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Abstract

Portfolio insurance strategies are designed to achieve a minimum level of wealth
while at the same time participating in upward moving markets. The strategies
all have in common that the fraction of wealth which is invested in a risky asset is
increasing in the asset price increments. Therefore, in downward moving markets,
the asset exposure is reduced. In the strict sense, a cash–lock describes the event
that the asset exposure drops to zero and stays there. Since a cash–lock at an
early time prohibits any participation in recovering markets, the cash–lock cage
is considered as a major problem with respect to long investment horizons. We
analyze a generalized form of a cash–lock by focusing on the probability that the
investment quote recovers from small values. It turns out that, even in the case
that the dynamic versions of option based strategies and proportional portfolio
insurance strategies coincide in their expected return, they give rise to a very
different cash–lock behavior. In addition, we point out that, for comparability
reasons, it is necessary to distinguish between strategies where an investment
quote over one is admissible and such with borrowing constraints.
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1. Introduction

Financial strategies which are designed to limit downside risk and at the same time to

profit from rising markets are summarized in the class of portfolio insurance strategies.

Among others, Grossman and Villa (1989) and Basak (2002) define a portfolio insurance

trading strategy as a strategy which guarantees a minimum level of wealth at a specified

time horizon, but also participates in the potential gains of a reference portfolio. The

most prominent examples of dynamic versions are the constant proportion portfolio in-

surance (CPPI) strategies and option–based portfolio insurance (OBPI) strategies with

synthetic puts.1 Here, synthetic is understood in the sense of a trading strategy in basic

(traded) assets which creates the put. In a complete financial market model, there exists a

perfect hedge, i.e. a self–financing and duplicating strategy. In contrast, the introduction

of market incompleteness impedes the concept of perfect hedging.2

In general, the optimality of an investment strategy depends on the risk profile of the

investor. In order to determine the optimal rule, one has to solve for the strategy which

maximizes the expected utility. Thus, portfolio insurers can be modeled by utility max-

imizers where the maximization problem is given under the additional constraint that

the value of the strategy is above a specified wealth level.3 Mostly, the solution of the

maximization problem is given by the unconstrained problem including a put option. Ob-

viously, this is in the spirit of the OPBI method. At this point, we also refer to Cox and

Huang (1998) and El Karoui, Jeanblanc and Lacoste (2005). In these papers it is shown

that, under market completeness and various utility functions, the optimal portfolio re-

sembles an option on a power of the underlying asset. However, it is well known that

in a complete market, the classic CPPI strategies are path–independent if no borrowing

constraint are posed. In particular, the portfolio value can be represented in terms of the

floor plus a power claim. This implies at least some similarities of both methods.

In summary, there is the basic question which of the two methods, OBPI or CPPI is

favorable. While the CPPI approach is appealing in its simplicity and easiness to cus-

tomize the strategies to the preferences of the investor, a major drawback is seen in the

1Option–based portfolio insurance (OBPI) with synthetic puts is introduced in Leland and Rubinstein
(1976), constant proportion portfolio insurance (CPPI) in Black and Jones (1987). For the basic procedure
of the CPPI see also Merton (1971).

2One possible solution is given by quantile and efficient hedging, c.f. Föllmer and Leukert (1999) and
Föllmer and Leukert (2000).

3Without postulating completeness, we refer to the works of Cox and Huang (1989), Brennan and
Schwartz (1989), Grossman and Villa (1989), Grossman and Zhou (1993, 1996), Basak (1995), Cvitanic
and Karatzas (1995, 1999), Browne (1999), Tepla (2000, 2001) and El Karoui et al. (2005).
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so–called cash–lock cage. Recall that portfolio insurance strategies are designed to achieve

a minimum level of wealth while at the same time participating in upward moving mar-

kets. The strategies all have in common that the fraction of wealth which is invested in

a risky asset is increasing in the asset price increments. Therefore, in downward moving

markets, the asset exposure is reduced. In the strict sense, a cash–lock describes the

event that the asset exposure drops to zero and stays there. Since a cash–lock at an early

time prohibits any participation in recovering markets, the cash–lock cage is considered

as a major problem with respect to long investment horizons. The classic CPPI principle

implies that, once the investment quote drops to zero, it stays there with probability one.

However, the cash–lock probability crucially depends on the borrowing constraints which

are posed. In the following paper, we analyze a generalized form of a cash–lock by focusing

on the probability that the investment quote recovers from small values. It turns out that,

even in the case that the dynamic versions of option based strategies and proportional

portfolio insurance strategies coincide in their expected return, they give rise to a very

different cash–lock behavior. In addition, we point out that, for comparability reasons,

it is necessary to distinguish between strategies where an investment quote over one is

admissible and such with borrowing constraints. The whole analysis is carried out in a

simple Black–Scholes–type framework. There are a few comments necessary concerning

this approach. Obviously, a more realistic picture of cash–lock probabilities can only be

gained within a more general model setup. However, the simple model setup used here

is suitable in order to understand the differences in the cash–lock behavior of the two

approaches, OBPI and CPPI.

With respect to the literature, we restrict ourselves to the strand focusing on stylized

strategies, i.e. OBPI, CPPI or a comparison of both. Without postulating completeness,

we refer to the following ones:4 The properties of continuous–time CPPI strategies are

studied extensively, c.f. Bookstaber and Langsam (2000) or Black and Perold (1992). A

comparison of OBPI and CPPI (in continuous time) is given in Bertrand and Prigent

(2002a). An empirical investigation of both methods can, for example, be found in Do

(2002) who simulates the performance of these strategies using Australian data. In Cesari

and Cremonini (2003), there is an extensive simulation comparison of popular dynamic

strategies of asset allocation, including CPPI strategies. The literature also deals with

the effects of jump processes, stochastic volatility models and extreme value approaches

on the CPPI method, c.f. Bertrand and Prigent (2002b), Bertrand and Prigent (2003).

More recently, Cont and Tankov (2007) and Balder et al. (2008) analyze the risk–profil

4Basically, one can distinguish between three different strands focusing on investment Strategies with
guarantees, optimal investment decision based on utility and optimal insurance contract design.
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and gap risk of CPPI strategies.5 In contrast to Cont and Tankov (2007) who place them-

selves in a jump diffusion model setup, Balder et al. (2008) introduce the gap risk by the

introduction of trading restrictions.

The outline of the paper is as follows. In Sec. 2, we discuss the investment decision

and the construction of portfolio insurance strategies. Either, the constructions is based

on the investment quote in terms of the fraction of wealth which is to be invested in the

risky asset. Alternatively, the strategy can be defined via the number of assets. W.l.o.g.

all strategies under consideration are self–financing. In addition, we we define a general-

ized cash-lock event. In Sec. 3, we focus on the distribution and cash–lock probabilities

which are associated with traditional portfolio insurance strategies. While Sec. 3 consid-

ers the case where no exogenous restriction on the investment quote is posed, the effects

of borrowing constraints are analyzed in Sec. 4. An illustration and comparison is given

in Sec. 5. In particular, we focus on the difference of the cash–lock behavior of CPPI and

OBPI with borrowing constraints. Sec. 6 concludes the paper.

2. Investment quote vs number of risky assets

Throughout the following, it is enough to consider the question which part of the wealth

can be invested in a risky asset and which part has to be placed in a risk–free one. We

consider two investment possibilities: a risky asset S and a riskless bond B (which grows

with constant interest rate r). The evolution of the risky asset S, a stock or benchmark

index, is given by a stochastic differential equation which, in the simplest case, is a

geometric Brownian motion. It is worth mentioning that some of the following strategies

(their construction, respectively) do and some do not depend on the specific assumptions

on the stochastic process which is generating the asset prices.6 The first case means that,

in order to determine the number of assets and bonds which are to be bought or sold

it is enough to observe the asset prices while it is not necessary to know the stochastic

process which generates them. This is in spirit of the CPPI approach. In contrast, the

option based approach with synthetic put (call, respectively) is an example of a strategy

construction which explicitly depends on the model assumption.7

5If the CPPI method is applied in continuous time, the CPPI strategies provide a value above a floor
level unless the price dynamic of the risky asset permits jumps. The risk of violating the floor protection
is called gap risk. In practice, it is caused by liquidity constraints and price jumps.

6Obviously, the performance of the strategies always depends on the data generating process.
7For example, in the Black–Scholes model, the volatility of the underlying is one crucial input for the

strategy.
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First, we define the general strategy definition in terms of the fraction of wealth invested

in the risky asset and in terms of the number of assets. After this, we give a generalized

definition of the cash–lock probability.

2.1. Dynamic trading strategies. Along the lines of the literature on portfolio insur-

ance, a continuous–time investment strategy or saving plan for the interval [0, T ] can be

represented by a predictable process (πt)0≤t≤T . πt denotes the fraction of the portfolio

value at time t which is invested in the risky asset S. In the following, we will also refer

to π as the investment quote. Notice that it is w.l.o.g. convenient to restrict oneself to

strategies which are self–financing, i.e. strategies where money is neither injected nor

withdrawn during the trading period ]0, T [. Thus, the amount which is invested at date t

in the riskless bond B is given in terms of the fraction 1− πt. Let V = (Vt)0≤t≤T denote

the portfolio value process which is associated with the strategy π, it follows immediately

that Vt(π) is the solution of

dVt(π) = Vt

(
πt

dSt

St

+ (1− πt)
dBt

Bt

)
, where V0 = x. (1)

Alternatively, a trading strategy can be specified in terms of the numbers Φ of assets

which are held, i.e. Φ = (φ0, φ1) where φ0
t denotes the number of bonds and φ1

t the

number of the risky asset. In consequence, one obtains Vt(Φ) = φ0
t Bt + φ1

t St where for a

self–financing strategy φ it holds that Vt(φ) is the solution of

dVt(φ) = φ0
t dBt + φ1

t dSt, where V0 = x. (2)

Notice that the second terminology is conventionally used in the literature about arbitrage–

free pricing and hedging of contingent claims. Without introducing sources of market

incompleteness, both approaches will give the same result. In this case, we obviously have

φ0
t = (1−π)Vt

St
and φ1

t = πVt

Bt
. However, there are a few comments necessary. As indicated

above, traditionally a specification of the trading strategy in terms of the investment

quote is closely linked to proportional portfolio insurance (PPI) while a specification of

the total shares held is used in the option based approach (OBPI). In a complete finan-

cial market setting, both approaches can be translated, i.e. a dynamic OBPI strategy

can also be expressed as a PPI, c.f. Bertrand and Prigent (2002a). In contrast, market

incompleteness and/or model risk give rise to different results. Another example is given

by trading restrictions in the sense of discrete–time trading. Here, a discrete–time version

can only be specified in terms of the numbers Φ as there is no trading possible between

two trading dates. While the number of shares must therefore be constant on each trading

interval, the investment quote will obviously change if there are movements in the asset

price.
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2.2. Cash–Lock probability. The following section aims at a formal description of the

investment quote π. Recall that the basic decision which the investor faces is the division

of her wealth between the risky asset and the risk–free one. In this sense, it is interesting

to measure the gains which are caused by improvements of the asset price. This is easy

in the case that we have a path–independent strategy.8

Definition 2.1 (Participation rate, level). The sensitivity of the (terminal) strategy value

with respect to a change in the (terminal) asset price is called participation rate, i.e.

pΦ(S) =
∂

∂S
V Φ

T (S) . (3)

Let LΦ denote the minimal asset price such that the participation rate larger than zero,

i.e.

LΦ = inf
{
S ≥ 0|pΦ(S) > 0

}
. (4)

In particular, we call LΦ the participation level.

Notice that the above definition is suitable with respect to the portfolio insurance strate-

gies which are characterized by the participation, if any, in upward moving markets.9

However, more things are to be considered in the case of path–dependent strategies where

the payoff (the terminal value of the strategy) does not exclusively depend on the termi-

nal asset price but on the whole price path. One might argue that the path dependence

causes an additional source of uncertainty.10 On the other hand, one might argue against

the path–independency along the following lines. Recall that a path–independent strat-

egy implies that the t–value does only depend on the asset price increment St

S0
. Thus,

in the case of a sudden drop in the asset price at t there is no lock in of prior gains

possible. However, the following concept of a cash–lock measure does not depend on the

path–dependency (path–independency) of the strategy under consideration.

Definition 2.2 (Cash–lock probability). At t (t ∈ [0, T [), a strategy is called α–cash-

dominant iff it holds πt ≤ α (α ∈ [0, 1]). For the time interval [t, τ ] (0 ≤ t ≤ τ ≤ T ), the

α–β Cash–lock probability P
CLα,β

t,τ denotes the probability that the investment quote at τ is

less that β given that it is equal to α at t, i.e.

P
CLα,β

t,τ := P [πV
τ ≤ β|πt = α]

8Notice that a strategy can be path–independent with respect to one particular model, but fails to be
path–independent with respect to another model.

9In particular, the strategies do not allow for short positions in the asset. Here the opposite definition
of the participation level is convenient.

10An easy example is given by the stop–loss strategy where a barrier condition implies either a par-
ticipation rate of one or zero.
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In the next section we determine the risk profile of classic portfolio insurance strategies

without posing borrowing constraints. After this, we consider the effects of borrowing

constraints which automatically introduce a path–dependency.

3. Cash–Lock probabilities and expected values

As a benchmark case, we consider the Black–Scholes model, i.e. the dynamics of the risky

asset S are given by the stochastic differential equation (SDE)

dSt = St (µ dt + σ dWt) , S0 = s, (5)

where W = (Wt)0≤t≤T denotes a standard Brownian motion with respect to the real

world measure P . µ and σ are constants and we assume that µ > r ≥ 0 and σ > 0. The

following subsections are all structured analogously. First, we define the strategy under

consideration in terms of their their associated numbers of bonds and assets φ = (φ0, φ1).

Then we summarize the t–value of the strategy, its distribution and finally the cash–lock

probability.

3.1. Stop–loss strategy (SL). Consider the stop–loss strategy (SL) where

Gt := e−r(T−t)G,

τ := inf{t ≥ 0 : V SL
t = Gt}.

With respect to the number of bonds and assets which are held in the portfolio, the

SL–strategy is then defined by

φSL,0
t = 1{τ≤t}

Gτ

Bτ

= 1{τ≤t}G, φSL,1
t = 1{τ>t}

V0

S0

(6)

such that the t–value V SL
t which is implied by the SL–strategy is

V SL
t = V0

St

S0

1{τ>t} + Gt1{τ≤t}. (7)

In particular, notice that the SL–strategy is path–dependent in the sense that its value is

not exclusively specified in terms of the current asset price but does depend on the whole

price path until t. Concerning the distribution of the value, one obtains
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Proposition 3.1 (Distribution and density associated with SL). If the asset price dy-

namics are given by Equation (5), then it holds

P [V SL
t ≤ w] = N

(
ln w

V0
− (µ− 1

2
σ2)t

σ
√

t

)

+

(
V0

G0

)1−2µ−r

σ2

N

(
2 ln G0 − ln(wV0) + (µ− 1

2
σ2)t

σ
√

t

)
for w ≥ Gt(8)

P [V SL
t = Gt] = N

(
ln G0

V0
− (µ− r − 1

2
σ2)t

σ
√

t

)

+

(
V0

G0

)1−2µ−r

σ2

N

(
ln G0

V0
+ (µ− r − 1

2
σ2)t

σ
√

t

)
(9)

P [V SL
t ≤ w] = 0 for w < Gt. (10)

In particular, for w > Gt it holds

P [V SL
t ∈ dw] =

1

wσ
√

t

(
φ

(
ln w

V0
− (µ− 1

2
σ2)t

σ
√

t

)

−
(

V0

G0

)1−2µ−r

σ2

φ

(
2 ln G0 − ln(wV0) + (µ− 1

2
σ2)t

σ
√

t

))
dw. (11)

Proof: The proof is given in Appendix A.

It is worth mentioning to recall that the SL–strategy is very aggressive in the sense that it

either implies an investment quote πSL of one or zero. Therefore, it is enough to summarize

the cash–lock probability with respect to the cases πSL
0 = 1 and πSL

0 = 0.

Proposition 3.2 (Cash–lock probability of SL). Let β ≥ 0, then it holds

P
[
πSL

t ≤ β
∣∣ π1

0 = 0
]

= 1

and P
[
πSL

t ≤ β
∣∣ π1

0 = 1
]

=

{
1 β ≥ 1

P [V SL
t = Gt] β < 1

.

Proof: The proof follows immediately with Proposition 3.1.

Concerning the expected value, we have the following proposition.
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Figure 1. Expected return and cash lock probability

Proposition 3.3 (Expected value of SL). The expected value of the stop–loss strategy is

given by

E[V SL
t ]

= G0e
rtN

(
ln

G0
V0
−(µ−r− 1

2
σ2)t

σ
√

t

)
+ V0e

rt
(

G0

V0

)2µ−r

σ2

N

(
ln

G0
V0

+(µ−r− 1
2
σ2)t

σ
√

t

)
−G0e

µt
(

G0

V0

)2µ−r

σ2

N

(
ln

G0
V0

+(µ−r+ 1
2
σ2)t

σ
√

t

)
+ V0e

µtN

(
ln

V0
G0

+(µ−r+ 1
2
σ2)t

σ
√

t

)
. (12)

Proof: The proof follows immediately with Proposition 3.1.

3.2. Generalized OBPI (GO). The following results refer to the dynamic version of

a generalized OBPI strategy (GO) in the Black-Scholes model setup. If the asset price

dynamics are given by Equation (1), then the GO–strategy φGO = (φGO,0, φGO,1) is defined

by11

φGO,0
t = Gt

(
1− α

β
N (d−(t, St))

)
and φGO,1

t = αN (d+(t, St))

where

d±(t, St) :=
ln βSt

GT
+ (r ± 1

2
σ2)(T − t)

σ
√

T − t
.

11It is worth mentioning that, in contrast to the SL–strategy and the following PI–strategies, the
dynamic version of the OBPI itself depends on the assumptions on the asset price dynamics.
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It is straightforward to show that the t–value of the GO strategy is given by12

V GO
t = Gt + αN (d+(t, St))−Gt

α

β
N (d−(t, St)) for t < T (13)

and VT (φGO) = V GO
T = GT + α

[
ST −

GT

β

]+

. (14)

The above implies that for an exogenously given initial investment V0, the participation

rate α and the participation level GT

β
must satisfy the initial condition

V0 −G0

α
= N(d+(0, S0))−

G0

β
N(d−(0, S0)).

Lemma 3.4 (Participation rate). Let

α∗(β) :=
V0 −G0

= N(d+(0, S0))− G0

β
N(d−(0, S0))

,

then it holds ∂α∗

∂β
< 0.

Proof: The proof follows immediately by differentiation. In particular, α∗ is inversely

related to the price of a call–option with strike K = GT

β
where the call price is decreasing

in the strike K.

12Notice that the strategy ΦBS = (φGO,0−Gt, φ
GO,1) is the Black Scholes hedge for a call–option with

maturity T and strike K = G
β .
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Notice that the above proposition states that a higher participation rate α can only be

achieved by an increase in the participation level GT

β
(a reduction in β, respectively). This

effect is illustrated in Fig. 3.2.

Proposition 3.5 (Distribution and density associated with GO).

P [V GO
T ≤ v] = N

 ln
(

v−GT

α
+ GT

β

)
− (µ− 1

2
σ2)T

σ
√

T

 for v ≥ GT (15)

P [V GO
T = GT ] = N

(
ln GT

β
− (µ− 1

2
σ2)T

σ
√

T

)
(16)

P [V GO
T ≤ v] = 0 for v < GT . (17)

In particular, for v > GT it holds

P [V GO
T ∈ dv] =

1(
v − β−α

β
GT

)
σ
√

T
φ

 ln
(

v−GT

α
+ GT

β

)
− (µ− 1

2
σ2)T

σ
√

T

 .

Proposition 3.6 (Cash–lock probability of GO). For the γ1-γ2 cash-lock probability with

respect the time points t1, t2 of a GO strategy with time to maturity T it holds

P [πGO
t2

< γ2|πGO
t1

= γ1] = N

(
ln s(t1,γ1)

s(t2,γ2)
− (µ− 1

2
σ2)(t2 − t1)

σ
√

t2 − t1

)
.

where s(t, γ) denotes the inverse mapping of π1
t (St = s), i.e. s(t, γ) = s ⇔ π1

t (St = s) = γ.

Proof: The proof follows immediately from the assumption that the asset price incre-

ments are independent and identically distributed and

P [π1
t2

< γ2|π1
t1

= γ1] = P [St2 < s(t2, γ2)|St1 < s(t1, γ1)].

Proposition 3.7 (Expected value of GO). The expected value of the dynamic option

based portfolio strategy is given by

E[V GO
T ] = GT

(
1− α

β
N
(
d̃−

))
+ αeµTN

(
d̃+

)
where

d̃± :=
ln βSt

GT
+ (µ± 1

2
σ2)(T − t)

σ
√

T − t
.
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3.3. Classic CPPI (CP). The following results refer to the classic CPPI version (CP)

with constant multiplier m and guarantee Gt = G0 exp{rt}. Notice that the classic version

of the CPPI strategy relies on a t–guarantee (also called floor) which is growing with the

risk–free rate r. However, to specify the strategy, it is not necessary to define a fixed time

horizon T . The numbers of assets and bonds are given by

φ0,CP
t =

V CP
t −mCCP

t

Bt

, φ1,CP
t =

mCCP
t

St

(18)

where CCP
t := V CP

t −Gt. (19)

Proposition 3.8 (Dynamics of cushion). If the asset price dynamics are lognormal as

described by Equation (5), the cushion process
(
CCP

t

)
0≤t≤T

of a classic CPPI is lognormal,

too. It holds

dCCP
t = CCP

t ((r + m(µ− r)) dt + σm dWt) .

Proof: The proof follows immediately with CCP
t := V CP

t − Gt and Equation (5) and

(1).

Proposition 3.9 (Value and expected value of CP). The t–value of the a simple CPPI

with parameter m and G is

V CP
t = Gt + CCP

0 ert

(
St

S0

e−(r+m−1
2

σ2)t

)m

. (20)

In particular, the expected value is

E
[
V CP

t

]
= Gt + (V CP

0 −G0) exp {(r + m(µ− r)) t} (21)

Proof: For example, c.f. Black and Perold (1992) and Bertrand and Prigent (2002a).

Proposition 3.10. For α, β ≥ 0, the α-β-cash-lock-probability is given by

P
[
πCP

T ≤ β
∣∣ πCP

t = α
]

= 1 for α = 0, (22)

P
[
πCP

T ≤ β
∣∣ πCP

t = α
]

= N

(
1
m

ln β(m−α)
α(m−β)

− (µ− r − m
2
σ2)(T − t)

σ
√

T − t

)
for α > 0.(23)

Proof: The proof is dedicated to the appendix, cf. Appendix B.

3.4. PPI with constant floor (CFP). The CFP–strategy can be interpreted as a mod-

ified version of the classic CPPI principle: The asset exposure equals a constant multiple

times the cushion and the cushion is given by the difference of the portfolio value and the

floor. However, while the classic version is based on a floor which is growing according to
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the risk–free rate r, the CFP–strategy is based on a constant floor G. In particular, the

strategy is defined by

φ0,CFP
t =

V CFP
t −mCCFP

t

Bt

, φ1,CP
t =

mCCFP
t

St

(24)

where CCFP
t := V CFP

t −G. (25)

Proposition 3.11 (Dynamics of cushion). If the asset price dynamics are lognormal as

described by Equation (5), the cushion process
(
CCFP

t

)
0≤t≤T

of a CFP is lognormal, too.

It holds

CCFP
t = e(mµ−(m−1)r− 1

2
m2σ2)t+mσWt

(
CCFP

0 + r G

∫ t

0

e−(mµ−(m−1)r− 1
2
m2σ2)s−mσWs ds

)
(26)

= CCFP
0 ert

(
St

S0

e−(r+m−1
2

σ2)t

)m

+ r G

∫ t

0

er(t−s)

(
St

Ss

e−(r+m−1
2

σ2)(t−s)

)m

ds (27)

Proof: The proof is given in the appendix, cf. Appendix C.

Corollary 3.12 (Expected value of CFP). For mµ 6= (m− 1)r, the expected value of a

CFP–strategy with parameters m and G is given by

E
[
V CFP

t

]
= G + CCFP

0 e(mµ−(m−1)r)t +
rG

mµ− (m− 1)r

(
e(mµ−(m−1)r)t − 1

)
. (28)

Proof: The above result follows immediately with V CFP
t = G + CCFP

t and Proposition

3.11.

4. Effects of borrowing constraints

Before we compare the performance of the portfolio insurance strategies under consider-

ation, we consider the effects of borrowing constraints. To our opinion, it seems to be

unfair to compare strategies which allow for an investment quote which is higher than one

with strategies which are constructed such that the investment quote is less or equal to

one. Before we illustrate the performance of the constrained and unconstrained strategies,

we consider the effects of borrowing constraints in this section.

4.1. Stop–loss strategy (SL). Since the investment quote of the SL–strategy is either

zero or one, there are no effects of borrowing constraints.

4.2. Generalized OBPI (GO) with borrowing constraints, classic OBPI (OB).

In the case of borrowing constraints, not all strategies belonging to the class of generalized
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option based portfolio insurance strategies, c.f. definition of the GO–strategies in subsec-

tion 3.2, are admissible. In consequence, there is a restriction on the strategy parameters

α and β.13

Lemma 4.1 (Borrowing constraints). Restricting the investment quote πGO to the value

w (w ≥ 1), i.e. πGO ≤ w, then a necessary and sufficient condition is given by

(1− w)αN (d+(t, St))St ≤ wGt

(
1− α

β
N (d−(t, St))

)
for all St ≥ 0.

In particular, for w = 1, i.e. a maximal investment quote of 1, the condition simplifies to

α

β
≤ 1. (29)

Proof: With πGO =
φGO,1

t St

V GO
t

≤ w, Equation (13) it follows immediately

πGO ≤ 1

⇐⇒ (1− w)αN (d+(t, St))St ≤ wGt

(
1− α

β
N (d−(t, St))

)
for all St ≥ 0.

Lemma 4.2 (Classic OBPI). For α = β, it holds πGO ≤ 0. In particular, we call a

generalized OBPI strategy (GO) strategy with α = β classic OBPI (CO).

Proof: The above lemma is an immediate consequence of Lemma 4.1.

In particular, the classic option based portfolio insurance strategy CO is a meaningful

version of the generalized one (GO).

4.3. Capped CPPI (CCP). Posing borrowing constraints on the classic CPPI strategy

straightforwardly results in the capped CPPI (CCP).

Definition 4.3. The capped CPPI strategy (CCP) is defined by

φ0,CCP
t =

V CCP
t −mCCCP

t

Bt

, φ1,CCP
t =

max
(
ωV CCP

t , mCCCP
t

)
St

where CCCP
t := V CCP

t −Gt.

Again, Gt = G0e
rt, m (m ≥ 2) is a constant and w (w ≥ 1) denotes the restriction on

the investment quote.

Proposition 4.4 (Value and cushion of CCP). Let

dXt = Θ(Xt)dt + dWt

13Recall that α gives the participation rate and GT

β gives the participation level of the strategy, cf.

definition 2.1.
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where

Θ(x) =

{
µ−r
σ
− 1

2
mσ x ≤ 0

µ−r
σ
− 1

2
σ x > 0

(30)

and

X0 =

{
1
σ

ln (m−1)V0

mG0
mC0 ≥ V0

1
mσ

ln (m−1)C0

G0
mC0 < V0

. (31)

If the asset price dynamics are lognormal as described by Equation (5), the value process(
V CCP

t

)
0≤t≤T

and cushion process
(
CCCP

t

)
0≤t≤T

are given by

Vt = Gt

{
m

m−1
eσXt Xt ≥ 0(

1 + 1
m−1

eσmXt
)

Xt < 0
(32)

and

Ct = Gt

{ (
m

m−1
eσXt − 1

)
Xt ≥ 0

1
m−1

emσXt Xt < 0
.

Proof: The proof is dedicated to the appendix.

Proposition 4.5 (Density of CCP). Let Xt be defined as in Proposition 4.4, then it holds

P
[
V CCP

t ∈ dv
]

=


1
σv

p

(
ln

(m−1)v
mGt

σ

)
dv v ≥ m

m−1
Gt

1
σm(v−Gt)

p

(
ln

(m−1)(v−Gt)
Gt

σm

)
dv v < m

m−1
Gt

where p(x) := PX0(Xt ∈ dx).

Proof: Cf. Appendix. D .

Proposition 4.6 (Distribution of CCP). For m(V0 −G0) ≥ V0 it holds

P [V CCP
T ≤ v] = L(−1)

λ,T



0 v ≤ GT

K1(λ)
K2(λ)

(
(m−1)(v−GT )

GT

)K2(λ)
σm

GT < v ≤ m GT

m−1

K3(λ)
K4(λ)

(
(m−1)v
mGT

)K4(λ)
σ

+ K5(λ)
K6(λ)

(
(m−1)v
mGT

)K6(λ)
σ m GT

m−1
< v ≤ V0e

rT

1
λ

+ K5(λ)+e
2x0

√
θ2
0+2λ

K3(λ)
K6(λ)

(
(m−1)v
mGT

)K6(λ)
σ

V0e
rT < v
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and for m(V0 −G0) < V0 we have

P [V CCP
T ≤ v] =

L(−1)
λ,T



0 v ≤ GT

− K̃5(λ)+e
−2x0

√
θ2
1+2λ

K̃3(λ)

K̃6(λ)

(
(m−1)(v−GT )

GT

)− K̃6(λ)
σm

GT < v ≤ V0e
rT

1
λ
− K̃3(λ)

K̃4(λ)

(
(m−1)(v−GT )

GT

)− K̃4(λ)
σm − K̃5(λ)

K̃6(λ)

(
(m−1)(v−GT )

GT

)− K̃6(λ)
σm

V0e
rT < v ≤ mGT

m−1

1
λ
− K̃1(λ)

K̃2(λ)

(
(m−1)v
mGT

)− K̃2(λ)
σ mGT

m−1
< v

where L(−1)
λ,T denotes the inverse Laplace transform. With respect to the functions Ki(λ)

and K̃i we refer to the appendix, cf. Theorem E.1.

Proof: Cf. Appendix E.1.

Notice that the cash–lock probability follows immediately with the distribution given in

Proposition 4.6. Finally, consider the moments of the CCP.

Proposition 4.7 (Moments of CCP). For m(V0 −G0) ≥ V0, it holds

E[
(
V CCP

)n
T
] =

(
erT
)n L(−1)

λ,T

{
V n

0

λ− n(µ− r)− 1
2
n(n− 1)σ2

+ Gn
0

(
n∑

i=0

(
n

i

)
K1(λ)

(
1

m−1

)i
iσm + K2(λ)

−
(

m

m− 1

)n(
K3(λ)

nσ + K4(λ)
+

K5(λ)

nσ + K6(λ)

))}

For m(V0 −G0) < V0, we have

E[
(
V CCP

)n
T
] =

(
erT
)n L(−1)

λ,T

{
n∑

i=0

(
n

i

)
Gn−i

0 (V0 −G0)
i

λ− im(µ− r)− 1
2
i(i− 1)(mσ)2

+ Gn
0

(
n∑

i=0

(
n

i

)(
K̃3(λ)

(
1

m−1

)i
iσm− K̃4(λ)

+
K̃5(λ)

(
1

m−1

)i
iσm− K̃6(λ)

)
−
(

m

m− 1

)n
K̃1(λ)

nσ − K̃2

)}

Proof: The proof is given in Appendix E.2.

Intuitively, it is clear that the investment quote of the CCP–version of a CP strategy

is almost surely less than the one of the underlying CP–strategy. Assuming µ > r, this

immediately explains that the CCP–strategy is due to a lower expected return and, at the

same time, gives a lower variance. The effects of borrowing constraints are summarized in

Table 1 which describes the distribution of the final values of classic CPPI and the version

which results from the different borrowing constraints w in terms of the expected value,

the standard deviation, the skewness and kurtosis. The initial investment is V0 = 1000,
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m ω expected value standarddev. skewness kurtosis

CP CCP CP CCP CP CCP CP CCP

1 1 1121 1121.20 68.4 68.4 0.89 0.89 4.44 4.44

3 1 1157 1154.20 280 241 4.16 2.05 44.82 8.71

3 2 1157 1155.50 280 267 4.16 2.97 44.82 16.46

3 2.99 1157 1156.82 280 280 4.16 4.16 44.82 44.82

5 1 1198 1167.81 793 305 23.73 1.59 3949 6.01

5 2 1198 1137.58 793 321 23.73 2.05 3949 7.74

5 2.5 1198 1145.63 793 357 23.73 2.32 3949 8.97

5 4.99 1198 1197.80 793 793 23.73 22.93 3949 2576

10 1 1329 1172.20 24298 325 163 · 103 1.35 79 · 1012 5.06

10 2 1329 1082.65 24298 310 163 · 103 1.88 79 · 1012 6.73

10 5 1329 1059.49 24298 416 163 · 103 2.95 79 · 1012 11.83

10 9.99 1329 1307.01 24298 7650 163 · 103 82.49 79 · 1012 9058

20 1 1780 1172.18 7.9 · 109 329 7.0 · 1020 1.29 3, .9 · 1055 4.88

SL 1171.54 330 1.28 4.85

Table 1. Moments of classic CPPI (CP) and its capped version (CCP)

with respect to different borrowing constraints w and multiplier is m.

The parameter constellation is summarized by V0 = 1000, G0 = 800,

µ = 0.085%, r = 0.05, σ = 0.20 and T = 2.

the initial guarantee G0 = 800. The Black–Scholes parameters are set to µ = 0.085%,

r = 0.05 and σ = 0.20. The time horizon is given by T = 2 years.

5. Comparison of capped CPPI (CCP) and classic OBPI (CO)

According to the previous sections, it is interesting to compare the performance of the

capped CPPI with the one of a classic OBPI. Unless stated otherwise, we consider an

initial investment of V0 = 1000, an initial guarantee of G0 = 800 and a multiplier of

m = 5. With respect to the asset price dynamics, we assume that the volatility is σ = 0.2

and µ = 0.15. The risk–free interest rate is given by r = 0.05.

Fig. 3 illustrates the density of the terminal value for capped CPPI (CCP), classic OBPI

(CO) and stop–loss (SL). The time horizon is 2 years (10 years, respectively).

Fig. 4 shows the expected return of strategies under borrowing constraint for varying

times to maturity.
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Figure 3. Density of the terminal value for capped CPPI (CCP), classic

OBPI (CO) and stop–loss (SL). The time horizon is 2 years (left figure) and

ten years (right figure).

Finally, Fig. 5 illustrates the different cash–lock behavior.

6. conclusion

Recently, there is a growing literature concerning the topic of portfolio insurance. The

revival of OBPI and CPPI strategies is caused by the growing popularity of guarantees

which is in particular observable with respect to retail products. In falling markets, the

basic protection principle affords a reduction of the fraction of wealth which is invested

in risky assets. On the other hand, there is the demand towards upside participation in

rising markets such that a high participation level is wanted.

One problem which is associated with dynamic versions of portfolio insurance strate-

gies is caused by the so–called gap risk, i.e. the risk that the guarantee is not honored

with probability one. This risk is due to various sources of market incompleteness. For
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Figure 4. Expected return of strategies under borrowing constraint for

varying times to maturity.

example, trading restrictions, price jumps impeded the concept of perfect hedging as well

as the portfolio protection feature of a CPPI strategy.

However, this paper aims at a different problem, the cash–lock cage. In the strict sense,

a cash–lock describes the event that the asset exposure drops to zero and stays there.

Since a cash–lock at an early time prohibits any participation in recovering markets, the

cash–lock cage is considered as a major problem with respect to long investment horizons.

We give a formal analysis of a generalized cash–lock measure, i.e. we focus on the prob-

ability that the investment quote recovers from small values. It turns out that, even in

the case that the dynamic versions of option based strategies and proportional portfolio

insurance strategies coincide in their expected return, the strategies give rise to a very

different cash–lock behavior. In addition, we point out that, for comparability reasons,

it is necessary to distinguish between strategies where an investment quote over one is

admissible and such with borrowing constraints.
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Figure 5. (β = 0.5) Cash–lock probabilities of strategies under borrowing constraint.

Appendix A. proof of Proposition 3.1

Notice that

P [V SL
t ≤ w] = P [V SL

t = Gt, τ ≤ t] + P [V SL
t ≤ w, τ > t]. (33)

Observe that the hitting event can be expressed as

{τ ≤ t} = {min
0≤s≤t

V SL
s /Gs ≤ 1}

=

{
min
0≤s≤t

{
Ws +

µ− r − 1
2
σ2

σ
s

}
≤ 1

σ
ln

G0

V0

}
Let (Mt)t≥0 := max0≤s≤t Ws and (mt)t≥0 := min0≤s≤t Ws where W denotes a standard

Brownian motion. Accordingly, we define (M ν
t )t≥0 := max0≤s≤t W

ν
s and (mν

t )t≥0 :=

min0≤s≤t W
ν
s where W denotes a Brownian motion with drift ν. In particular, we have

{τ ≤ t} =

{
mν

t ≤
1

σ
ln

G0

V0

}
where ν :=

µ− r − 1
2
σ2

σ
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Using well known results gives14

P [V SL
t = Gt] = P [τ ≤ t] = P

[
mν

t ≤
ln G0

V0

σ

]

= P

[
M−ν

t ≥
ln V0

G0

σ

]
(34)

= N

(
ln G0

V0
− (µ− r − 1

2
σ2)t

σ
√

t

)

+

(
V0

G0

)1−2µ−r

σ2

N

(
ln G0

V0
+ (µ− r − 1

2
σ2)t

σ
√

t

)
(35)

and

P [V SL
t ≤ w, τ > t] = P

[
W ν

t ≤
1

σ

(
ln

w

V0

− rt

)
, mν

t ≥
1

σ
ln

G0

V0

]
= P

[
M−ν

t ≤
ln V0

G0

σ

]
− P

[
W−ν

t ≤
ln V0

w
+ rt

σ
, M−ν

t ≤
ln V0

G0

σ

]
With Equation (34), Equation (33) yields

P [V SL
t ≤ w] = 1− P

[
W−ν

t ≤
ln V0

w
+ rt

σ
, M−ν

t ≤
ln V0

G0

σ

]

= N

(
ln w

V0
− (µ− 1

2
σ2)t

σ
√

t

)
+

(
V0

G0

)1−2µ−r

σ2

N

(
2 ln G0 − ln(wV0) + (µ− 1

2
σ2)t

σ
√

t

)
.

Finally, one obtains the density by differentiating Equations (35) and (8).

Appendix B. proof of Proposition 3.10

The strategy definition implies that the investment quote equals π1
t = mCt

Vt
. Therefore,

P
[
π1

T ≤ β |π1
t = α

]
= P [(m− β)CT ≤ βGT | (m− α)Ct = αGt]

= P

[
Ct

(
e(µ−r−m

2
σ2)(T−t)+σ(WT−Wt)

)m

≤ β

m− β
Gt

∣∣∣∣Ct =
α

m− α
Gt

]
= P

[
α

m− α

(
e(µ−r−m

2
σ2)(T−t)+σ(WT−Wt)

)m

≤ β

m− β

]
= P

[
WT −Wt ≤

1

σ

(
1

m
ln

β(m− α)

α(m− β)
− (µ− r − m

2
σ2)(T − t)

)]
.

14In particular it holds P [Mt ≤ b] = N
(

b√
t

)
−N

(
−b√

t

)
, c.f. ...
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Appendix C. proof of Proposition 3.11

Notice that

dCCFP
t = dV CFP

t

= V CFP
t (

mCCFP
t

V CFP
t

dSt

St

+

(
1− mCCFP

t

V CFP
t

)
dBt

Bt

= CCFP
t

(
m

dSt

St

+

(
G

CCFP
t

− (m− 1)

)
dBt

Bt

)
.

With Equation (5) and dBt

Bt
= r dt it follows

dCCFP
t = (mµ− (m− 1)r)

(
rG

mµ− (m− 1)r
+ CCFP

t

)
dt + CCFP

t mσdWt (36)

= A

(
B

A
+ CCFP

t

)
dt + ςCCFP

t dWt (37)

where A := mµ − (m − 1)r and B := rG. Along the lines of Kloeden and Platen (1999,

Kapitel 4), the above can be classified as an inhonogenous linear stochastic differential

equation. Multiplying Equation (37) with e−(A− 1
2
ς2)t−ςWt yields

d
(
CCFP

t e−(A− 1
2
ς2)t−ςWt

)
=

[
dCCFP

t − (A− 1

2
ς2)CCFP

t dt− ςCCFP
t dWt

+
1

2
ς2CCFP

t d〈W 〉t − ς d〈W, C〉t
]

exp

(
−(A− 1

2
ς2)t− ςWt

)
= exp

(
−(A− 1

2
ς2)t− ςWt

)
B dt .

Notice that the right hand side of the above Equation does not depend on CCFP
t .

Appendix D. Proof of Proposition 4.5

Let f(z) denote the density function of the random variable Z and let h : R → R denote

a monotonously increasing function with inverse h−1. Then, a well known is given by

P [h(Z) ∈ dz] =
(
h−1
)′

(z) f(h−1(z)).

An application of the above with respect to the value process according to Equation (32)

and the random variable Xt gives in the case that Xt > 0

h(x) =
mGt

m− 1
eσx, h−1(x) =

ln (m−1)x
mGt

σ
,
(
h−1
)′

(x) =
1

σx
.

For Xt ≤ 0, we haven

h(x) = Gt

(
1 +

1

m− 1
emσx

)
, h−1(x) =

ln (m−1)(x−Gt)
Gt

mσ
,
(
h−1
)′

(x) =
1

mσ(x−Gt)
.
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The rest of the proof is straightforward.

Appendix E. Proof of Propositions 4.6 and 4.7

Theorem E.1 (Benes et al. (1980)). Let p(λ, x0, z, θ0, θ1) denote the Laplace-transform

of Px0(Xt ∈ dz) with respect to t, i.e.

p(λ, x0, z, θ0, θ1) =

∫ ∞

0

e−λtPx0(Xt ∈ dz)dt

Dann ist p(λ, x0, z, θ0, θ1). Then, for x0 ≥ 0 it holds

p(λ, x0, z, θ0, θ1) =


K1(λ)ezK2(λ) z < 0 < x0

K3(λ)ezK4(λ) + K5(λ)ezK6(λ) 0 < z < x0

(K5(λ) + e2x0

√
θ2
0+2λK3(λ))ezK6(λ) fr 0 < x0 < z

. (38)

For x0 < 0 it holds p(λ, x0, z, θ0, θ1) = p(λ,−x0,−z,−θ1,−θ0). The fiunctions Ki are

given as follows

K1(λ) =
2e−x0(θ0+

√
θ2
0+2λ)

θ0 − θ1 +
√

θ2
0 + 2λ +

√
θ2
1 + 2λ

=
2e−x0K4(λ)

K4(λ)−K8(λ)

K2(λ) = θ1 +
√

θ2
1 + 2λ

K3(λ) =
e−x0(θ0+

√
θ2
0+2λ)√

θ2
0 + 2λ

=
2e−x0K4(λ)

K4(λ)−K6(λ)

K4(λ) = θ0 +
√

θ2
0 + 2λ

K5(λ) =
e−x0(θ0+

√
θ2
0+2λ)√

θ2
0 + 2λ

θ1 − θ0 +
√

θ2
0 + 2λ−

√
θ2
1 + 2λ

θ0 − θ1 +
√

θ2
0 + 2λ +

√
θ2
1 + 2λ

=
2(K8(λ)−K6(λ))e−x0K4(λ)

(K4(λ)−K6(λ))(K4(λ)−K8(λ))

K6(λ) = θ0 −
√

θ2
0 + 2λ

K8(λ) = θ1 −
√

θ2
1 + 2λ

For x0 < 0, the associated Ki are denoted by K̃i.

With respect to the following proofs, it is useful to notice that the determination of the

inverse Laplace–transform can be achieved by the solution of the Bromwich-integrals

L(−1)
λ,t {F (λ)} =

1

2πi

∫ γ+i∞

γ−i∞
eγtF (λ)dλ
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where γ > maxk R(zk) and zk denotes the singulaity of F .15

E.1. Proof of 4.6. First, consider the case mC0 > V0 ⇔ X0 > 0. Together with Theorem

E.1 and 4.4 it follows that for v ≤ mGt

m−1

P [Vt ≤ v] = P

[
Gt

(
1 +

1

m− 1
eσmXt

)
≤ v

]
= P

[
Xt ≤

1

σm
ln

(v)(v −Gt)

Gt

]

= L(−1)
λ,t

{∫ 1
σm

ln
(m−1)(v−Gt)

Gt

−∞
K1e

xK2dx

}
= L(−1)

λ,t

{
K1

K2

(
(m− 1)(v −Gt)

Gt

)K2
σm

}
.

For m
m−1

Gt < v ≤ V0e
rt ⇔ 0 < x ≤ x0 it holds

P [
m

m− 1
Gt < Vt ≤ v] = P

[
0 < Xt ≤

1

σ
ln

(m− 1)v

mGt

]
=L(−1)

λ,t

{∫ 1
σ

ln
(m−1)v

mGt

0

K3e
xK4 + K5e

xK6dx

}

=L(−1)
λ,t

{
K3

K4

(
(m− 1)v

mGt

)K4
σ

+
K5

K6

(
(m− 1)v

mGt

)K6
σ

− K3

K4

− K5

K6

}
.

Notice that K1

K2
− K3

K4
− K5

K6
= 0. In particular, for m

m−1
Gt < v ≤ V0e

rt it follows

P [Vt ≤ v] = L(−1)
λ,t

{
K3

K4

(
(m− 1)v

mGt

)K4
σ

+
K5

K6

(
(m− 1)v

mGt

)K6
σ

}
.

Finally, consider the case v > V0e
rt ⇔ x > x0. Here,

P [V0e
rt < Vt ≤ v] = P

[
x0 < Xt ≤

1

σ
ln

(m− 1)v

mGt

]
= L(−1)

λ,t

{∫ 1
σ

ln
(m−1)v

mGt

x0

(
K5 + e2x0

√
θ2
0+2λK3

)
exK6dx

}

= L(−1)
λ,t

{
K5 + e2x0

√
θ2
0+2λK3

K6

((
(m− 1)v

mGt

)K6
σ

− ex0K6

)}
.

Using K3

K4
ex0K4 − K3

K6
e2x0

√
θ2
0+2λ+x0K6 = 1

λ
gives

P [Vt ≤ v] =
1

λ
+

K5 + e2x0

√
θ2
0+2λK3

K6

(
(m− 1)v

mGt

)K6
σ

.

15In particular, this implies that, for a suitable λ, the order of integration can be changed. In the
following, this applies since K2(λ) and K4(λ) are, without limit, monotonously increasing and K6(λ)
and K8(λ) are, without limit, monotonously decreasing in λ. Therefor, the Bromwich-integral is well
defined.In the following, we omit the respresentation of the functional dependence between Ki and λ. In
particular, Ki(λ) is simply denoted by Ki.
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Similar reasoning gives for mC0 < V0

v < V0e
rt : P [Vt ≤ v] = L(−1)

λ,t

{
−K̃5+e

−2x0

√
θ2
1+2λ

K̃3

K̃6

(
(m−1)(v−Gt)

Gt

)− K̃6
σm

}

v ∈ [V0e
rt, m

m−1
Gt] : P [V0e

rt < Vt ≤ v] = L(−1)
λ,t

{
K̃3

K̃4

(
e−x0K̃4 −

(
(m−1)(v−Gt)

Gt

)− K̃4
σm

)

+ K̃5

K̃6

(
e−x0K̃6 −

(
(m−1)(v−Gt)

Gt

)− K̃6
σm

)}

v > m
m−1

Gt : P [ m
m−1

Gt < Vt ≤ v] = L(−1)
λ,t

{
K̃1

K̃2

(
1−

(
(m−1)v

mGt

)− K̃2
σ

)}
.

Summing up gives the resulz.

E.2. Proof of Proposition 4.7. Let mC0 ≥ V0. Proposition 4.5 and Theorem E.1 imply

E[V n
T ] =

∫ m
m−1

GT

GT

vnP [Vt ∈ dv]︸ ︷︷ ︸
=:A

+

∫ V0erT

m
m−1

GT

vnP [Vt ∈ dv]︸ ︷︷ ︸
=:B

+

∫ ∞

V0erT

vnP [Vt ∈ dv]︸ ︷︷ ︸
=:C

By inserting the density function and changing the order of integration, A,B and C can

be determined as an inverse Laplace–transform. In particular, it holds

A = L(−1)
λ,t

{∫ GT
m−1

0

(v + GT )n K1

σmv

(
m− 1

GT

v

)K2
σm

dv

}

= L(−1)
λ,t

{
n∑

i=0

(
n

i

)
Gn−i

T

K1

σm

(
m− 1

GT

)K2
σm
∫ GT

m−1

0

v
K2+iσm

σm
−1dv

}

= L(−1)
λ,t

{
n∑

i=0

(
n

i

)
Gn−i

T

K1

σm

(
m− 1

GT

)K2
σm σm

K2 + iσm

(
GT

m− 1

)i+
K2
σm

}

= L(−1)
λ,t

{
n∑

i=0

(
n

i

)
Gn

T

K1

K2 + iσm

(
1

m− 1

)i
}

B = L(−1)
λ,t

{∫ V0erT

m
m−1

GT

vn

(
K3

σv

(
m− 1

mGT

v

)K4
σ

+
K5

σv

(
m− 1

mGT

v

)K4
σ

)
dv

}

= L(−1)
λ,t

{
K3

K4 + σn

(
m− 1

mGT

)K4
σ

vn+
K4
σ

∣∣∣V0erT

v= m
m−1

GT

+
K5

K6 + σn

(
m− 1

mGT

)K6
σ

vn+
K6
σ

∣∣∣V0erT

v= m
m−1

GT

}
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C = L(−1)
λ,t

{∫ ∞

V0erT

vn K5 + K3e
2x0

√
θ2
0+2λ

σv

(
m− 1

mGT

v

)K6
σ

dv

}

= L(−1)
λ,t

{
−K5 + K3e

2x0

√
θ2
0+2λ

K6 + σn

(
m− 1

mGT

v

)K6
σ (

V0e
rT
)n+

K6
σ

}
.

Analogously to the proof of Proposition 4.6, cf. E.1, using the relation between the

different Ki gives the result for mC0 ≥ V0, i.e. 4.6

B + C =−
(

m

m− 1
GT

)n(
K3

K4 + σn
+

K5

K6 + σn

)

+ K3(V0e
rT )n


(

m−1
mG0

V0

)K4
σ

K4 + σn
−

e2x0

√
θ2
0+2λ

(
m−1
mG0

V0

)K6
σ

K6 + σn


=−

(
m

m− 1
GT

)n(
K3

K4 + σn
+

K5

K6 + σn

)
− 2(V0e

rT )n

(K4 + σn)(K6 + σn)

=−
(

m

m− 1
GT

)n(
K3

K4 + σn
+

K5

K6 + σn

)
+

(V0e
rT )n

λ− (µ− r)n− 1
2
n(n− 1)σ2

.

In the case that mC0 < V0, it follows

E[V n
T ] =

∫ V0erT

GT

vnP [Vt ∈ dv]︸ ︷︷ ︸
=:Ã

+

∫ m
m−1

GT

V0erT

vnP [Vt ∈ dv]︸ ︷︷ ︸
=:B̃

+

∫ ∞

m
m−1

GT

vnP [Vt ∈ dv]︸ ︷︷ ︸
=:C̃

where

Ã = L(−1)
λ,t


n∑

i=0

(
n

i

)
Gn−i

T

K̃5 + K̃3e
−2x0

√
θ2
1+2λ

iσm− K̃6

(
m− 1

GT

)− K̃6
σm (

V0e
rT −GT

)i− K̃6
σm


B̃ = L(−1)

λ,t


n∑

i=0

(
n

i

)
Gn−i

T

K̃3

(
m−1
GT

)− K̃4
σm

iσm− K̃4

vi− K̃4
σm +

K̃5

(
m−1
GT

)− K̃6
σm

iσm− K̃6

vi− K̃6
σm


∣∣∣∣∣∣∣∣

1
m−1

GT

v=ert(V0−G0)


C̃ = L(−1)

λ,t

{
− K̃1

nσ − K̃2

Gn
T

(
m

m− 1

)n
}
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