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The payoff of many credit derivatives is subject to spread risk, i.e., it depends on the evolution of credit
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ticularly sensitive to jumps in credit spreads. In the framework of first-passage time models we define a
credit quality process with stochastic volatility. Using a representation of the credit quality process as a
time-changed Brownian motion, we derive a formula for the dynamics of default probabilities, which in turn
provides the dynamics of credit spreads. As an example for a volatility process we consider the square root
of a Lévy-driven Ornstein-Uhlenbeck process and we show that jumps in the volatility translate into jumps
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1. Introduction

The market for credit derivatives has grown considerably over the past few years. Statistics pub-
lished by the Bank of International Settlements (BIS) reveal that the outstanding notional of credit
derivatives has grown from USD 14 trillion in December 2005 to over USD 42 trillion in June 2007.

The plain vanilla credit derivative is the credit default swap (CDS), an instrument that provides
insurance against the default of a borrower, e.g. a company. According to the British Bankers’ As-
sociation, CDS make up for about a third of the credit derivatives market. Other single-name credit
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derivatives include credit spread options, credit-linked notes and credit index trades. According to
BIS statistics, the outstanding notional in single-name instruments was USD 24 trillion in June 2007.
Multi-name credit derivatives provide insurance against defaults in a portfolio of companies. Pop-
ular multi-name credit derivatives are basket products and collateralized debt obligations (CDOs)
(outstanding notional according to BIS statistics: USD 18 trillion in June 2007).

Other than being subject exclusively to default risk, the payoff of some credit derivatives is
determined explicitly by the level of CDS spreads. In this case the dynamics of CDS spreads play a
significant role in product valuation. Examples of such so-called spread products are credit spread
options and particular types of credit-linked notes. We focus on single-name credit derivatives, and to
motivate our work, we present the leveraged credit-linked note as a credit derivative that is sensitive
to both default risk and spread risk, and we discuss the impact of jumps in CDS spreads on product
valuation.

There are generally two approaches to modelling credit risk: the structural and the reduced-form
approach. In the former, it is assumed that observable economic variables, such as the value of the
firm under consideration, trigger default. Typically the dynamics of a firm value are modelled with
default occurring when the firm value falls below a certain threshold. This approach was introduced
by [Merton, 1974], and further developed by [Black and Cox, 1976], [Longstaff and Schwartz, 1995],
and many others. Often the firm value and the threshold are assumed to be continuous processes, in
which case credit spreads vanish as maturity tends to 0, contradicting empirical observation. This
can be overcome by introducing jumps in the model as by [Merton, 1976].

In a more general setting, we consider a model to be of structural type when default is the
first hitting time of a certain threshold by an abstract observable credit quality process, where we
understand “observable” as the property of being adapted to the underlying flow of information.

In the reduced-form approach, the default event is not directly linked to economic observables,
but it is an unpredictable Poisson event. This approach is followed by e.g. [Lando, 1998], [Duffie and
Singleton, 1999], [Duffie and Lando, 2001] and many others. Its main advantages lie in the capability
of reproducing a given credit spread term structure well and in its close analogy to interest-rate term
structure modelling. The link between the economic environment of a firm and its default is often
not clear in this type of model. For a detailed exposition on structural and reduced-form models, we
refer to [Bielecki and Rutkowski, 2002].

[Zhou, 2001] proposes a structural model that incorporates desirable features of the reduced-form
approach. Here, a firm value process is modelled as a jump-diffusion, thereby including economic
variables in the model and at the same time allowing for unpredictable default events. Some recent
papers consider the dynamics of the term structure of CDS spreads in a structural approach, amongst
them [Baxter, 2007] and [Cariboni and Schoutens, 2007] who propose models based on Lévy processes
in order to yield satisfactory calibration results, [Hull and White, 2007] who model the default
probability of an entity as a stochastic process in a binomial tree representation, and [Kiesel and
Scherer, 2007] who present a generalization of the model by [Zhou, 2001].

We extend the class of existing models for CDS spread dynamics by a model that is mathemati-
cally tractable and at the same time allows for meaningful dynamics of CDS spreads. In particular,
the model includes jumps in the evolution of CDS spreads, which allows for calibration to a wide
range of term structures and for valuation of spread products whose payoff is particularly sensitive
to jumps. Although the spread dynamics exhibit jumps, we are able to formulate our model in a
way that allows to draw on results from the theory of continuous stochastic processes. The model
can be implemented very efficiently.

Our basic idea follows [Overbeck and Schmidt, 2005] who propose a structural model for valuing
credit derivatives whose payoff is sensitive to default risk. Here, a credit quality process is a contin-
uous stochastic process with deterministic time-varying volatility. The model calibrates analytically
to any given term structure of credit spreads. In our model, the volatility of the credit quality process
is a stochastic process, and it turns out that this is the key to providing meaningful dynamics of
CDS spreads.
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The paper is structured as follows: In Section 2 we introduce credit default swaps (CDS) and
we present the leveraged credit-linked note as a credit derivative that is sensitive to CDS spread
dynamics, in particular to jumps in CDS spreads. We summarise the Overbeck-Schmidt model (OS-
model) and we examine its dynamics in Section 4. In Section 5, we define the credit quality process
with stochastic volatility, we derive a formula for default probabilities conditional on the information
flow, we give a concrete example with the volatility process the square root of an Ornstein-Uhlenbeck
process driven by a compound Poisson process, and we examine the relationship between jumps in
the Ornstein-Uhlenbeck process and jumps in default probabilities and CDS spreads, respectively.
We present an algorithm for efficient computation conditional default probabilities of term structures
of default probabilities and CDS spreads in Section 6. As an example we consider valuation of the
leveraged credit-linked note in Section 7. We discuss calibration to a given term structure of default
probabilities in Section 8 and we discuss the impact of the parameters involved on the dynamics.

2. Credit dynamics and spread risk

The fundamental product of the credit derivatives market is the credit default swap (CDS). Given
an underlying entity, such as a company, it is a contract between two counterparties, the protection
buyer and the protection seller, that insures the protection buyer against the default event (i.e.,
failure to fulfill a financial obligation) of the underlying entity in a fixed time interval. The protec-
tion buyer regularly pays a constant premium, the credit spread (or CDS spread), that is fixed at
inception, up until maturity of the CDS or the default event, whichever occurs first. This stream
of payments is termed the premium leg of the CDS. In return, the protection seller agrees to com-
pensate the protection buyer for the loss incurred by default of the underlying entity at the time of
default in case this occurs before maturity. This constitutes the protection leg of the CDS.

Following the principle of no-arbitrage, we consider the value of a financial claim to be the
discounted expectation of its payoff under a risk-neutral measure. The fair CDS spread is the CDS
spread that makes the value of both legs equal. We only consider fair CDS spreads in this paper,
hence we just speak of CDS spreads. The mapping of CDS spreads with respect to their maturity
is called the term structure of CDS spreads. In general, we shall assume market-given CDS spreads
to be fair spreads and use the no-arbitrage principle to derive risk-neutral default probabilities; this
relationship is made precise in Section 3. CDS for large firms and sovereigns are liquidly traded, and
typically CDS spreads for maturities 1, 3, 5, 7, 10 years are quoted in the market. The mark-to-
market value of an existing CDS position is the cost of unwinding the transaction by entering into
an offsetting CDS position. At default, the mark-to-market value is just the loss incurred by the
default event.

The term structure of credit spreads has been thoroughly studied, both theoretically (cf. e.g.
[Zhou, 2001]) and empirically (cf. e.g. [Collin-Dufresne et al., 2001]). The fact that CDS spreads
do not vanish when time-to-maturity tends to zero indicates that the market assumes that an
entity may default unexpectedly and instantaneously at any time. In general, two components of
credit risk contribute to the behaviour of CDS spreads: jump-to-default risk and the risk of credit
quality changes over time, with the short end of the term structure dominated by jump-to-default
risk. [Schneider et al., 2007] observe that CDS spreads exhibit frequent positive jumps in their
movement through time. These jumps are attributed to the arrival of bad news, and typically they
affect CDS spreads of all maturities. On the other hand, good news tend to propagate gradually.

Credit derivatives whose payoff depends not only on default risk but also on the spread levels
are called spread products. Examples are options on CDS and particular types of credit-linked notes
(CLN). For a general description of CLNs we refer to [Bielecki and Rutkowski, 2002, Section 1.3.3].

As an example of a spread product, consider the leveraged credit-linked note. This note is partic-
ularly sensitive to jumps in CDS spreads, even if a jump does not lead to default. The principal idea
is that an investor sells protection on an amount of default risk that is a multiple k, the leverage
factor, of his investment amount. The motivation for taking leveraged exposure is to earn a certain
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Fig. 1. Leveraged credit-linked note with leverage factor k and notional 1. Left: Cash-flows at inception and while
the note is alive. Right: Cash-flows at trigger time S.

multiple k̃ of the credit spread. Most likely, his investment will not suffice to compensate the loss
incurred by default. Therefore, a trigger is agreed to terminate the structure while the cost of closing
the position is still likely to be sufficiently covered by the investment amount. The cost of closing
the position depends on the level of credit spreads, hence the investor is exposed mainly to spread
risk and to default risk only to a lesser extent.

In more detail, the issuer structures the note as follows (see Figure 1): For simplicity, assume
constant default-free interest rates c and an investment amount of 1, which is deposited in a default-
free account earning a coupon c. In addition, protection is sold by entering a fair CDS with notional
k earning a spread of k s0. The investor receives a fixed coupon until either maturity of the note or
until a trigger event takes place. The size of the coupon is c + k̃ s0 with k̃ s0, k̃ ≤ k, the premium
associated with the note. This premium is financed by the CDS position. The trigger event is
determined as follows: denote by V k

t the mark-to-market value at time t of the underlying CDS with
notional k from the point of view of the CDS protection buyer. The trigger event takes place at time
S = inf{t ∈ (0, T ] : V k

t > K}, with K ≤ 1 a pre-defined trigger level. At S, the note is unwound by
withdrawing the investment amount 1 from the deposit account and by closing the CDS position at
a cost of V k

S . Observe that possibly V k
S > 1, in which case the issuer must cover the missing amount

required to unwind the CDS position. For this type of risk, called gap risk, the issuer is compensated
with a premium of (k − k̃) s0. In the case where V k

S ≤ 1, the investor receives the remainder of the
structure, 1− V k

S . Given K, valuation of the note essentially means determining the fair factor k̃.
Clearly, the trigger time S depends on the evolution of the underlying CDS spread. Furthermore,

the amount of the redemption payment max(1− V k
S , 0) is undetermined until S. Assuming a model

in which CDS spreads evolve continuously, the mark-to-market value V evolves continuously as well,
and the trigger time is S = inf{t ∈ (0, T ] : V k

t = K}, unless a default takes place. Hence V k
S ≤ 1,

and gap risk is limited to the default case. On the contrary, upward jumps in CDS spreads translate
into upward jumps in the mark-to-market value of the CDS, and possibly V k

S > 1 so the issuer faces
gap risk, even when no default takes place.

We will consider valuation of the leveraged CLN in Section 7.

3. Notation and preliminaries

Throughout, assume given a complete probability space (Ω,F , (Ft)t≥0,P) with right-continuous
filtration, and with P a risk-neutral martingale measure. We assume that the probability space is
rich enough to support any random elements that we define. If not otherwise stated, all processes
are assumed to be (Ft)t≥0-adapted. The filtration generated by a process X, and augmented if
necessary, is denoted by (FX

t )t≥0. An (Ft)t≥0-Brownian motion W is a Brownian motion W that
is (Ft)t≥0-adapted and such that for any s ≤ t, Wt −Ws is independent of Fs. We omit explicit
reference to the underlying entity when we speak of a default event, default time, etc.. Denote by τ

the random time of the default event. The distribution function of τ conditional on the information
flow (Ft)t≥0 is denoted by P (t, T ) := P(τ ≤ T |Ft). For fixed maturity T , (P (t, T ))t≤T is a process
whose dynamics are determined by the information flow (Ft)t≥0. Observe that for each T the process
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(P (t, T ))t≤T is a martingale with a càdlàg modification, cf. [Karatzas and Shreve, 1998, Theorem
1.3.13], and we shall choose this modification whenever it is necessary. Furthermore, P(·|Ft) has a
regular version, so we may treat P(·|Ft)(ω) like a probability measure for P-almost all ω ∈ Ω.

Let s(t, T ) be the fair spread at time t of a CDS with maturity T . Then (s(t, T ))t≤T is the spread
process with maturity T and (s(t, T + t))t≥0 is the spread process with time to maturity t.

From conditional default probabilities, P(τ ≤ u|Ft), t < u ≤ T , we derive the fair CDS spread
s(t, T ) as follows: Let r = (rt)t≥0 be the short rate process, and for any 0 ≤ t ≤ T , let B(t, T ) =

E
(
e−

R T
t

rs ds|Ft

)
the time-t price of a default-free zero coupon bond maturing at T . We shall assume

that for any s ≥ 0 and t ≥ s, (ru)u≥s and 1{τ>t} are conditionally independent given Fs. On a CDS
with maturity T started at t, the protection buyer continuously pays the premium s(t, T ) until
default or maturity, whichever occurs first. Taking risk-neutral expectation with respect to Ft, the
value of the premium leg at time t is given by

E

(
s(t, T )

∫ T

t

e−
R u

t
rv dv1{τ>u} du

∣∣∣Ft

)
= s(t, T )

∫ T

t

E
(
e−

R u
t

rv dv 1{τ>u}
∣∣Ft

)
du

= s(t, T )
∫ T

t

B(t, u)P(τ > u|Ft) du.

The protection seller pays the fractional amount (1 − R) of the notional at default, with R the
recovery rate, assumed to be known and constant. The corresponding value of the protection leg is

E
(
(1−R) e−

R τ
t

rv dv1{t<τ≤T}
∣∣Ft

)
= (1−R)

∫ T

t

B(t, u)P(τ ∈ du|Ft).

Solving for the fair CDS spread so that the value of both legs is equal yields

s(t, T ) :=
(1−R)

∫ T

t
B(t, u)P(τ ∈ du|Ft)∫ T

t
B(t, u)P(τ > u|Ft) du

, (1)

on {τ > t}. Otherwise the spread s(t, T ) does not exist at t.
Clearly, the information generated by Nt := 1{τ≤t} does not suffice to model the dynamics of

default probabilities and credit spreads. Consequently, the filtration (Ft)t≥0 will, in addition to
(FN

t )t≥0, contain the information flow generated by some driving state variables. The specification
of such state variables will be our occupation in the following Sections.

We state the following well-known result without proof.

Lemma 1. Let G ⊂ F be a σ-algebra and let X, Y be random elements with values in the Borel
space (E,E ) and such that X is G-measurable and Y is independent of G. Let h : E × E → R
be a bounded E × E -measurable function. Define g(x) := Eh(x, Y ). Then g(X) is a version of the
conditional expectation E(h(X, Y )|G).

Finally, recall some standard notation: For a càdlàg process Y , we write Yt− := lims↑t Ys and
∆Yt := Yt − Yt−. We say that Y has a jump at t if ∆Yt 6= 0. A stochastic process Y is stochastically
continuous or continuous in probability if, for every t ≥ 0 and ε > 0, lims→t P(|Xs −Xt| > ε) = 0.

4. Overbeck-Schmidt model

[Overbeck and Schmidt, 2005] present a model that allows for straightforward analytic calibration
to a given term structure of default probabilities, F (t) := P(τ ≤ t), t ≥ 0, where τ denotes the time
of default of an underlying entity. In the Overbeck-Schmidt model, τ is determined as the first time
that a credit quality process X = (Xt)t≥0 hits a barrier b < X0, i.e., τ = inf{t ≥ 0 : Xt ≤ b}. The
principal idea is to model X as a time-changed Brownian motion. Given a Brownian motion W and
a deterministic, strictly increasing and continuous time transformation T = (Tt)t≥0, T : [0,∞) →
[0,∞), with T0 = 0, set

Xt := WTt , t ≥ 0.
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[Overbeck and Schmidt, 2005] show that if the time change T is given by

Tt =

 b

N(−1)
(

F (t)
2

)
2

, t ≥ 0, (2)

where N(−1) denotes the inverse of the Normal distribution function, then τ admits the distribution
F (t), t ≥ 0. Furthermore, if the distribution of τ admits a density, then the time change T is
absolutely continuous, so that

Tt =
∫ t

0

σ2
s ds, (3)

with σ : [0,∞) → [0,∞) a square-integrable function. The volatility σ can be interpreted as the
default speed, in the sense that the higher default speed the higher the likelihood of crossing the
default barrier. The quadratic variation [X, X] of X is just [X, X] = T , so that there exists a
representation of X as a stochastic integral

Xt =
∫ t

0

σs dW̃s, (4)

for some Brownian motion W̃ .
Although the OS-model is not intended to value spread products, it exhibits dynamics by specifi-

cation of the process X. These dynamics are fully determined by calibration to market-given default
probabilities, and it is not possible to assign different dynamics to the same term structure of default
probabilities. The following Proposition allows us to analyse the dynamics of the OS-model in more
detail.

Proposition 2. Let X = (Xt)t≥0, with Xt = WTt and (Tt)t≥0 given by Equation (2), and let
τ := inf{t ≥ 0 : Xt ≤ b}, b < X0.

(i) Then, on {τ > s}, the probability of default until t conditional on Fs, P (s, t), is given by

P (s, t) = 2E
(

N
(

b−Xs√
Tt − Ts

) ∣∣∣Xs

)
. (5)

(ii) Assume further that the time-change T admits a representation as in Equation (3). Then, For
any t ≥ 0, the conditional default probability process (P (s, t))s≤t is continuous in s.

Proof.

(i) Observe that the events {τ ≤ t} and {minu≤t Xu ≤ b} are equivalent. It is well-known that
the hitting-time distribution of a Brownian motion starting at 0 is, cf. [Karatzas and Shreve,
1998, Section 2.6.A],

P
(

min
s≤t

Ws < b

)
= 2N(b/

√
t), b < 0. (6)

We obtain, on {τ > s},

P (s, t) = P(s < τ ≤ t|Fs) = P
(

min
s<u≤t

Xu ≤ b
∣∣Fs

)
= P

(
min

s<u≤t
WTu

−WTs
≤ b−WTs

∣∣Fs

)
= 2E

(
N
(

b−WTs√
Tt − Ts

∣∣∣Fs

))
,

where the last step is an application of Lemma 1, since (WTu −WTs)u≥s is a Brownian motion
independent of Fs and b−WTs is Fs-measurable. Finally, by the Markov property of Brownian
motion me may condition under σ(Xs) instead of Fs.



7

(ii) Taking into account that N(·), X,
√
· and T are continuous, for any sequence sn → s, as n→∞,

lim
sn→s

P (sn, t) = lim
sn→s

E

(
2N

(
b−Xsn√
Tt − Tsn

)∣∣∣Fsn

)
= lim

sn→s
2N

(
b−Xsn√
Tt − Tsn

)

= N
(

b−Xs√
Tt − Ts

)
= P (s, t).

Inspection of Equation (5) reveals that P (s, t) depends merely on the distance-to-default of Xs.
The time-change and consequently the default speed, being deterministic, have no impact on the
dynamics of (P (s, t))s≤t. The second part of the Proposition tells us that it is impossible to generate
jumps in a default probability process when the time-change is continuous.a We will establish in
Section 5.4 that this implies continuity of credit spread processes. Recall that the short end of the
credit term structure is governed by jump-to-default risk. The absence of jumps forces jump-to-
default risk to be compensated by the credit quality risk, and consequently calibration to a given
spread term structure leads to poor dynamics.

An important consequence of Proposition 2 is that in the setting of the OS-model a necessary
condition for random jumps in default probability processes is that the time-change be stochastic.

5. A hitting-time model with stochastic volatility

Can we extend the Overbeck-Schmidt model to allow for better and meaningful dynamics of default
probabilities and CDS spreads? Naturally, we would like to retain the tractability of the OS-model
as much as possible. If X is a credit quality process as in Equation (4), then by Proposition 2
P (t, T ) = F (t, T, Xt) for some function F by the Markov property of X. This shows that (P (t, T ))t≤T

is driven by the credit quality process X. Can we enrich the dynamics in the sense that P (t, T ) =
F (t, T, Xt, Yt), i.e., (P (t, T ))t≤T is driven by Markov process (X, Y ) with X the credit quality process
and Y some other process? Furthermore, we have seen that jumps play an important role in aligning
market data with meaningful dynamics. Can we incorporate jumps in default probabilities and credit
spreads?

We proceed as follows: The credit quality process X will be defined as a stochastic integral with
respect to a Brownian motion with a stochastic volatility σ (Section 5.1). We then derive a formula
for conditional default probabilities (Section 5.2). In this framework, we specify σ2 as a Generalised
Ornstein-Uhlenbeck process, i.e., an Ornstein-Uhlenbeck process driven by a Lévy process. In our
setting, the driving Lévy process will be a compound Poisson process (Section 5.3). We show that,
although X is a continuous process, default probabilities and credit spreads exhibit jumps triggered
by jumps in the volatility σ (Section 5.4).

5.1. Model setup

Definition 3. The credit quality process X = (Xt)t≥0 of a risky entity is defined to be

Xt =
∫ t

0

σs dWs, t ≥ 0,

where W is an (Ft)t≥0-Brownian motion and σ is a strictly positive (Ft)t≥0-adapted càdlàg process
independent of W with P(

∫ t

0
σ2

s ds <∞) = 1 and limt→∞
∫ t

0
σ2

s ds =∞ P–a.s.b.

To emphasise the association with σ, we may speak of X as a credit quality process with volatility
σ. Denote the quadratic variation process of X by Λ = (Λt)t≥0, with Λt =

∫ t

0
σ2

s ds. Observe that Λ
is continuous, strictly increasing and (Ft)t≥0-adapted.

aIt is straight-forward to see that for time-changes with discontinuities any jumps in a default probability process are
deterministic.
bThe requirement limt→∞

R t
0 σ2

s ds = ∞ P–a.s. will ensure that τ < ∞ P–a.s..
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Define the family of (Ft)t≥0-stopping times τt = inf{s ≥ 0 : Λs > t}, t ≥ 0. By application of the
Theorem of Dambis, Dubins-Schwarz, cf. [Karatzas and Shreve, 1998, Theorem 3.4.6], the process
B, with Bt = Xτt , t ≥ 0, is an (Fτt)-Brownian motion. Conversely, given B, X can be expressed as
a time-changed Brownian motion, i.e., Xt = BΛt

, t ≥ 0. We shall refer to B as the DDS-Brownian
motion of X.

The default time τ of the risky entity associated with the credit quality process X is the first
time that X hits a barrier b < 0:

τ = inf{t ≥ 0 : Xt ≤ b}.

In this model setup, we would like to compute the probability distribution of τ conditional on
the evolution of X and σ. We state some preliminary results first.

Proposition 4. Let X be a credit quality process with volatility process σ, and let B be the DDS-
Brownian motion of X. Then, B is an (Fτt

)t≥0-Brownian motion independent of σ.

Proof. Denote by (C,B(C)) the measurable space of continuous functions f : R+ → R with B(C)
the Borel sets of C and by (D,B(D)) the measurable space of càdlàg functions f : R+ → R, with
B(D) the Borel sets of D, respectively. For every Γ ∈ B(C), ∆ ∈ B(D), we check that

P(B ∈ Γ, σ ∈ ∆) = P(B ∈ Γ)P(σ ∈ ∆).

It is straightforward that this holds for sets ∆ with P(σ ∈ ∆) ∈ {0, 1}. Choose ∆ such that
P(σ ∈ ∆) ∈ (0, 1), and denote by D the σ-algebra generated by {σ ∈ ∆}. Using properties of
conditional expectation, we obtain

P(B ∈ Γ, σ ∈ ∆) = E
(
1{σ∈∆}P(B ∈ Γ|D)

)
. (7)

Writing D1 = {σ ∈ ∆} and D2 = {σ 6∈ ∆}, and since 0 < P(D1),P(D2) < 1, it is easy to check
that a version of the conditional probability of A ∈ F with respect to D is

P(A|D)(ω) =
∑

i=1,2

P(A ∩Di)/P(Di)1{Di}(ω), ω ∈ Ω.

Fix this version of the conditional probability. For every ω ∈ Ω, P(·|D)(ω) is a probability measure
(and thus it is a variant of the regular conditional probability with respect to D). Furthermore,
P(·|D)(ω) is absolutely continuous with respect to P, i.e., P(·|D)(ω)� P.

In order to exploit properties of
∫ ·
0
σs dWs under P(·|D)(ω), we establish that X and

∫ ·
0
σs dWs

(under P(·|D)(ω)) are P(·|D)(ω)-indistinguishable. By independence of W and D it follows that W

is still a Brownian motion under P(·|D)(ω). Let (σn)n≥0 be a sequence of simple adapted processes
such that

P
(

lim
n→∞

∫ t

0

σ(n)
s dWs =

∫ t

0

σs dWs, 0 ≤ t <∞
)

= 1.

The existence of such a sequence follows from e.g. [Karatzas and Shreve, 1998, Section 3.2]. From
P(·|D)(ω)� P, it follows that this holds P(·|D)(ω)-a.s. for the same sequence (σ(n))n≥0, and hence
the stochastic integral

∫ ·
0
σr dWr under P is P(·|D)(ω)-indistinguishable of the stochastic integral∫ ·

0
σr dWr under P(·|D)(ω).
Since W is a Brownian motion under P(·|D)(ω) it follows that X is a continuous local martin-

gale under P(·|D)(ω). The quadratic variation, as a limit in probability, is invariant to absolutely
continuous changes of measure. It follows that B is an (Fτt)-Brownian motion under P(·|D)(ω), or
in other words, P(B ∈ ·|D)(ω) = PW (·), where PW is the Wiener measure on (C,B(C)). Inserting
into Equation (7) yields

E(1{σ∈∆}P(B ∈ Γ|D)) = E(1{σ∈∆}PW (Γ)) = E(1{σ∈∆}P(B ∈ Γ)) = P(B ∈ Γ)P(σ ∈ ∆).

Corollary 5. Let X be a credit quality process with volatility process σ, and let B be the DDS-
Brownian motion of X. Furthermore, let S be a P–a.s. finite (Fτt)-stopping time, and define B̃ =
(B̃u)u≥0, with B̃u := BS+u −BS. Then B̃ is an (F B̃

t )t≥0-Brownian motion independent of σ.
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Proof. By the properties of Brownian motion, B̃ is a Brownian motion independent of FτS
. In

the notation of the previous proof, since B is a Brownian motion under P(·|D)(ω) = PW (·), for
P-almost all ω ∈ Ω, so is B̃, and the claim follows.

Corollary 6. Let X be a credit quality process with volatility process σ, and let B be the DDS-
Brownian motion of X. Let S be a P–a.s. finite (Fτt

)t≥0-stopping time. Denote by Fσ
∞ the σ-algebra

generated by σ. Then, B̃ = (B̃u)u≥0, with B̃u := BS+u − BS is an (F B̃
t )t≥0-Brownian motion

independent of FτS
∨ Fσ

∞, the smallest σ-algebra containing FτS
and Fσ

∞.

Proof. Let ξ : Ω → R be any FτS
-measurable random variable. With the notation of the proof of

Proposition 4, for Γ ∈ C, ∆ ∈ D, D = σ({σ ∈ ∆}), Ξ ∈ B(R) for P-almost all ω ∈ Ω,

P(B̃ ∈ Γ, ξ ∈ Ξ|D)(ω) = P(B̃ ∈ Γ|D)(ω)P(ξ ∈ Ξ|D)(ω),

since B̃ is a Brownian motion independent of FτS
under P(·|D). Thus,

P(B̃ ∈ Γ, ξ ∈ Ξ, σ ∈ ∆) = E
(
1{σ∈∆}P(B̃ ∈ Γ, ξ ∈ Ξ|D)

)
= E

(
1{σ∈∆}P(B̃ ∈ Γ)P(ξ ∈ Ξ|D)

)
= P(B̃ ∈ Γ) E (P(σ ∈ ∆, ξ ∈ Ξ|D)) = P(B̃ ∈ Γ)P(σ ∈ ∆, ξ ∈ Ξ).

5.2. Conditional default probabilities

In this Section, we derive a formula for default probabilities conditional on the information flow Fs

when the default time τ is determined by a credit quality process as in Definition 3.

Proposition 7. Let X be a credit quality process with volatility process σ and quadratic variation
Λ. Let τ = inf{t ≥ 0 : Xt ≤ b} be the associated default time. For s ≤ t, on {τ > s}, the probability
of default until time t, conditional on Fs, is given by

P(τ ≤ t|Fs) = E
(

2N
(

b−Xs√
Λt − Λs

) ∣∣∣Fs

)
P–a.s..

Proof. Let B be the DDS-Brownian motion of X, and recall that BΛt
= Xt, t ≥ 0. By continuity

of Λ and by properties of conditional expectation, P–a.s.,

P(τ ≤ t|Fs) = P
(

min
s<u≤t

Xu ≤ b
∣∣∣Fs

)
= P

(
min

s<u≤t
BΛu ≤ b

∣∣∣Fs

)
= P

(
min

Λs<u≤Λt

Bu ≤ b
∣∣∣Fs

)
= P

(
min

0<u≤Λt−Λs

BΛs+u ≤ b
∣∣∣Fs

)
= P

(
min

0<u≤Λt−Λs

BΛs+u −BΛs ≤ b−BΛs

∣∣∣Fs

)
= E

(
P
(

min
0<u≤Λt−Λs

BΛs+u −BΛs
≤ b−BΛs

∣∣∣Fs ∨ σ(Λt)
) ∣∣∣Fs

)
. (8)

The random time Λs is an (Fτt
)t≥0-stopping time, and with FτΛs

= Fs it follows from Proposition 6
that (BΛs+u −BΛs

)u≥0, is a Brownian motion independent of Fs ∨ σ(Λt) ⊆ Fs ∨Fσ
∞. On the other

hand, the random variables Λt − Λs and b− BΛs are Fs ∨ σ(Λt)-measurable. By Lemma 1 and the
first-passage time distribution of Brownian motion, cf. Equation (6),P–a.s.,

P
(

min
0<u≤Λt−Λs

BΛs+u −BΛs ≤ b−BΛs

∣∣∣Fs ∨ σ(Λt)
)

= 2N
(

b−BΛs√
Λt − Λs

)
.

Inserting into Equation (8) yields, P–a.s.,

E
(
P
(

min
0<u≤Λt−Λs

BΛs+u −BΛs ≤ b−BΛs |Fs ∨ σ(Λt)
) ∣∣∣Fs

)
= E

(
2N
(

b−BΛs√
Λt − Λs

) ∣∣∣Fs

)
.
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Corollary 8. Let X be a credit quality process with volatility process σ, and assume further that
(X, σ) has the Markov property. Let τ be the associated default time. Then, for t > s, on {τ > s},
the conditional default distribution is

P(τ ≤ t|Fs) = P(τ ≤ t|Xs, σs) = E
(

2N
(

b−Xs√
Λt − Λs

) ∣∣∣Xs, σs

)
P–a.s.. (9)

Proof. For the first step, observe that on {τ > s} the events {s < τ ≤ t} and {mins<r≤t Xr ≤ b} are
equal, and the latter is conditionally independent of Fs given (Xs, σs) by the Markov property. For
the second step, taking into account that Λt−Λs =

∫ t

s
σ2

u du, it follows that 2N((b−Xs)/
√

Λt − Λs)
is a bounded random variable that is measurable with respect to σ(Xr, r ≥ s) ∨ σ(σr, r ≥ s). The
assertion then follows from Proposition 7 and the Markov property.

By setting s = 0 we obtain a formula for unconditional default probabilities:

Corollary 9. Let X be a credit quality process with volatility process σ, and let τ be the associated
default time. Assume further that σ0 is non-random. Then the default distribution is given by

P(τ ≤ t) = 2E
(

N
(

b√
Λt

))
. (10)

Clearly, for a deterministic time-change Λ we recover the Overbeck-Schmidt model, cf. Equation (2).

5.3. Variance as Lévy-driven Ornstein-Uhlenbeck process

We now put our model to work. We specify the variance as a mean-reverting process with jumps. This
leads to the notion of a Lévy-driven Ornstein-Uhlenbeck. For details on Lévy-driven OU processes,
we refer to [Norberg, 2004] and [Cont and Tankov, 2004, Chapter 15.3.3].

Let Z be a compound Poisson process, defined by Zt =
∑Nt

i=1 Yi, where N is a Poisson process
with intensity λ and Y1, Y2, . . . are i.i.d. random variables independent of N . Then, for any t ≥ 0,
Zt has a compound Poisson distribution with intensity λt and compounding variate Y ∼ Y1 and we
write Zt ∼ CPO(λt, Y ).

Proposition 10. Let W be an (Ft)t≥0-Brownian motion, and let Z be a compound Poisson process
(with respect to (Ft)t≥0)) independent of W such that Zt ∼ CPO(λt, Y ), t ≥ 0, with Y > 0 P–a.s..
Let a ∈ R+ and let θ be a strictly positive, bounded and càdlàg function, Then the stochastic process
X = (Xt)t≥0,

Xt =
∫ t

0

σs dWs, t ≥ 0,

with σ such that σ2 is the solution to the SDE

dσ2
t = a(θ(t)− σ2

t−) dt + dZt, t ≥ 0, (11)

with σ2
0 > 0, is a credit quality process in the sense of Definition 3. Moreover, (X, σ) is Markov

process with respect to (Ft)t≥0.

Before checking that X satisfies the conditions of a credit quality process, we state explicit formulas
for the variance σ2 and time-change Λ. The solution of the Lévy-driven OU process from Equation
(11) is obtained by applying the Itô formula to eat σ2

t , and is given by

σ2
t = e−at σ2

0 +
∫ t

0

e−a(t−s) a θ(s) ds +
∑

0<s≤t

e−a(t−s) ∆Zs. (12)
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Increments of the time-change process Λ =
∫ ·
0
σ2

r dr are given by

Λt − Λs =
(
1− e−a(t−s)

) σ2
s

a
+
∫ t

s

θ(r)
(
1− e−a(t−r)

)
dr +

Ls,t

a
, (13)

with

Ls,t :=
∑

s<r≤t

(
1− e−a(t−r)

)
∆Zr, s ≤ t. (14)

This is obtained by integrating each term of Equation (12).

Proof of Proposition 10. That σ is positive is straight-forward from the conditions on θ and Z

and Equation (12). That P(
∫ t

0
σ2

s ds <∞) = 1, t ≥ 0, follows from Equation (13) and the fact that
Z is a Lévy process with paths of finite variation P–a.s.. Similarly, taking into account that λ > 0,
it follows that limt→∞

∫ t

0
σ2

s ds =∞.
That (X, σ) is a Markov process follows e.g. from Theorem 32 of [Protter, 2005], which states

conditions for the solution of a Lévy-driven SDE to be a Markov process).

5.4. Jumps in conditional default probabilities and CDS spreads

We investigate the pathwise propagation of jumps of the volatility process σ to conditional default
probabilities and credit spreads for the Lévy-driven OU variance process. Recall that in Proposition
2 we have already established the absence of jumps in a model with deterministic volatility.

Proposition 11. Let X be the credit quality process with Lévy-driven OU variance process as in
Proposition 10. Let τ = inf{t > 0 : Xt ≤ b} be the associated default time. Fix t > 0 and let
(P (s, t))s≤t be the associated conditional default probability process. Then, for P-almost all ω ∈
{τ > s}, (P (s, t))s≤t is a process whose jumps are positive and

∆σs(ω) = 0 ⇐⇒ ∆P (s, t)(ω) = 0, s < t.

Proof. By the Markov property of (X, σ) and by Equation (9),

P (s, t) = E
(

2N
(

b−Xs√
Λt − Λs

) ∣∣∣Xs, σs

)
, (15)

with Λt − Λs given by (cf. Equation (13)),

Λt − Λs =
(
1− e−a(t−s)

) σ2
s

a
+ h(s, t) +

Ls,t

a
,

with

h(s, t) =
∫ t

s

θ(r)
(
1− e−a(t−r)

)
dr

Ls,t =
∑

s<r≤t

(
1− e−a(t−r)

)
∆Zr.

By Lemma 1, a version of the conditional probability of Equation (15) is given by gs,t(Xs, σs) with

gs,t(x, y) := E

2N

 b− x√(
1− e−a(t−s)

)
y2/a + h(s, t) + Ls,t/a

 . (16)

To derive the claim of the Proposition we require the following:

(i) For fixed s ≤ t, Ls−,t = Ls,t P–a.s.,
(ii) for any sequence (sn, xn, yn)→ (s, x, y),

gsn,t(xn, yn)→ gs,t(x, y), (17)
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(iii) for (b− x) < 0, gs,t(x, y) is strictly increasing in y.

Property (i) follows from the càdlàg property and stochastic continuity of L·,t, cf. [Sato, 1999, p. 6].
For (ii) observe that

b− xn√(
1− e−a(t−sn)

)
y2

n/a + h(sn, t) + Lsn,t/a

→ b− x√(
1− e−a(t−s)

)
y2/a + h(s, t) + Ls,t/a

, P–a.s., as n→∞,

since all the terms in the sum of the denominator converge and the limit of the denominator is greater
0. Equation (17) is obtained by continuity of the Normal distribution and Dominated Convergence.
For (iii) observe that the denominator in Equation (16) is strictly increasing in y and that for
(b− x) < 0, t 7→ N((b− x)/

√
t) is strictly increasing.

Fix gs,t(Xs, σs) as the version of the conditional default probability from Equation (15). Then,
taking into account that X is continuous P–a.s., and that on {τ > s} we have (b − Xs) < 0, we
obtain P–a.s. for every sequence sn ↑ s,

P (s−, t) = lim
sn↑s

gsn,t(Xsn , σsn) = gs,t(Xs, σs−)
{

= gs,t(Xs, σs), if ∆σs = 0
< gs,t(Xs, σs), if ∆σs > 0

}
= P (s, t).

As a consequence of this Proposition, a jump at time s in the volatility process induces a jump in
the conditional default probability process (P (s, t))s≤t for each t > s.

To compute CDS spreads from default probabilities, assume for simplicity that the short rate is
constant, rt = r, t ≥ 0, so that the formula for CDS spreads, Equation (1), becomesc

s(t, T ) :=
(1−R)

∫ T

t
e−r(t−u) P(τ ∈ du|Ft)∫ T

t
e−r(t−u) P(τ > u|Ft) du

, on {τ > t}. (1?)

Proposition 12. Let X be a credit quality process with Lévy-driven OU variance process as in
Proposition 10. Let τ = inf{t > 0 : Xt ≤ b} be the associated default time, let (P (t, u))0≤t≤u, u > 0,
be conditional default probability processes, and let (s(t, T ))0≤t≤T be the CDS spread process for
maturity T . Then (s(t, T ))0≤t≤T is càdlàg, and for t ≤ T and ω ∈ {τ > t},

(i) ∆s(t, T )(ω) = 0 P–a.s., whenever ∆P (t, u)(ω) = 0, u > t and u ≤ T ,
(ii) ∆s(t, T )(ω) > 0 P–a.s., whenever ∆P (t, u)(ω) > 0, u > t and u ≤ T .

Proof. Consider first the integral in the numerator of Equation (1?). For any sequence tn ↑ t, as
n→∞,

lim
tn↑t

∫ T

tn

e−r(u−tn)P(τ ∈ du|Ftn)

= lim
tn↑t

∫ t

tn

e−r(u−tn)P(τ ∈ du|Ftn)︸ ︷︷ ︸
=0

+ lim
tn↑t

∫ T

t

e−r(u−tn)P(τ ∈ du|Ftn
) (18)

where for the first integral, taking into account that {τ > t},

lim
tn↑t

∫ t

tn

e−r(u−tn)P(τ ∈ du|Ftn) ≤ lim
tn↑t

∫ t

tn

P(τ ∈ du|Ftn) = P t
t− = 0.

cIn the general case we have to assume that the short rate is continuous.
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(i) By assumption, limtn→t P(τ ≤ u|Ftn
)(ω) = P(τ ≤ u|Ft)(ω), as n → ∞, t < u ≤ T . Choosing

the regular version of P(τ ∈ ·|Ftn
) for each tn, P(τ ∈ ·|Ftn

)(ω) converges weakly, i.e., P(τ ∈
·|Ftn

)(ω) w→ P(τ ∈ ·|Ft)(ω). It follows by continuity of the integrand and weak convergence
that

lim
tn→t

∫ T

tn

e−r(u−tn)P(τ ∈ du|Ftn) =
∫ T

t

e−r(u−t)P(τ ∈ du|Ft), n→∞,

and consequently by Equation (18) the numerator converges from below. For the denominator
of the CDS spread formula continuity at t follows from Dominated convergence.

(ii) Now assume limtn↑t P(τ ≤ u|Ftn)(ω) < P(τ ≤ u|Ft)(ω), as n → ∞, t < u ≤ T . Observe that
there is more probability mass beyond u when conditioning on Ftn

than when conditioning on
Ft, and since e−ru is decreasing in u,

lim
tn↑t

∫ T

tn

e−r(u−tn)P(τ ∈ du|Ftn
) <

∫ T

t

e−r(u−t)P(τ ∈ du|Ft), n→∞.

Consequently, by Equation (18), the numerator has a positive jump at t. For the denominator
of the CDS spread formula, as n→∞,

lim
tn↑t

∫ T

tn

e−r(u−tn)P(τ > u|Ftn) du

= lim
tn↑t

∫ t

tn

e−r(u−tn)P(τ > u|Ftn) du︸ ︷︷ ︸
≤limtn↑t

R t
tn

1 du=0

+ lim
tn↑t

∫ T

t

e−r(u−tn)P(τ > u|Ftn)du

>

∫ T

t

e−r(u−t)P(τ > u|Ft) du (Dominated Convergence).

Hence, ∆sT
t > 0. For sequences tn ↓ t, convergence follows as in (i).

In a similar way, noting that Λ is continuous, we obtain a corresponding result for CDS spread
processes with a fixed time-to-maturity.

Corollary 13. Let (s(t, t + T ))t≥0 be the CDS spread process for time-to-maturity T . Then, under
the assumptions of Proposition 12, (s(t, t + T ))t≥0 is càdlàg and for t ≤ T and ω ∈ {τ > t},

(i) ∆s(t, t + T )(ω) = 0 P–a.s., whenever ∆P (t, u)(ω) = 0, u > t and u ≤ T + t,
(ii) ∆s(t, t + T )(ω) > 0 P–a.s., whenever ∆P (t, u)(ω) > 0, u > t and u ≤ T + t.

In the previous results we established that a positive jump in σs induces a positive jump at time s in
every default probability process P (s, t), t > s. In turn, this induces a positive jump at time s in each
spread process s(s, t), t > s. In turn, whenever σ is continuous at s, the conditional default processes
and the CDS spread processes are continuous at s. Hence, the credit quality process model does not
include events where CDS spreads jump processes for different maturities jump at different times.
However, recall the observation stated in Section 2 that CDS spreads of different maturities tend to
jump together, cf. [Schneider et al., 2007], the reasoning being that (positive) jumps in CDS spreads
are triggered by the arrival of bad news about the underlying entity and generally this affects the
CDS of all maturities written on that entity.

6. Implementation

The valuation of financial claims in the credit quality process model is done by Monte Carlo simula-
tion. If we have a means for efficiently computing conditional default probabilities P (s, t) = P(τ ≤
t|Xs, σs), 0 ≤ s ≤ t, then Monte Carlo simulation reduces to simulating X and σ. An important
feature of our algorithm is that for valuing a product that involves the quantities P (s, t) or the
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spread s(s, t), we need to simulate only until time s not t. For example, valuation of an option on
a CDS requires simulation until maturity of the option instead of simulation until maturity of the
underlying CDS.

We first examine numerical computation of conditional default probabilities P(τ ≤ t|Xs, σs),
0 ≤ s ≤ t, cf. Equation (9). This requires computing the distribution of Ls,t from Equation (14).
We make use of the following result (see e.g. [Norberg, 2004] for the proof):

Proposition 14. Let Z = (Zt)t≥0 be a compound Poisson process such that Zt ∼ CPO(λt, Y ),
t ≥ 0, and let f : R→ R be an integrable function. Then∫ t

s

f(s) dZs ∼ CPO(λ(t− s), f(S)Y ), s ≤ t,

where S is uniformly distributed over (s, t] and independent of Y .

In our case, for 0 ≤ s ≤ t, Ls,t follows a compound Poisson distribution,

Ls,t ∼ CPO
(
λ(t− s),

(
1− e−a(t−S)

)
Y
)

, (19)

with S uniformly distributed on (s, t]. Inspection of Equation (14) reveals that Ls,t and Lt−s follow

the same distribution, Ls,t
L= Lt−s, hence it suffices to compute the distributions of Lt := L0,t, t ≥ 0.

The following result is useful for efficient numerical computation of the distribution of Lt.

Proposition 15. Let Lt := L0,t be a random variable with compound Poisson distribution as in
Equation (19), with P(Y > 0) P–a.s.. Then, for x ≥ 0, the distribution function of the compounding
variate

(
1− ea(t−S)

)
Y is given by

F (x) = E
(
− ln(1− x/Y )

at
1{[0,1−e−at)}(x/Y )

)
+ P

(
Y ≤ x

1− e−at

)
, x ≥ 0. (20)

Proof. Conditioning under a larger filtration yields

F (x) = P
((

1− e−a(t−S)
)

Y ≤ x
)

= E
(
P
((

1− e−a(t−S)
)

Y ≤ x
∣∣∣Y )) . (21)

By Lemma 1 and the independence of S and Y , a version of the conditional probability is given by
gx(Y ) with gx(y) := P

((
1− e−a(t−S)

)
y ≤ x

)
. Since S ∈ (0, t],

gx(y) =


0, x < (1− e−a(t−t))y = 0,

1, x >= (1− e−at)y,

− ln(1−x/y)
at , x ∈ [0, (1− e−at)y),

where the result for x ∈ [0, (1− e−aty) is obtained by making use of the fact that S/t is uniformly
distributed on (0, 1]. Inserting into Equation (21) yields

F (x) = E
(
− ln(1− x/Y )

at
1{[0,1−e−at)}(x/Y ) + 1{[1−e−at,∞)}(x/Y )

)
= E

(
− ln(1− x/Y )

at
1{[0,1−e−at)}(x/Y )

)
+ P

(
Y ≤ x

1− e−at

)
.

The distribution of Lt can be computed efficiently using the method of [Panjer, 1981], who
states a recursive evaluation formula for a family of compound distributions (see also [McNeil et al.,
2005, Chapter 10]). In our implementation it has proven to be numerically more stable to assume
a discrete distribution of the compounding variate, even though the distribution function of the
compounding variate is continuous. For the compound Poisson case, assume N to be a Poisson
distribution random variable with intensity λ and assume the compounding variate distribution to
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be discrete and defined on the positive integers by fi, i = 1, 2, . . .. The result by Panjer states that
the compound Poisson distribution is given by

gi =
λ

i

i∑
j=1

j fj gi−j , i = 1, 2, . . . ,

whereas the usual form is

gi =
i∑

n=0

f
(n)
i P(N = n), i = 1, 2, . . . ,

where f
(n)
i denotes the n-fold convolution of f at i. By proper scaling the method can also be used

for discrete positive compounding variates not restricted to integers.
To illustrate the pickup in computational speed using Panjer recursion, we compare the compu-

tation of the distribution of Λti , with ti = i/10, i = 0, . . . , 200, for points x = (xi)i=0,...,8000, using
Monte Carlo simulation and Panjer recursion. CPU time of various computations are given in Table
1. The parameters used for the computations are given in Table 3.

Table 1. Monte Carlo simulation vs. Panjer recursion. Computa-
tion of distribution of Λt at 200 time points with 8000 grid points
each. Mean square error is computed with respect to the result
obtained by Panjer recursion. The CPU time consumed by the
Panjer recursion implementation was 331.33 CPU seconds.

number of simulations CPU time (seconds) MSE (at t = 5)

1000 164.28 0.9369
2000 333.70 0.2725
5000 1966.54 0.0589

10000 8554.59 0.0403

For Monte Carlo simulation, we simulate paths of σ and X on a discrete time grid. The simulation
algorithm is given in Algorithm 1. For each time step we compute the default probability term
structure for desired maturities through Equation (9). Note that since Ls,t

L= Lt−s the distributions
of Lt, t ≥ 0, need only be computed once. Additionally, we assume that the deterministic function
θ is time-homogeneous, i.e., at time s the conditional default probability is based on θ(r − s),
s ≤ r ≤ t. This ensures that properties of the original term structure that depend on time-to-
maturity are preserved. Simulating on a discrete time grid underestimates the occurrence of the
default event. This is overcome by sampling an indicator variable that determines whether default
has occurred or not between two time points. Taking into account that X is a Brownian motion with
a continuous time-change, the indicator takes value 1 with probability e−2(b−Xti−1 )(b−Xti

)/(Λti
−Λti−1 )

(cf. [Karatzas and Shreve, 1998, p. 265] or [Glasserman, 2004, p. 368]).
To compute CDS spreads from default probabilities we use a well-known approximation called

the credit triangle. Under the assumptions that the interest rate curve and the CDS spread curves
are flat and that CDS spreads are paid continuously, the formula for the CDS spread, Equation (1),
becomes

s(t, T ) = λt,T (1−R), t ≤ T,

with λt,T the hazard rate derived from P (t, T ) = 1− e−λt,T (T−t).

7. Valuation of the leveraged credit-linked note

As an example we illustrate valuation of the leveraged credit-linked note (leveraged CLN) of Section
2. Recall that the note is unwound at the trigger time S := inf{t ≥ 0 : V k

t > K}, where V k
t is
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Input: t1 = 0 < . . . < tn // time discretisation
x1 = 0 < . . . < xm // space discretisation
u1, . . . , ur // desired maturities
N // number of simulations
b // default barrier
a, θ, λ, σ2

0 , F // volatility process parameters, F jump size distribution
1: // Panjer recursion
2: for i = 1 to n do
3: for j = 1 to m do
4: compute P(Lti ∈ [xj−1, xj))
5: end for
6: end for
7: // simulation step
8: for k = 1 to N do
9: τk ←∞ // default time of k-th simulation

10: for i = 1 to n do
11: simulate σk

ti
and Xk

ti

12: sample d← 1{minti−1<s≤ti
Xs≤b} conditional on Xti−1 and Xti // (see text)

13: if d = 1 or Xk
ti
≤ b then

14: τk ← ti
15: next k // exit k-th simulation
16: end if
17: for l = 1 to r do
18: if ul > ti then

19: h←
(
1− e−a(ul−ti)

) σ2
ti

a +
∫ ul−ti

0
θ(r)

(
1− e−a(ul−ti−r)

)
dr

20: P (ti, ul)← 2
∑m

k=1 N
(

b−Xti√
h+xk−1/a

)
P (Lul−ti

∈ [xk−1, xk))

21: s(ti, ul)← (1−R) − ln(1−P (ti,ul))
ul−ti

// credit triangle
22: end if
23: end for
24: end for
25: end for

Algorithm 1: Computation of conditional default probabilities

the mark-to-market value (from the point of view of a CDS protection buyer) of k CDS positions
entered at time 0 with maturity T , and K is the trigger level. The notional of the note, 1, is then
used to finance the closing of the position. However, in the case where V k

S > 1, the issuer must cover
the resulting gap. To compensate for this risk, the issuer receives the gap risk fee (k − k̃)s(0, T ).

Again, for simplicity, assume that interest rates are constant. The mark-to-market of a CDS
entered at time 0 with maturity T at time t on {τ > t} is

Vt = (s(t, T )− s(0, T ))
∫ T

t

e−r(u−t) P(τ > u|Ft) du.

Set Vτ := (1− R). Assuming continuous CDS spread payments, the value of the leveraged CLN at
time 0 is obtained by taking expectation under a risk-neutral measure of the discounted cash-flows
of the note issuer,

V LCLN
0 = E

(
(k − k̃)s(0, T )

∫ T

0

e−ru1{S>u} du− e−rS max(V k
S − 1, 0)

)

= (k − k̃)s(0, T )
∫ T

0

e−ruP(S > u) du−
∫ T

0

e−ru max(V k
u − 1, 0)P(S ∈ du).
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The fair gap risk fee is obtained by setting V LCLN
0 = 0, i.e.,

(k − k̃)s(0, T ) =

∫ T

0
e−ru max(V k

u − 1, 0)P(S ∈ du)∫ T

0
e−ru P(S > u) du

.

From the output of the Monte Carlo algorithm, for each simulation path, we compute the required
mark-to-market values, determine the trigger time S, and compute the gap risk fee. Averaging over
all scenarios is then an estimator for the fair gap risk fee.

As an example we compute the fair factor k̃ for a leveraged credit-linked note with a maturity
of 5 years, a leverage factor of k = 5 and a trigger level of K = 60%. The initial CDS spread is
180 bp; the interest rate is r = 5%. The variance process σ2 of the credit quality process has a
jump intensity of λ = 1, where the jump size is 0.1 with probability 0.95 and 50 with probability
0.05, respectively. The full parameter set of the credit quality process is given in Table 3 and will
be explained in more detail in the following Section. The factor k̃ computed as the mean of 1000
simulations is 3.611 (standard deviation 0.778). Compare this to a model without jumps (λ = 0),
where the fair factor k̃ = k = 5 as there is no gap risk.

8. Calibration

Calibration of the model consists of assigning the following parameters:

(i) Default barrier b: The choice of b is arbitrary, provided b < 0. Fixing a time-horizon T we set

b :=
√

T ·N(−1)

(
P(τ ≤ T )

2

)
.

This implies P(τ ≤ T ) = 2N(b/
√

T ), which is the probability of hitting the barrier b until T if
the credit quality process were a Brownian motion.

(ii) Deterministic function θ and initial variance σ0: Given the other parameters, θ and σ0 are
chosen as to reproduce a given term structure of default probabilities using Equation (10).

(iii) Mean reversion a, jump intensity λ, jump size distribution F : These parameters determine the
dynamics of default probabilities and CDS spreads. As it turns out, they also influence the
quality of the calibration to the given term structure (this is explained below).

In order to assign these parameters recall the stylised facts of the term structure of credit spreads
that were mentioned in Section 2: The two risk types that govern credit spreads are jump-to-default
risk and the risk of credit quality changes. CDS spreads of short time-to-maturity are dominated
by jump-to-default risk. CDS spreads exhibit frequent positive jumps, which are attributed to the
arrival of bad news.

Calibrating to the given term structure means assigning the deterministic function θ, given all
other parameters, such that the given term structure is recovered. We choose θ as a piecewise constant
function based on the time-grid of given default probabilities. Typically, due to the constraints on
θ, perfect calibration to the given term structure is not possible. Calibration errors at the short end
of the credit spread term structure indicate that the parameters for the dynamics are not chosen
well.d In particular, large values of θ at the short end indicate a poor calibration, since essentially
jump-to-default risk is compensated by the deterministic function θ. A reasonable calibration should
therefore lead to values of θ that are near zero at the short end. Likewise, a low initial volatility σ0

leads to better calibration results. Figure 2 shows a calibration example to a given term structure
of survival probabilities, where the survival probability is given P(τ > t) = e−ht, with h = 3% the

dTheoretically, relaxing the constraint that θ be bounded and non-negative (merely requiring suitable integrability),
and assuming a deterministic model, i.e., λ = 0, perfect calibration to the market-given spot curve is achieved by
determining θ using the time transformation of the Overbeck-Schmidt model, Equation (2). In practice, this turns
out to be numerically unstable. In particular, interpolation may lead to negative values for the variance.
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Fig. 2. Survival curve, original data and fitted data. See Tables 3 and 4 for parameters.
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Fig. 3. Default probabilities (left) and CDS spreads (right) as a function of the level of the credit quality process Xt

and σ2
t = 0.2 for time-to-maturities (T − t) of 3, 5, 7 and 10 years. Parameters as Tables 3 and 4.

hazard rate. The parameters of the example are given in Table 3, and the values for θ resulting from
calibration are listed in Table 4.

The remaining parameters determine the dynamics of the model. It is useful to distinguish those
parameters that control large jumps in volatility and those that control small jumps and the diffusion
component of the volatility process. Even though our model does not include jump-to-default events,
a large jump in volatility may lead to a default in a very short time interval. Small jumps and the
continuous component of the volatility process in turn determine the risk of credit quality changes.
When calibrating to a given term structure, we find that “near-jump-to-default” risk and credit
quality risk offset each other, i.e., assigning increasing risk of large jumps (either in terms of jump
size or probability) leads to a reduction in credit quality risk and vice versa.

Consider the Lévy-driven OU process with discrete jump size distribution c = (0.1, 50) with
corresponding probabilities p = (0.95, 0.05) and jump intensity λ = 1 (by Propositions 11 and 12
this is also the jump intensity of default probabilities and CDS spreads). The full set of parameters
is given in Table 3. Figure 3 shows the default probabilities and CDS spreads for various time-to-
maturities as a function of the level of the credit quality process Xt and a fixed level of σ2

t = 0.2.
The probabilities of X hitting a particular level within a time horizon is given in Table 2. Figures
4 and 5 show the jump size in default probabilities and CDS spreads with respect to the level of X

and σ2 when a jump in the volatility process of size 0.1 and 50, respectively, occurs. Finally, two
example scenarios are given in Figure 6.
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Table 2. From left to right: (a) probability of hitting a level k when Xt = 0: P(mint<s≤T−t Xs ≤ k|Xt = 0); (b)
probability of hitting the default barrier b from a given level Xt = k: P(mint<s≤T−t Xs ≤ b|Xt = k); (c) CDS spreads
that correspond to default probabilities in (b). Parameters as in Tables 3 and 4.

(a) (b) (c)
k T − t = 3 5 10 T − t = 3 5 10 T − t = 3 5 10

3 0.08 0.15 0.28 0.04 0.07 0.15 79.44 90.93 98.24
2 0.12 0.22 0.39 0.05 0.09 0.18 101.38 113.06 119.80
1 0.34 0.48 0.62 0.06 0.11 0.22 127.69 139.14 145.45
-1 0.34 0.48 0.62 0.10 0.18 0.34 211.54 241.79 248.18
-2 0.12 0.22 0.39 0.22 0.35 0.52 487.84 519.04 439.20
-3 0.08 0.15 0.28 0.71 0.79 0.85 2484.59 1845.13 1143.56
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Fig. 4. Jump size of 5-year default probability (left) and 5-year CDS spread (right) with respect to level of Xt and
σt when a jump of size 0.1 occurs in σ2

t . Parameters as in Tables 3 and 4.
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Fig. 5. Jump size of of 5-year default probability (left) and 5-year CDS spread (right) with respect to level of X and
σ when a jump of size 50 occurs in σ2

t . Parameters as in Tables 3 and 4.



20

-1

-0.5

0

0.5

1

0 2 4 6 8 10t
-8

-6

-4

-2

0

2

4

6

8

0 2 4 6 8 10t

credit quality and variance processes

0 2 4 6 8 10t 12345678910

ttm
0

0.05
0.1

0.15
0.2

0.25
0.3

default probabilities (time-to-maturity processes)

0 2 4 6 8 10t 12345678910

ttm
0

0.2
0.4
0.6
0.8

1

0 2 4 6 8 10t 12345678910

ttm
0

50

100

150

200

credit spreads (time-to-maturity processes) [bp]

0 2 4 6 8 10t 12345678910

ttm
0

1000
2000
3000
4000
5000
6000

Fig. 6. Two scenarios (left and right) over a time horizon of 10 years. Top: credit quality process and volatility
(dashed), jump times are marked in the grid; middle: default probabilities for 3, 5, 10 years time-to-maturity (ttm).
bottom: CDS spreads (bottom) for 3, 5, 10 years time-to-maturity. Parameters as in Tables 3 and 4. The scenario on
the right has a large jump, which leads to default.

Table 3. Parameters used in example

Parameter Value

hazard rate h 0.03
recovery rate R 0.4
mean reversion a 1
jump intensity λ 1
jump size c {0.1, 50} with prob. {0.95, 0.05}
barrier b −3.3695
initial variance σ2

0 0.2
discretization for CPO distribution x = (xi)i=0,...,8000, xi = i/20

Table 4. θ as determined by calibration

t θ(t) t θ(t)

0 1.24630 10 0.00482
1 0.05480 11 0.00485
2 0.29490 12 0.01452
3 0.19158 13 0.00122
4 0.07052 14 0.00696
5 0.08591 15 0.03297
6 0.00007 16 0.08675
7 0.00002 17 0.02841
8 0.00150 18 0.10331
9 0.00052 19 0.11849
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