/2, 1] from the above specification. Denote this

distribution by G̃ and note that since g is symmetric, G(1/2) = 1/2. Then

G̃(q) =

∫ q

1

2

g(s)ds +

∫ 1

2

1−q

g(s)ds = 2

∫ q

1

2

g(s)ds = 2G(q) − 2G(1/2) = 2G(q) − 1.

In text we already discussed that a uniformly distributed quality can be employed.

A more general example that we used for some simulations is the following quadratic

quality distribution with density

g(q) = θ

(

q −
1

2

)2

−
θ

12
+ 1, q ∈ [0, 1] and θ ∈ [−6, 12]. (4)

Note that this class includes the uniform density (for θ = 0).
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C Appendix: Omitted Proofs

C.1 Existence in the Limit Order Market: Proof of Theorem 1

We focus on the buy-side of the market; thresholds for the sell-side are determined anal-

ogously and are symmetric (this follows from the symmetry of private beliefs). Further,

we also focus only on the equilibrium for the first unit; the proof for the second unit is

analogous. First,

F1(π) =

∫ π

0

f1(s) ds =

∫ π

0

s · (g(s) + g(1 − s)) ds = 2

∫ π

0

s · g(s) ds,

where the last step is due to the symmetry of g around 1/2. Integrating by parts,

F1(π) = 2

∫ π

0

s · g(s) ds = 2sG(s)|π
0
− 2

∫ π

0

G(s) ds = 2πG(π) − 2

∫ π

0

G(s) ds.

Then

F1(π) + F0(π) = 2

∫ π

0

s · g(s) ds + 2

∫ π

0

(1 − s) · g(s) ds = 2G(π).

Further

β1

1
+ β1

0
= (1 − µ)/2 + µ(1 − F1(π)) + (1 − µ)/2 + µ(1 − F0(π)) = 1 + µ − 2µG(π) (5)

Thus

π1 =
β1

1

β1

1
+ β1

0

⇔ π1(1+µ−2µG(π1)) = (1−µ)/2+µ

(

1 − 2π1G(π1) + 2

∫ π1

0

G(s) ds

)

.

Further simplification leads to

2π1 − 1

4

µ + 1

µ
=

∫ π1

0

G(s) ds. (6)

Both sides of (6) are continuous in π1. At π1 = 1/2, the left-hand side of (6) is 0,

while the right-hand side is positive. At π1 = 1, the ordering is reversed: the left-hand

side is at least 1/2 (µ ≤ 1 is the probability that a given trader is informed), while the

right-hand side is exactly 1/2 (we show this in the appendix). Consequently, there exists

a π1 that warrants equality.

To prove uniqueness it suffices to show that the left hand side of (6) is steeper than

the right hand side for all π1 ∈ (1/2, 1). The slope of the left hand side in π1 is simply
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(1 + µ)/2µ ≥ 1. The slope of the right hand side is G(π1) < 1 for all π1 ∈ (1/2, 1),

since G is a cdf.

C.2 Equilibrium Threshold Beliefs Maximize the Spread: Proof of Lemma 1

To simplify the exposition we omit the superscripts for trade-size. One can define the

ask-price as a function of a hypothetical marginal trader π so that

ask(π) =
β1(π)pt

β1(π)pt + β0(π)(1 − pt)
.

The Lemma states that the equilibrium π maximizes the ask-price. The first order

condition, ∂
∂π

ask(π) = 0, is equivalent to

∂

∂π

β1(π)pt

β1(π)pt + β0(π)(1 − pt)
= 0 ⇔

β0(π)

β1(π)
=

β′
0
(π)

β′
1
(π)

. (7)

Now recall that βv(π) = λ+µ(1−Fv(π)). Thus the right hand side of the second relation

above is
β′

0
(π)

β′
1
(π)

=
f0(π)

f1(π)
.

In Appendix B we argue that f1(π) = π[dG(π) + dG(1 − π)], and f0(π) = (1 −

π)[dG(π) + dG(1 − π)]. Thus f0/f1 = (1 − π)/π. With this we have

β′
0
(π)

β′
1
(π)

=
1 − π

π
. (8)

Next, consider the equilibrium condition Eπ = ask(π). Rearranging and simplifying,

threshold π must satisfy
β0(π)

β1(π)
=

1 − π

π
. (9)

Combining equations (7) and (8) delivers the same relation as equation (9) and thus the

equilibrium condition yields arg max ask(π).

C.3 Existence in the Dealer Market: Proof of Theorem 2

We will drop all time subscripts. The proof proceeds in two steps. In the first step, we

show that for all π2, there exists a unique π1 such that (a) π1 solves Eπ1 = ask1(π1, π2),

and (b) π1 is strictly increasing in π2.

In the second step we show that there exists a unique π2 that solves Eπ2 +Eπ1(π2) =

2ask2(π2).
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Step 1: Showing the existence of π1 is akin to showing the existence of an equilibrium

in the limit order market: π1 must satisfy

π1 =
β1

1

β1

1
+ β1

0

⇔ π1 =
λ + µ(F1(π

2) − F1(π
1))

λ + µ(F1(π2) − F1(π1)) + λ + µ(F0(π2) − F0(π1))
. (10)

Trade informativeness immediately implies that π1 must be at least 1/2. What

remains to show is existence and uniqueness of π1 ∈ [1/2, π2).

β1

1
+ β1

0
= 2λ + 2µ(G(π2) − G(π1)). (11)

We can then simplify (10) to

G(π2)(π2 − π1) −
λ

2µ
(2π1 − 1) =

∫ π2

π1

G(s) ds. (12)

Both sides of (12) are continuous in π1. At π1 = π2, the right-hand side of (12) is 0,

while the left-hand side is −(1 − µ)/4/(2µ) < 0. Now consider π1 = 1/2. Then

G(π2)(π2 − 1/2) >

∫ π2

1

2

G(s)ds,

where the inequality obtains because G is increasing. At π1 = 1/2 the right-hand side

is smaller than the left-hand side. Since both left-hand side and right-hand side are

continuous in π1, there exists a π1 that warrants equality.

To prove uniqueness it suffices to apply Lemma 1: by the same arguments as in the

proof there, the ask price ask1 is maximal at π1. And since Eπ is monotonic in π, there

is exactly one intersection of the ask1 and Eπ.

We now show that π1 increases strictly in π2. The equilibrium condition for the

small size buying-threshold, equation (2), can be reformulated to β1

0
(π1, π2)/β1

1
(π1, π2) =

(1 − π1)/π1. It thus suffices to compute the derivative of β1

0
(π1, π2)/β1

1
(π1, π2) with

respect to π2 and show that it is strictly negative:

∂

∂π2

β1

0
(π1, π2)

β1

1
(π1, π2)

< 0 ⇔ f0(π
2)β1

1
− f1(π

2)β1

0
< 0 ⇔

f0(π
2)

f1(π2)
<

β1

0

β1

1

.

The RHS, however, is just (1 − π1)/π1 by the equilibrium condition; moreover, the

definition of fv ensures that f0/f1 = (1 − π2)/π2. The above can then be simplified to

(1 − π2)/π2 < (1 − π1)/π1, which certainly holds as π2 > π1.

Step 2: We now turn to determine the unique π2. We already know from Step 1,
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that for every π2 there exists a unique π1 such that ask1(π1, π2) = Eπ1. The equilibrium

π2 must then satisfy

Eπ2 + Eπ1 = 2ask2(π2). (13)

Both the right hand side and the left hand side of this equation are functions of π2. Let

π∗ := arg maxπ ask2(π). Since π1 increases in π2 and since in equilibrium,

1 − π1

π1
=

β1

0
(π1, π2)

β1

1
(π1, π2)

, (14)

we have that for any π2 < 1 the corresponding π1 that satisfies (14) also has π1 < π∗

and for π2 = 1 we have π1 = π∗. Consequently, for π2 = π∗, the right hand side of

(13) is 2Eπ∗ and right hand side > left hand side. As π2 = 1, the left hand side of (13)

is 1 + Eπ∗, the right hand side is 2 × ask2(1) = 2 · pt < 1 + Eπ∗ because Eπ∗ > pt for

π∗ > 1/2. Thus at π2 = 1 holds right hand side < left hand side.

Since π2 maximizes ask2, the right hand side is decreasing in π2 for π2 > π∗. Since

both Eπ2 and Eπ1 increase in π2, the left hand side increases in π2. Together with the

boundary relations for π2 ∈ {π∗, 1}, we know that left and right hand sides coincide

exactly once for π2 ∈ (π∗, 1). By the proof of Theorem 1 we know that π2 ≥ π∗ because

for π < π∗, Eπ < ask2(π). Thus the equilibrium threshold pair {π1, π2} exists and is

unique.

C.4 Liquidity Measures: Proof of Proposition 1

(a) Since both ask1

L and ask1

D are single-peaked and since the respective peaks mark the

equilibrium prices, it suffices to show that Eπ1

D < ask1

L(π
1

D). Thus we want to show that

π1

D

1 − π1

D

<
β1

1,L(π
1

D)

β1

0,L(π
1

D)
⇔

π1

D

1 − π1

D

<
2λ + µ(1 − F1(π

1

D))

2λ + µ(1 − F0(π1

D))
.

We know that the equilibrium π1

D satisfies

π1

D

1 − π1

D

=
λ + µ(F1(π

2

D) − F1(π
1

D)

λ + µ(F0(π2

D) − F0(π1

D)
. (15)

Rearranging the inequality we get

2λπ1

D + µπ1

D < 2λ(1 − π1

D) + µ(1 − π1

D) + µπ1

DF0(π
1

D) − µ(1 − π1

D)F1(π
1

D). (16)
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By the same token, we can rearrange (15) to obtain

µπ1

DF0(π
1

D) − µ(1 − π1

D)F1(π
1

D) = λπ1

D + µπ1

DF0(π
2

D) − λ(1 − π1

D) + µ(1 − π1

D)F1(π
2

D).

Substituting the above into (16) we obtain

2λπ1

D + µπ1

D < 2λ(1 − π1

D) + µ(1 − π1

D) + λπ1

D + µπ1

DF0(π
2

D) − λ(1 − π1

D) + µ(1 − π1

D)F1(π
2

D)

Rearranging and simplifying, we obtain

π1

D

1 − π1

D

<
λ + µ(1 − F1(π

2

D)

λ + µ(1 − F0(π2

D)
⇔ Eπ1

D < ask2

D(π2

D).

The last part obviously holds because Eπ1

D < 1/2(Eπ1

D + Eπ2

D) = ask2

D.

(b) We only need to show that ask2

L > ask2

D. Both ask2

L and ask2

D have the same

functional form; further π2

L maximizes ask2

L. Since ask2

L(π) > Eπ for π < π2

L (as shown

in the proof of Theorem 1), it must hold that π2

D ≥ π2

L. Suppose that π2

D = π2

L. In

equilibrium, π2

D solves 2(ask2

D − Eπ2

D) = Eπ2

D − ask1

L. Thus when π2

D = π2

L, then the

left hand side of the above is 0, whereas the right hand side is positive. Consequently,

π2

D > π2

L and thus ask2

L > ask2

D.

(c) In text.

C.5 Behavioral Dynamics: Proof of Proposition 2

We show only the proof for the buy-thresholds; the sell-thresholds are analogous.

For this proof, let ask1(π1(π)) denote the equilibrium price for the a single unit trade

that would transpire if π2 = π so that π1(π) solves (15). To show that the large dealer-

market buy threshold π2 increases in the prior p, it suffices to show that δ(p, π) :=

2ask2(π) − Eπ − ask1(π1(π))) decreases for π whenever Eπ ≥ ask2(π) and increases in p

when π = π2 such that δ(p, π2) = 0.

Fix p and suppose δ is a decreasing function of π. If p increases from p to p + ǫ

then the curve δ(p + ǫ, π) as a function of π only lies to the North-East of the the curve

δ(p, π) increases in p. Consequently, the root of δ(p + ǫ, π) in π is larger than the root

of δ(p, π).

In the proof of Theorem 2 we showed that Eπ intersects ask2(π) once from below at

π∗, and thus ask2(π) decreases for π > π∗. Moreover, threshold π1 increases in π2 and

thus so does ask1(π1(π2)). Thus δ decreases for the relevant values of π.

To show that δ increases in p we first define ℓ := (1−p)/p, and thus have to show that
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∂δ/∂ℓ < 0. Also define ρ2 := β2

0
/β2

1
, ρ1 := β1

0
/β1

1
and γ := (1 − π2)/π2. Consequently,

ask2 = 1/(1 + ρ2ℓ) so that ρ2 = (1/ℓ) · (1 − ask2)/ask2. Then

∂δ

∂ℓ
= −2ρ2(ask

2)2 + γEπ2 + ρ1(ask
1)2 (17)

= −2(1 − ask2)ask2
1

ℓ
+ Eπ2(1 − Eπ2)

1

ℓ
+ (1 − ask1)ask1

1

ℓ
. (18)

Considering now the value of π so that π = π2 describes an equilibrium, we can use ask1 =

2ask2 − Eπ2 and thus simplify further

= −
2

ℓ

(

(ask2)2 + (Eπ2)2 + 2Eπ2ask2
)

= −
2

ℓ

(

ask2 + Eπ2
)2

< 0.

C.6 Existence of the General Hybrid Market Equilibrium:

Proof for Theorem 3

As stated in the main text, without loss of generality we can assume that informed

traders act on either venue with equal probability. Next, in equilibrium, the beliefs of

the marginal traders in both types of markets must coincide for the same quantity. Using

the equilibrium in the isolated markets as a starting point, we construct the equilibrium

in the hybrid market by adjusting the distribution of noise trading in such a manner

that execution costs are equal on both exchanges; thresholds will then automatically

coincide. Note that when computing the prices with the new noise distribution, one

must re-normalize the probabilities of buys and sales — yet these normalizing factors

trivially drop out.

The proof will employ several variables and functions. Specifically,

(1) Let π̄i
j denote the equilibrium marginal buyer in market j = L, D of i = 1, 2 units

when markets are viewed in isolation; similarly for ¯ask
i

j.

(2) Let λi define the mass of noise traders that trade i units in the limit order segment

of the market. In isolated markets, a noise buy of either size occurs with chance λ.

(2) We will use aski
j(π

1, π2, λ1, λ2), i = 1, 2, j = L, D, to denote a function of the noise

levels and thresholds (as also used in Figure 2). We will drop the arguments from aski
j

whenever their usage is clear from context.

(3) For any x ∈ [0, 1] define π2(x) = π̄2

L + x · (π̄2

D − π̄2

L). Note that π2(0) = π̄2

L

and π2(1) = π̄2

D.

To construct the equilibrium, we proceed in the following steps

Step 1: ∀x we define λ2(x) as the value for λ2 so that Eπ2(x) = ask2

L(·, π
2(x), ·, λ2(x)).

We show that a unique such λ2(x) exists, that λ2(x) ∈ (0, λ], and that d
dx

λ2(x) < 0.
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Step 2: ∀x and given λ2(x) we construct λ1(x) as the value for λ1 and π1(x) as the

value for π1 so that

Eπ1(x) = ask1

L(π
1(x), π2(x), λ1(x), λ2(x)) = ask1

D(π1(x), π2(x), λ1(x), λ2(x))

We show that unique such λ1(x), π1(x) exist, that λ1(x) ∈ (λ, 2λ), and that
d
dx

π1(x) > 0 in x.

For fixed x we then have λ1(x), λ2(x), π1(x), and π2(x). By construction, ask1

L,

ask1

D, ask2

L are equilibrium prices in the respective market segments when these are

considered in isolation.

The key component left to show is that there exists a unique x∗ ∈ (0, 1) so that

Eπ1(x∗) + Eπ2(x∗) = 2ask2

D(π1(x∗), π2(x∗), λ1(x∗), λ2(x∗)),

which is the equilibrium condition for the dealer market. This is accomplished in

the remaining two steps.

Step 3: We show d
dx

ask2

D(π1(x), π2(x), λ1(x), λ2(x)) < 0 and d
dx

(Eπ1(x) + Eπ2(x)) > 0.

Step 4: We show

2ask2

D(π1(0), π2(0), λ1(0), λ2(0)) − [Eπ1(0) + Eπ2(0)] > 0, and

2ask2

D(π1(1), π2(1), λ1(1), λ2(1)) − [Eπ1(1) + Eπ2(1)] < 0.

Step 5: We show that π2 cannot be smaller than π̄2

L or larger than π̄2

D.

Steps 3 and 4 together yield existence of the desired equilibrium x∗. Further we show

that π2 ∈ (π̄2

L, π̄
2

D) and λ1(x∗) > λ and λ2(x∗) < λ so that there is more noise in the

limit order book than in the dealer segment of the market for the small units, and the

converse is true for large orders.

The details of the steps are as follows.

Step 1: Define λ2(x) as the level λ2 that solves

π2

1 − π2
=

λ2 + µ(1 − F1(π
2))

λ2 + µ(1 − F0(π2))
, (19)
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for π2 = π2(x). To show that λ2(x) exists, we will show that for every λ2 ∈ [0, λ], there

exists a unique π2 ∈ [π̄2

L, 1] that solves (19), that π2 is strictly decreasing in λ2, that

π2 = 1 for λ2 = 0, and that π2 = π̄2

L for λ2 = λ. With such a 1:1 mapping we then know

that for every π2 ∈ [π̄2

L, 1] there exists a corresponding λ2 ∈ [0, λ] that solves (19) and

strictly decreases in π2.

To see this, rewrite (19) to obtain the following equation which is analogous to (6)

λ2 + µ

2µ
(2π2 − 1) =

∫ π2

0

G(s) ds. (20)

We have shown before that (20) has unique solution in π2 for λ2 = λ, namely the

equilibrium threshold π̄2

L. The right hand side is an increasing function of π2 with slope

G(π2) < 1 for π2 < 1. For λ2 ∈ [0, λ], the left hand side is a linear function in π2 with

slope 1 + λ2/µ ≥ 1. Next, at π2 = 1/2 the left hand side is zero, the right hand side is

positive and at π2 = 1, the right hand side is 1/2 (as shown before), the left hand side

is 1/2 + λ2/(2µ) ≥ 1/2 (with equality at λ2 = 0). Consequently, as the slope of the left

hand side exceeds the slope of the right hand side, the solution to (20) in π2 is unique for

every λ2. As the slope of the left hand side strictly increases in λ2, the solution of (20)

in π2 strictly decreases in λ2.

Step 2: (a) For π2 = π2(x) and λ2 = λ2(x), ∃λ1(x) ∈ (λ, 2λ) so that ask1

L = ask1

D.

By the same arguments as employed in the existence theorems, there exist unique π1

L

and π1

D that solve respectively for any λ1 ∈ [λ, 2λ]

π1

L

1 − π1

L

=
λ1 + λ2 + µ(1 − F1(π

1

L))

λ1 + λ2 + µ(1 − F0(π1

L))
,

π1

D

1 − π1

D

=
2λ − λ1 + µ(F1(π

2) − F1(π
1

D))

2λ − λ1 + µ(F0(π2) − F0(π1

D))
. (21)

Denote these solutions by π1

L(λ
1) and π1

D(λ1). We now determine that there exists a

unique value λ1 such that for given λ2(x) and π2(x) we have π1

L(λ
1) = π1

D(λ1). This

value λ1 is the desired λ1(x) and then π1(x) = π1

L(λ
1) = π1

D(λ1).

(i) For λ1 ∈ [λ, 2λ], we have ∂
∂λ1

π1

L < 0 and ∂
∂λ1

π1

D > 0 because thresholds decrease

in the level of noise.

(ii) At λ1 = λ, we have π1

D(λ1) ≤ π̄1

D, because π2(x) ≤ π̄2

D and π1

D increases in π2. At

the same time, at λ1 = λ we have π1

L(λ
1) ≥ π̄1

L since λ2(x) ≤ λ and ∂
∂λ2

π1

L < 0. Thus at

λ1 = λ we have π1

D(λ1) ≤ π̄1

D < π̄1

L ≤ π1

L(λ
1).

(iii) At λ1 = 2λ we have π1

D(λ1) = π2 whereas π1

L(λ
1) < π2 (for π2 solves the first

equation in (21) for λ1 = 0). Consequently at λ1 = 2λ, π1

L(λ
1) < π1

D(λ1).

Combining (i), (ii), and (iii) we have that there exists a unique λ1 ∈ (λ, 2λ) so that
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π1

L(λ
1) = π1

D(λ1). We will henceforth denote this λ1 as λ1(x) and the corresponding

threshold by π1(x).

Step 2: (b) We show that d
dx

π1(x) > 0.

Suppose not. Then there exist x, x̃ with x < x̃ such that π1(x̃) ≤ π1(x). From

Step 1 we know that λ2(x̃) < λ2(x). But π1

L(λ
1(x̃)) ≤ π1

L(λ
1(x)) only if λ1(x) + λ2(x) ≤

λ1(x̃) + λ2(x̃). Then it must hold that λ1(x̃) > λ1(x). Consequently, there is less

noise trading in the single-unit dealer market segment for x̃ than for x. Moreover,

π2(x̃) > π2(x). Then it must be that π1

D(x) < π1

D(x̃), a contradiction.

Step 3: (a) We show that d
dx

ask2

D < 0. First note that

d

dx
ask2

D < 0 ⇔
d

dx

2λ − λ2(x) + µ(1 − F1(π
2(x)))

2λ − λ2(x) + µ(1 − F0(π2(x)))
< 0.

Differentiating with respect to x, we obtain

d

dx

2λ − λ2(x) + µ(1 − F1(π
2(x)))

2λ − λ2(x) + µ(1 − F0(π2(x)))
< 0

which is equivalent to

−
dλ2

dx
µ ·
[

F1(π
2(x)) − F0(π

2(x))
]

−
dπ2

dx
· [f1(π

2(x))(2λ − λ2(x) + µ(1 − F0(π
2(x)))) −

−f0(π
2(x))(2λ − λ2(x) + µ(1 − F1(π

2(x))))] < 0.

We know that − d
dx

λ2(x) > 0, F1(π
2) − F0(π

2) < 0 and − d
dx

π2(x) < 0. So if we can

show that the last term is positive, then the derivative is indeed negative. In the proof

of Lemma 1 we showed that f1(π
2)/f0(π

2) = π2/(1 − π2). Thus

f1(π
2(x))(2λ − λ2(x) + µ(1 − F0(π

2(x)))) > f0(π
2(x))(2λ − λ2(x) + µ(1 − F1(π

2(x))))

⇔
π2(x)

1 − π2(x)
>

2λ − λ2(x) + µ(1 − F1(π
2(x)))

2λ − λ2(x) + µ(1 − F0(π2(x)))
.

The last relation holds because (i) by definition of λ2(x),

π2(x)

1 − π2(x)
=

λ2(x) + µ(1 − F1(π
2(x)))

λ2(x) + µ(1 − F0(π2(x)))
,

(ii) λ2(x) < 2λ − λ2(x), which holds because λ2(x) < λ, and thus (iii)

λ2(x) + µ(1 − F1(π
2(x)))

λ2(x) + µ(1 − F0(π2(x)))
>

2λ − λ2(x) + µ(1 − F1(π
2(x)))

2λ − λ2(x) + µ(1 − F0(π2(x)))
.
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Step 3: (b) We show that d
dx

(Eπ1(x) + Eπ2(x)) > 0.

We know that d
dx

π2(x) > 0 by construction, and d
dx

π1(x) > 0 by Step 2(b). Thus we

know that d
dx

(Eπ1(x) + Eπ2(x)) > 0.

Step 4: (a) We show that at x = 0, 2ask2

D − [Eπ1(0) + Eπ2(0)] > 0.

At x = 0 we have π2(0) = π̄2

L and λ2(0) = λ. Then ask2

D = ¯ask
2

L = Eπ̄2

L = Eπ2(0).

From Step 2(a) we know that π1(0) < π2(0) so that Eπ1(0) + Eπ2(0) < 2ask2

D.

Step 4:(b) We show that 2ask2

D − [Eπ1(1) + Eπ2(1)] < 0.

At x = 1, we know that π2(1) = π̄2

D, consequently, λ2(1) < λ. Then ask2

D < ¯ask
2

D

because the noise in ask2

D is higher than in ¯ask
2

D, 2λ−λ2(1) > λ. Moreover by Step 2 (a)

we know that, π1(1) = π1

D(λ1(1)) > π1

D(λ) = π̄1

D. Taken together, we have

Eπ2(1) + Eπ1(1) = Eπ̄2

D + Eπ1(1) > Eπ̄2

D + Eπ̄1

D = 2 ¯ask
2

D > 2ask2

D.

Step 5: We show that π2 must be in [π̄2

L, π̄
2

D] by contradiction.

Suppose π2 > π̄2

D. This implies that λ2 < λ and that ask2

D < ¯ask
2

D. For the indiffer-

ence condition on the dealer market segment, 2ask2

D = Eπ2 + ask1

D, to hold, we need that

ask1

D < ¯ask
1

D. But since π2 > π̄2

D this implies that λ1 < λ. With λ2, λ1 < λ, we have that

that π1

L > π̄1

L. In this case, however, ask1

D < ¯ask
1

D < ¯ask
1

L < ask1

L, a contradiction.

Next, suppose that π2 < π̄2

L. Then λ2 > λ. Then for any π, ask2

D(·, π, ·, 2λ − λ2) >

ask2

L(·, π, ·, λ2). Since ask2

L(·, π
2, ·, λ2) = Eπ2, we have that ask2

D(·, π2, ·, 2λ − λ2) > Eπ2.

This violates π2’s participation constraint.
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