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Abstract 
 

Variable Annuities with embedded guarantees are very popular in the US market. There 
exists a great variety of products with both, guaranteed minimum death benefits (GMDB) 
and guaranteed minimum living benefits (GMLB). Although several approaches for pricing 
some of the corresponding guarantees have been proposed in the academic literature, there 
is no general framework in which the existing variety of such guarantees can be priced 
consistently. The present paper fills this gap by introducing a model, which permits a 
consistent and extensive analysis of all types of guarantees currently offered within Variable 
Annuity contracts. Besides a valuation assuming that the policyholder follows a given 
strategy with respect to surrender and withdrawals, we are able to price the contract under 
optimal policyholder behavior. Using both, Monte-Carlo methods and a generalization of a 
finite mesh discretization approach, we find that some guarantees are overpriced, whereas 
others, e.g. guaranteed annuities within guaranteed minimum income benefits (GMIB), are 
offered significantly below their risk-neutral value. 
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1 Introduction 
Variable Annuities, i.e. deferred annuities that are fund-linked during the deferment period 
were introduced in the 1970s in the United States (see Sloane (1970)). Starting in the 1990s, 
insurers included certain guarantees in such policies, namely guaranteed minimum death 
benefits (GMDB) as well as guaranteed minimum living benefits (GMLB). The GMLB options 
can be categorized in three main groups: Guaranteed minimum accumulation benefits 
(GMAB) provide a guaranteed minimum survival benefit at some specified point in the future 
to protect policyholders against decreasing stock markets. Products with guaranteed 
minimum income benefits (GMIB) come with a similar guaranteed value G at some point in 
time T. However, the guarantee only applies if this guaranteed value is converted into an 
annuity using given annuitization rates. Thus, besides the standard possibilities to take the 
market value of the fund units (without guarantee) or convert the market value of the fund 
units into a lifelong annuity using the current annuity conversion rates at time T, the GMIB 
option gives the policyholder a third choice, namely converting some guaranteed amount G 
into an annuity using annuitization rates that are fixed at inception of the contract (t=0). The 
third kind of guaranteed minimum living benefits are so-called guaranteed minimum 
withdrawal benefits (GMWB). Here, a specified amount is guaranteed for withdrawals during 
the life of the contract as long as both the amount that is withdrawn within each policy year 
and the total amount that is withdrawn over the term of the policy stay within certain limits. 
Commonly, guaranteed annual withdrawals of up to 7% of the (single up-front) premium are 
guaranteed under the condition that the sum of the withdrawals does not exceed the single 
premium. Thus, it may happen that the insured can withdraw money from the policy, even if 
the value of the account is zero. Such guarantees are rather complex since the insured has a 
broad variety of choices. 

Most of the earlier literature on Variable Annuities, e.g., Rentz Jr. (1972) or Greene (1973) is 
empirical work dealing with product comparisons rather than pricing issues. It was not until 
recently, that the special types of guarantees were discussed by practitioners (cf. JPMorgan 
(2004), Lehman Brothers (2005)), or analyzed in the academic literature.  

Milevsky und Posner (2001) price various types of guaranteed minimum death benefits. They 
present closed form solutions for this “Titanic Option”3 in case of an exponential mortality 
law and numerical results for the more realistic Gompertz-Makeham law. They find that in 
general these guarantees are overpriced in the market. 

In Milevsky und Salisbury (2002), a model for the valuation of certain GMLB and GMDB 
options is presented in a framework where the insured has the possibility to partially 
surrender the policy. The authors call this a “Real Option to Lapse”4. They present closed 
                                            

3 The authors denote this option as “Titanic Option” since the payment structure falls between 
European and American Options and the payment is triggered by the decease of the insured. 

4 Their “Real Option” is a financial rather than a real option in the classical sense (cf. Myers (1977)). 
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form solutions in the case of an exponential mortality law, constant surrender fees and no 
maturity benefits. It is shown that both, the value and the optimal surrender strategy, are 
highly dependent on the amount of the guarantee and of the surrender fee. Ulm (2006) 
additionally considers the “real” option to transfer funds between fixed and variable 
accounts, and analyzes the impact of this option on the GMDB rider and contract as a whole, 
respectively.  

In Milevsky und Salisbury (2006), the same authors price GMWB options. Besides a static 
approach, where deterministic withdrawal strategies are assumed, they calculate the value of 
the option in a dynamic approach. Here, the option is valuated under optimal policyholder 
behavior. They show that under realistic parameter assumptions optimally at least the 
annually guaranteed withdrawal amount should be withdrawn. Furthermore, they find that 
such options are usually underpriced in the market. 

In spite of these approaches for the pricing of several options offered in Variable Annuities, 
there is no general framework in which the existing variety of such options can be priced 
consistently and simultaneously. The present paper fills this gap. In particular, we present a 
general framework in which any design of options and guarantees currently offered within 
Variable Annuities can be modeled. Asides from the valuation of a contract assuming that the 
policyholder follows a given strategy with respect to surrender and withdrawals, we are also 
able to determine an optimal withdrawal and surrender strategy, and price contracts under 
this rational strategy. 

The rest of the paper is organized as follows. In Section 2, we give a brief overview over the 
existing forms of guarantees in Variable Annuities. Section 3 introduces the general pricing 
framework for such guarantees. We show how any particular contract can be modeled within 
this framework. Furthermore, we explain how a given contract can be priced assuming both, 
deterministic withdrawal strategies and “optimal” strategies. The latter is referred to as the 
case of rational policyholders. Due to the complexity of the products, in general there are no 
closed form solutions for the valuation problem. Therefore, we have to rely on numerical 
methods. In Section 4, we present a Monte Carlo algorithm as well as a discretization 
approach based on generalizations of the ideas of Tanskanen und Lukkarinen (2004). The 
latter enables us to price the contracts under the assumption of rational policyholders. Our 
results are presented in Section 5. We present the values for a variety of contracts, analyze 
the influence of several parameters and give economic interpretations. Section 6 closes with 
a summary of the main results and an outlook for future research. 

2 Guaranteed Minimum Benefits 
This Section introduces and categorizes predominant guarantees offered within Variable 
Annuity contracts. After a brief introduction of Variable Annuities in general in Section 2.1, 
we dwell on the offered Guaranteed Minimum Death Benefits (Section 2.2) and Guaranteed 
Minimum Living Benefits (Section 2.3). We explain the guarantees from the customer’s point 
of view and give an overview over fees that are usually charged. 
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2.1 Variable Annuities  

Variable Annuities are deferred, fund-linked annuity contracts, usually with a single premium 
payment up-front. Therefore, in what follows we restrict ourselves to single premium 
policies. When concluding the contract, the insured are frequently offered optional 
guarantees, which are paid for by additional fees.  

The single premium P is invested in one or several mutual funds. We call the value At of the 
insured’s individual portfolio the insured’s account value. Customers can usually influence the 
risk-return profile of their investment by choosing from a selection of different mutual funds. 
All fees are taken out of the account by cancellation of fund units. Furthermore, the insured 
has the possibility to surrender the contract, to withdraw a portion of the account value 
(partial surrender), or to annuitize the account value after a minimum term. 

The following technical terms are needed to describe the considered guarantees: The ratchet 
benefit base at a certain point in time t is the maximum of the insured’s account value at 
certain previous points in time. Usually, it denotes the maximum value of the account on all 
past policy anniversary dates. This special case is also referred to as annual ratchet benefit 
base. In order to simplify notation, in what follows, we only consider products with annual 
ratchet guarantees. 

Furthermore, the roll-up benefit base is the theoretical value that results from compounding 
the single premium P with a constant interest rate of i % p.a. We call this interest rate the 
roll-up rate. 

2.2 Guaranteed Minimum Death Benefits  

If the insured dies during the deferment period, the dependants obtain a death benefit. 
When Variable Annuities were introduced, a very simple form of death benefit was 
predominant in the market. However, since the mid 1990s, insurers started to offer a broad 
variety of death benefit designs (cf. Lehmann Brothers (2005)).   

The basic form of a death benefit is the so-called Return of Premium Death Benefit. Here, 
the maximum of the current account value at time of death and the single premium is paid. 
The price for this kind of benefit usually is already included in the charges of the contract, 
i.e. this option is available without additional charges.  

Another variant is the Annual Roll-Up Death Benefit. Here, the death benefit is the maximum 
of the roll-up benefit base (often with a roll-up rate of 5% or 6%) and the account value.  A 
typical fee for that death benefit with a roll-up rate of 6% is approximately 0.25% p.a. of the 
account value (see, e.g., JPMorgan (2004)). 

If the contract contains an Annual Ratchet Death Benefit, the death benefit consists of the 
greater of the annual ratchet benefit base and the current account value. The charges for 
this type of death benefit are similar. 
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Furthermore, the variant Greater of Annual Ratchet or Annual Roll-Up Death Benefit is 
offered. With this kind of option, the greater of the roll-up benefit base and the annual 
ratchet benefit base, but at least the current account value is paid out as the death benefit. 
With a roll-up rate of i=6%, insurers typically charge about 0.6% p.a. for this guarantee 
(see, e.g., JPMorgan (2004)). 

2.3 Guaranteed Minimum Living Benefits 

It was not until the late 1990s that Guaranteed Minimum Living Benefits have been offered 
in the market. Today, GMLB are very popular.  

The two earliest forms, Guaranteed Minimum Accumulation Benefits (GMAB) and Guaranteed 
Minimum Income Benefits (GMIB) originated almost at the same time. Both guarantees offer 
the insured a guaranteed maturity benefit, i.e. a minimum benefit at the maturity T of the 
contract. However, with the GMIB, this guarantee only applies if the account value is 
annuitized. Since 2002, a new form of GMLB is offered, the so-called Guaranteed Minimum 
Withdrawal Benefit (GMWB). Here, the insured is entitled to withdraw a pre-specified amount 
annually, even if the account value has fallen below this amount. These guarantees are 
extremely popular. In 2004, 69% of all Variable Annuity contracts sold included a GMWB 
option. Each of the 15 largest Variable Annuity providers offered this kind of guarantee at 
this time (cf. Lehmann Brothers (2005)). 

2.3.1 Guaranteed Minimum Accumulation Benefits (GMAB) 

Guaranteed Minimum Accumulation Benefits are the simplest form of guaranteed living 

benefits. Here, the customer is entitled to a minimal account value A
TG  at maturity T of the 

contract. Usually, A
TG  is the single premium P, sometimes a roll-up benefit base. The 

corresponding fees vary between 0.25% and 0.75% p.a. of the account value (cf. Mueller 
(2006)). 

2.3.2 Guaranteed Minimum Income Benefits (GMIB) 

At maturity of a Variable Annuity with a GMIB, the policyholder can as usual choose to obtain 
the account value (without guarantee) or annuitize the account value at current market 
conditions (also without any guarantee). However, the GMIB option offers an additional 

choice: The policyholder may annuitize some guaranteed amount I
TG  at annuitization rates 

that have been specified up-front. Therefore, this option can also be interpreted as a 
guaranteed annuity, starting at t=T, where the annuity payments have already been 
specified at t=0.  

Note that if the account value at maturity is below the guaranteed value I
TG , the customer 

cannot take out the guaranteed capital I
TG  as a lump sum but only in the form of an annuity 

at the pre-specified annuitization rates. Thus, the option is “in the money” at time T if the 
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resulting annuity payments exceed the annuity payments resulting from converting the 
actual account value at current annuity rates.   

The guaranteed amount I
TG usually is a roll-up benefit base with, e.g., i = 5% or 6%, or a 

ratchet benefit base. Sometimes there is not one specified maturity, but the policyholder can 
annuitize within a certain (often rather long) time period. The offered roll-up rates frequently 
exceed the risk-free rate of interest, whereas the pre-specified annuitization factors are 
usually rather conservative. Thus, at maturity the option might not be in the money, even if 
the guaranteed amount exceeds the account value. Furthermore, the pricing of these 
guarantees is often based on certain assumptions about the customers’ behavior rather than 
assuming that everybody exercises the option when it is in the money. Such assumptions 
reduce the option value.5 Depending on the specific form of the guarantee, the current fees 
for GMIB contracts typically vary between 0.5% and 0.75% p.a. of the account value.  

2.3.3 Guaranteed Minimum Withdrawal Benefits (GMWB) 

Products with a GMWB option give the policyholder the possibility to withdraw a specified 

amount WG 0 (usually the single premium) in small portions. Typically, the insured is entitled 

to annually withdraw a certain proportion xW of this amount WG 0 , even if the account value 

has fallen to zero. At maturity, the policyholder can take out or annuitize any remaining 
funds if the account value did not vanish due to such withdrawals. 

Recently, several forms of so-called Step-up GMWB options have been introduced: With one 
popular version, the total guaranteed amount which can be withdrawn is increased by a 
predefined ratio at certain points in time, if no withdrawals have been made so far. In what 
follows, we will only analyze this form of Step-up GMWB. Alternatively, there are products in 
the market, where at certain points in time, the remaining total guaranteed amount which 
can be withdrawn is increased to the maximum of the old remaining guaranteed amount and 
the current account value. 

The latest development in this area are so-called “GMWB for life” options, where only some 
maximum amount to be withdrawn each year is specified but no total withdrawal amount. 

This feature can be analyzed within our model by letting ∞=WG 0  and ∞=T . 

From a financial point of view, GMWB options are highly complex, since the insured can 
decide at any point in time whether and, if so, how much to withdraw. They are currently 
offered for between 0.4% and 0.65% p.a. of the account value. However, Milevsky and 
Salisbury (2006) find that these guarantees are substantially underpriced. They conclude 
that insurers either assume a suboptimal customer behavior or use charges from other 
(overpriced) guarantees to cross-subsidize these guarantees.  

                                            

5 Cf. Milevsky and Salisbury (2006). 
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While this summary of GMDB and GMLB options covers all the basic designs, a complete 
description of all possible variants would be beyond the scope of this paper. Thus, some 
products offered in the market may have features that differ from the descriptions above. 
For current information regarding Variable Annuity products, types of guarantees, and 
current fees, we refer, e.g., to www.annuityfyi.com. 

Our model and notation presented in the following Section is designed to cover all the 
guarantees described in this Section as special cases. Of course, the underlying general 
framework allows for any specific variations of the guarantees that might deviate from the 
products described above.    

3 A General Valuation Framework for Guaranteed Minimum 
Benefits 

3.1 The Financial Market 

As usual in this context, we assume that there exists a probability space (Ω,F,Q) equipped 
with a filtration F ( ) [ ]Ttt ,0∈ℑ= , where Q is a risk-neutral measure under which, according to 

the Risk-Neutral valuation formula (cf. Bingham and Kiesel (2004)), payment streams can be 
valued as expected discounted values. Existence of this measure also implies that the 
financial market is arbitrage free and that there exists some self-financing investment 
strategy which allows the insurer to hedge his liabilities. We use a bank account ( ) [ ]TttB ,0∈  as 

the numéraire process, which evolves according to  

0, 0 >= Bdtr
B
dB

t
t

t .          (1) 

Here, rt denotes the short rate of interest at time t. 

We further assume that the underlying mutual fund St of the Variable Annuity is modeled as 
a right-continuous F –adapted stochastic process with finite left limits (RCLL).6 In particular, 

the discounted asset process 
[ ]Ttt

t

B
S

,0∈
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
is a Q-martingale. For convenience, we assume 

.100 == BS   

3.2 A Model for the Insurance Contract 

In what follows, we present a model suitable for the description and valuation of variable 
annuity contracts. Within this framework, any combination of guarantees introduced in 

                                            

6 For our numerical calculations, we assume that S evolves according to a geometric Brownian motion 
with constant coefficients.  
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Section 2 can be represented. In our numerical analysis however, we restrict ourselves to 
contracts with at most one GMDB and one GMLB option. 

We consider a Variable Annuity contract with a finite integer maturity T, which is taken out 
at time 0=t  for a single premium P. Although the model generally allows for flexible 
expiration options, in order to simplify the notation, we only consider a fixed maturity T. We 
denote the account value by At and ignore any up-front charges. Therefore, we have PA =0 . 

During the term of the contract, we only consider the charges which are relevant for the 
guarantees, i.e. continuously deducted charges for the guarantees and a surrender fee. The 
surrender fee is charged for any withdrawal of funds from the contract except for 
guaranteed withdrawals within a GMWB option. The continuously deducted guarantee fee 
ϕ  is proportional to the account value and the surrender fee s is proportional to the 
respective amount withdrawn. 

In order to valuate the benefits of the contract, we start by defining two virtual accounts: Wt 
denotes the value of the cumulative withdrawals up to time t. We will refer to it as the 
withdrawal account. Every withdrawal is credited to this account and compounded with the 
risk-free rate of interest up to maturity T. At time zero, we have W0 = 0.  

Similarly, by Dt we denote the value of the death benefits paid up to time t. Analogously to 
the withdrawals, we credit death benefit payments to this death benefit account and 
compound the value of this account with the risk-free rate until time T. Since we assume the 
insured to be alive at time zero, we obviously have D0 = 0. 

In order to describe the evolution of the contract and the embedded guarantees, we also 
need the following processes:  

The guaranteed minimum death benefit at time t is denoted by D
tG . Thus, the death benefit 

at time t is given by { }D
tt GA ;max . We let 00 AG D =  if the contract contains one of the 

described GMDB options (cf. Section 2.2), otherwise we let 00 =DG . The evolution of D
tG  

over time depends on the type of the GMDB option included in the contract. It will be 
described in detail in Section 3.3. 

The guaranteed maturity benefit of the GMAB option is denoted by A
TG . In order to account 

for possible changes of the guarantee over the term of the contract, we let ( ) [ ]Tt
A
tG ,0∈  

represent the evolution of this guarantee (see Section 2.3.1 for details). We have 00 AG A =  

for contracts with one of the described GMAB options and 00 =AG  for contracts without a 

GMAB option.  
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Analogously, we let I
TG  denote the guaranteed maturity benefit that can be annuitized in 

the case of a GMIB option and model its development by ( ) [ ]Tt
I
tG ,0∈ . Also, we have 

00 AG I = and 00 =IG  for contracts with and without a GMIB option, respectively. 

Finally, to be able to represent GMWB options, we introduce the processes ( ) [ ]Tt
W
tG ,0∈  and 

( ) [ ]Tt
E
tG ,0∈ . W

tG  denotes the remaining total amount that can be withdrawn after time t, and 

E
tG is the maximum amount that can be withdrawn annually due to the GMWB option. If the 

contract contains a GMWB, we let 00 AG W =  and 00 AxG W
E = , where Wx is the portion of the 

premium that can be withdrawn annually.  For contracts without GMWB, we let 

000 == EW GG . The evolution over time of these processes is also explained in detail in 

Section 3.3. 

Due to the Markov-property7 of the underlying processes, all information available at time t is 

completely contained in the so-called state variables tA , tW , tD , A
tG , I

tG , D
tG , W

tG  and 
E
tG . To simplify notation, we introduce the following state vector 

( )E
t

W
t

D
t

I
t

A
ttttt GGGGGDWAy ,,,,,,,= . 

3.3 Evolution of the Insurance Contract 

During the term of the contract there are four possible types of events: the insured can  

• withdraw funds as a guaranteed withdrawal of a GMWB option,  

• perform a partial surrender, i.e. withdraw more than the guaranteed withdrawal 
amount,  

• completely surrender the contract, or  

• pass away.  

For the sake of simplicity, we assume that all these events can only occur at a policy 
anniversary date. Therefore, at integer time points Tt ,...,2,1= , for all state variables we 

distinguish between −⋅ t)(  and +⋅ t)( , i.e. the value immediately before and after the occurrence 

of such events, respectively. 

The starting values at 0=t  of all accounts and processes describing the contract were given 
in Section 3.2. Now, we will describe their evolution in two steps: First, for 1,...,2,1,0 −= Tt , 

the development within a policy year, i.e. from t+ to (t+1)- is specified. Subsequently, we will 

                                            

7 See Section 5.3.2 in Bingham and Kiesel (2004). 
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describe the transition from (t+1)-
 to (t+1)+, which depends on the type of guarantees 

included in the contract and the occurrence of the described events. Finally, we describe the 
maturity benefits of the contract. 

3.3.1 Development between t+ and (t+1)-  

As indicated in Section 3.1, the price of the underlying mutual fund evolves stochastically 
over time. Thus, taking into account continuous guarantee fees ϕ, for the account value we 
have  

  ϕ−++−
+ ⋅= e

S
SAA

t

t
tt

1
1 .              (2) 

The accounts Wt and Dt are compounded with the risk-free rate of interest, i.e. 

∫
=

+

+−
+

1

1

t

t
sdsr

tt eWW  and 
∫+−

+

+

=
1

1

t

t
sdsr

tt eDD . 

The development of the processes D
tG , A

tG  and I
TG  depends on the specification of the 

corresponding GMDB, GMAB and GMIB option: if the corresponding guaranteed benefit is the 

single premium or if the option is not included, we let +−
+ = IAD

t
IAD

t GG ////
1 . If the guaranteed 

benefit is a roll-up base with roll-up rate i, we set ( )iGG IAD
t

IAD
t += +−

+ 1////
1 . For ratchet 

guarantees, we have  +−
+ = IAD

t
IAD

t GG ////
1 , since the ratchet base is adjusted after possible 

withdrawals, and therefore considered in the transition from (t+1)-
 to (t+1)+ (cf. Section 

3.3.2). 

The processes W
tG  and E

tG  do not change during the year, i.e. +−
+ = EW

t
EW

t GG //
1 . 

3.3.2 Transition from (t+1)- to (t+1)+ 

At the policy anniversary date, we distinguish four cases: 

a) The insured dies within the period (t,t+1]  

Since our model only allows for death at the end of the year, dying within the period (t,t+1]  
is equivalent to a death at time t+1. The death benefit is credited to the death benefit 
account and will then be compounded with the risk-free rate until maturity T: 

};max{ 1111
−
+

−
+

−
+

+
+ += t

D
ttt AGDD . Since after death, no future benefits are possible, we let 

01 =+
+tA  as well as 0////

1 =+
+

EDWIA
tG . The withdrawal account, where possible prior 

withdrawals have been collected, will not be changed, i.e. −
+

+
+ = 11 tt WW . This account will be 

compounded until maturity. 
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b) The insured survives the year (t,t+1] and does not take any action (withdrawal, 
surrender) at time t+1  

Here, neither the account D nor W is changed. Thus, we have −
+

+
+ = 11 tt AA , −

+
+
+ = 11 tt DD  and 

−
+

+
+ = 11 tt WW . For the GMAB, GMIB, and GMDB, without a ratchet type guarantee, we also 

have −
+

+
+ = DIA

t
DIA

t GG //
1

//
1 . If, however, one or more of these guarantees are of ratchet type, 

we adjust the corresponding guarantee account by { }+
+

−
+

+
+ = 1

//
1

//
1 ;max t

DIA
t

DIA
t AGG . 

If the contract includes a GMWB option with step-up and t+1 is a step-up point, the GMWB 
processes are adjusted according to the step-up feature, but only if there were no past 
withdrawals: If 

1+tWi denotes the factor, by which the total amount to be withdrawn is 

increased (cf. Section 2.3.3), we get { }( )
11 011 1

+
−
+

⋅Ι+=
=

−
+

+
+ tt WW

W
t

W
t iGG  and +

+
+

+ ⋅= W
tW

E
t GxG 11 . In 

any other case, we have −
+

+
+ = EW

t
EW

t GG /
1

/
1 . 

c) The insured survives the year (t,t+1] and withdraws an amount within the limits of the 
GMWB option 

A withdrawal within the limits of the GMWB is a withdrawal of an amount 

{ }−
+

−
++ ≤ W

t
E
tt GGE 111 ;min , since the withdrawn amount may neither exceed the maximal annual 

withdrawal amount −
+

E
tG 1  nor the remaining total withdrawal amount −

+
W
tG 1 . 

The account value is reduced by the withdrawn amount. In case the withdrawn amount 
exceeds the account value, the account value is reduced to 0. Thus, we have 

{ }111 ;0max +
−
+

+
+ −= ttt EAA . Also, the remaining total withdrawal amount is reduced by the 

withdrawn amount, i.e. 111 +
−

+
+

+ −= t
W
t

W
t EGG . Furthermore, the withdrawn amount is credited to 

the withdrawal account: 111 +
−
+

+
+ += ttt EWW . The maximal annual withdrawal amount as well 

as the death benefit account remain unchanged: −
+

+
+ = E

t
E
t GG 11  and −

+
+
+ = 11 tt DD . 

Usually, living benefit guarantees (GMAB and GMIB) and, in order to avoid adverse selection 
effects, also the guaranteed death benefits are reduced in case of a withdrawal. We will 
restrict our considerations to a so-called pro rata adjustment. Here, guarantees which are 
not of ratchet type are reduced at the same rate as the account value, i.e. 
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−
+−

+

+
++

+ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= DIA

t
t

tDIA
t G

A
A

G //
1

1

1//
1 . If one or more of the guarantees are of ratchet type, for the 

respective guarantees, we let 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

+−
+

+
++

+
+

+
DIA

t
t

t
t

DIA
t G

A
A

AG //
1

1

1
1

//
1 ;max .8 

d) The insured survives the year (t,t+1] and withdraws an amount exceeding the limits of 
the GMWB option 

At first, note that this case includes the following cases as special cases: 

d1) The contract does not comprise a GMWB option and an amount −
++ << 110 tt AE  is 

withdrawn. 

d2) A GMWB option is included in the contract, but the insured withdraws an amount 
−
++ << 110 tt AE  with { }−

+
−

++ > W
t

E
tt GGE 111 ;min . 

d3) The insured surrenders by withdrawing the amount −
++ = 11 tt AE 9. 

We let 2
1

1
11 +++ += ttt EEE , where { }−

+
−

++ = W
t

E
tt GGE 11

1
1 ;min . Consequently, 1

1+tE  is the portion of 

the withdrawal within the limits of the GMWB option. If the contract does not include a 

GMWB option, we obviously have 01
1 =+tE . 

As in case c), the account value is reduced by the amount withdrawn, i.e. 111 +
−
+

+
+ −= ttt EAA , 

and the withdrawn amount is credited to the withdrawal account. However, the insured has 
to pay a surrender fee for the second component which leads to 

( )sEEWW tttt −⋅++= ++
−
+

+
+ 12

1
1

111 . The death benefit account remains unchanged, i.e. 
−
+

+
+ = 11 tt DD . 

                                            

8 Besides pro rata adjustments, there are also reductions by the so-called dollar method. Here, all the respective 
processes are reduced by the withdrawn amount, i.e. [ ]0,max 1

//
1

//
1 +

−
+

+
+ −= t

DIA
t

DIA
t EGG . In order to model and 

evaluate products where the dollar method or any other reduction scheme applies, the respective formulas can 
be adjusted. 

9 If the contract comprises a GMWB option and if { }−
+

−
+

−
+ ≤ W

t
E
tt GGA 111 ;min  as well as −

+
−
+ < W

tt GA 11 , then a withdrawal 

of −
++ = 11 tt AE  is within the limits of the GMWB and does not lead to a surrender of the contract. However, this 

case is covered by case c). 
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Again, the future guarantees are modified by the withdrawal: For the guarantees which are 

not of ratchet type, we have −
+−

+

+
++

+ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= DIA

t
t

tDIA
t G

A
A

G //
1

1

1//
1 , whereas for the ratchet type 

guarantees, we let 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

+−
+

+
++

+
+

+
DIA

t
t

t
t

DIA
t G

A
A

AG //
1

1

1
1

//
1 ;max . 

For contracts with a GMWB, withdrawing an amount { }−
+

−
++ > W

t
E
tt GGE 111 ;min  also changes 

future guaranteed withdrawals. We consider a common kind of GMWB10 option, where the 

guaranteed future withdrawals are reduced according to 
⎭
⎬
⎫

⎩
⎨
⎧

⋅−= −
+

+
+−

++
−

+
+

+
1

1
1111 ;min

t

tW
tt

W
t

W
t A

AGEGG , 

i.e.  the withdrawal amount is reduced by the higher of a pro rata reduction and a reduction 
according to the dollar method. For future annual guaranteed amounts, we use 

−
+

+
+−

+
+

+ ⋅=
1

1
11

t

tE
t

E
t A

A
GG .11 

3.3.3 Maturity Benefits at T 

If the contract neither comprises a GMIB nor a GMAB option, the maturity benefit LT is 
simply the account value, i.e. += TT AL . In contracts with a GMAB option, the survival benefit 

at maturity is at least the GMAB, thus { }++= A
TT

A
T GAL ;max . 

Insured holding a GMIB option can decide whether they want a lump sum payment of the 

account value +
TA  or annuitize this amount at current annuitization rates. Alternatively, they 

can annuitize the guaranteed annuitization amount at pre-specified conditions. If we denote 
by currentä  and guarä  the annuity factors12 when annuitizing at the current and the 

guaranteed, pre-specified conditions, respectively, the value of the guaranteed benefit at 

maturity is given by 
guar

currentI
T ä

ä
G ⋅+ . Thus, a financially rational acting customer will chose the 

annuity, whenever we have ++ >⋅
T

A
ä
ä

G
guar

currentI
T . Therefore, the value of the benefit at time T 

is given by 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅= ++

guar

currentI
TT

I
T ä

ä
GAL ;max .  

                                            

10 Cf. Pioneer (2005), pp. 36. 

11 Cf. Pioneer (2005), page 36f. Also, a reduction of the form −
+

+
+−

+
+

+ ⋅= W
t

W
tE

t
E
t G

GGG
1

1
11  is frequently offered. 

12 Here, an annuity factor is the price of an annuity paying one dollar each year.  
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If the contract contains both, a GMAB and a GMIB option, the maturity value of the contract 

is { }I
T

A
TT LLL ;max= . 

3.4 Contract Valuation 

We make the common assumption that financial markets and biometric events are 
independent. Furthermore, we assume risk-neutrality of the insurer with respect to biometric 
risks (cf. Aase and Persson (1994)). Thus, the risk-neutral measure for the combined market 
(insurance and financial market) is the product measure of Q and the usual measure for 
biometric risks. In order to keep the notation simple, in what follows, we will also denote this 
product measure by Q. Even if risk-neutrality of the insurer with respect to biometric risk is 
not assumed, there are still reasons to employ this measure for valuation purposes as it is 
the so-called variance optimal martingale measure (see Møller (2001) for the case without 
systematic mortality risk and Dahl and Møller (2006) in the presence of systematic mortality 
risk).   

Let 0x  be the insured’s age at the start of the contract and 
0xt p  denote the probability for 

a 0x -year old to survive t years. By txq +0
, we denote the probability for a )( 0 tx + -year old 

to die within the next year. The probability that the insured passes away in the year (t,t+1] 
is thus given by txxt qp +⋅

00
. The limiting age is denoted by ω, i.e. survival beyond age ω is 

not possible. 

3.4.1 Valuation under Deterministic Policyholder Behavior 

At first, we assume that the policyholder’s decisions (withdrawal/surrender) are 
deterministic, i.e. we assume there exists a deterministic strategy which can be described by 

a withdrawal vector ( ) ( )TT IR ∞
+∈= ξξξ ;...;1

_

.13 Here, tξ  denotes the amount to be withdrawn 

at the end of year t, if the insured is still alive and if this amount is admissible. If the amount 

tξ  is not admissible, the largest admissible amount ttE ξ<  is withdrawn. In particular, if the 

contract does not contain a GMWB option, the largest admissible amount is { }−= ttt AE ;min ξ . 

A full surrender at time t is represented by ∞=tξ .  

By ( )TT IR ∞
+⊂Ψ××Ψ=Ψ ...1  we denote the set of all possible deterministic strategies. In 

particular, every deterministic strategy is F0 -measurable.  

If a particular contract and a deterministic strategy are given, then, under the assumption 

that the insured dies in year { }0,...,2,1 xt −∈ ω , the maturity-values ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ _
;ξtLT , ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ _
;ξtWT  and 

                                            

13 Here, +IR  denotes the non negative real numbers (including zero); furthermore we let { }.∞∪= +
∞
+ IRIR  
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ _
;ξtDT  are specified for each path of the stock price S. Thus, the time zero value including 

all options is given by: 

 

.;1;1;1

;;;

;;;

___

1

___

11

1

___

11

_

0

0

0

0

00

0

0

00

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ +

∫
⋅+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛∫

⋅=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛∫

⋅=⎟
⎠
⎞

⎜
⎝
⎛

−

=

−

−+−

−

=

−

−+−

∑

∑

ξξξ

ξξξ

ξξξξ
ω

TDTWTLeEp

tDtWtLeEqp

tDtWtLeEqpV

TTT

dsr

QxT

T

t
TTT

dsr

Qtxxt

x

t
TTT

dsr

Qtxxt

T

s

T

s

T

s

      (3) 

3.4.2 Valuation under Probabilistic Policyholder Behavior  

By probabilistic policyholder behavior, we denote the case when the policyholders follow 
certain deterministic strategies with certain probabilities. If these deterministic strategies 

( ) ( )Tj
T

j
j

IR ∞
+∈= )()(

1

)(_

;...;ξξξ , nj ,...,2,1=  and the respective probabilities )( jpξ  are known 

( ∑
=

=
n

j

jp
1

)( 1ξ ), the value of the contract under probabilistic policyholder behavior is given by 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

)(_

0
1

)(
0

jn

j

j VpV ξξ .                     (4) 

This value also admits another interpretation: if the insurer has derived certain forecasts for 
the policyholders’ future behavior with respect to withdrawals and surrenders, and assigns 
the respective relative frequencies as probabilities to each contract, then the sum of the 
probabilistic contract values constitutes exactly the value of the insurer’s whole portfolio 
given that the forecast is correct. Thus, this cumulative value equals the costs for a perfect 
hedge of all liabilities, if policyholders behave as forecasted. However, in this case the risk 
that the actual client behavior deviates from the forecast is not hedged.  

3.4.3 Valuation under Stochastic Policyholder Behavior 

Assuming a deterministic or probabilistic customer behavior implies that the withdrawal and 
surrender behavior of the policyholders does not depend on the evolution of the capital 
market or, equivalently, on the evolution of the contract over time. A stochastic strategy on 
the other hand, is a strategy where the decision whether and how much money should be 
withdrawn is based upon the information available at time t. Thus, an admissible stochastic 
strategy is a discrete Ft –measurable process (X), which determines the amount to be 

withdrawn depending on the state vector −
ty . Thus, we get: ( ) tt Εyt =−,X , Tt ,...,2,1= .  
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For each stochastic strategy (X) and under the hypothesis, that the insured deceases in year 
{ }xt −∈ ω,...,2,1 , the values ( )(X);tLT , ( )(X);tWT  and ( )(X);tDT  are specified for any 

given path of the process S. Therefore, the value of the contract is given by: 

  ( ) ( ) ( ) ( )( )∑
−

=

−

−+−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
++

∫
⋅⋅=

0

0

00
0

110 ,,,
x

t
TTT

dsr

Qtxxt tDtWtLeEqpV

T

sω

(X)(X)(X)(X) .     (5) 

We let Ξ  denote the set of all possible stochastic strategies. Then the value 0V  of a contract 

assuming a rational policyholder is given by  

( )(X)
(X)

00 supVV
Ξ∈

= .             (6) 

4 Numerical Valuation of Guaranteed Minimum Benefits 
For our numerical evaluations, we assume that the underlying mutual fund evolves according 
to a geometric Brownian motion with constant coefficients under Q, i.e. 

1, 0 =+= SdZrdt
S
dS

t
t

t σ ,           (7) 

where r denotes the (constant) short rate of interest. Thus, for the bank account we have 
rt

t eB = .  

Since the considered guarantees are path-dependent and rather complex, it is not possible to 
find closed form solutions for their risk-neutral value. Therefore, we have to rely on 
numerical methods. We present two different valuation approaches: in Section 4.1, we 
present a simple Monte Carlo algorithm. This algorithm quickly produces accurate results for 
a deterministic, probabilistic or a given Ft –measurable strategy. However, Monte Carlo 
methods are not preferable to determine the price for a rational policyholder. Thus, in 
Section 4.2, we introduce a discretization approach, which additionally enables us to 
determine prices under optimal policyholder behavior.  

4.1 Monte-Carlo Simulation 

Let IRIRIR →× +
8:(X) a Ft –measurable withdrawal strategy. By Itô’s formula (see, e.g. 

Bingham and Kiesel (2004)), we obtain the iteration 

 ( )1,0~;
2

exp 11

2
1

1 NzzrAe
S
S

AA ttt
t

t
tt ++

+−++−
+

⎭
⎬
⎫

⎩
⎨
⎧

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⋅=⋅= σσϕϕ  iid, 
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which can be conveniently used to produce realizations of sample paths )( ja  of the 

underlying mutual fund using Monte Carlo Simulation.14 For any contract containing 
Guaranteed Minimum Benefits, for any sample path, and for any time of death, we obtain 
the evolution of all accounts and processes, employing the rules of Section 3. Hence, 
realizations of the benefits ( ) ( ) ( )(X)(X)(X) ,,, )()()( tdtwtl j

T
j

T
j

T ++  at time T, given that the 

insured dies at time t  are uniquely defined in this sample path. Thus, the time zero value of 
these benefits in this sample path is given by 

 ( ) ( ) ( ) ( )[ ]∑
−

=
−+−

− ++⋅=
0

00
1

)()()(
11

)(
0 ,,,

x

t

j
T

j
T

j
Ttxxt

rTj tdtwtlqpev
ω

(X)(X)(X)(X) . 

Hence, ( ) ( )∑
=

=
J

j

iv
J

V
1

)(
00

1 (X)(X)  is a Monte-Carlo estimate for the value of the contract, 

where J denotes the number of simulations. 

However, for the evaluation of a contract under the assumption of rational policyholders 
following an optimal withdrawal strategy, Monte-Carlo simulations are not preferable.  

4.2 A Multidimensional Discretization Approach 

Tanskanen and Lukkarinen (2004) present a valuation approach for participating life 
insurance contracts including a surrender option, which is based on discretization via a finite 
mesh. 

We extend and generalize their approach in several regards: we have a multidimensional 
state space, and, thus, need a multidimensional interpolation scheme. In addition, their 
model does not include fees. Therefore, we modify the model, such that the guarantee fee 
ϕ and the surrender fee s can be included. Finally, within our approach a strategy does not 

only consist of the decision whether or not to surrender. We rather have an infinite number 
of possible withdrawal amounts in every period. Even though we are not able to include all 
possible strategies in a finite algorithm, we still need to consider numerous possible 
withdrawal strategies. 

We start this Section by presenting a quasi-analytic integral solution to the valuation problem 
of Variable Annuities containing Guaranteed Minimum Benefits. Subsequently, we show how 
in each step the integrals can be approximated by a discretization scheme which leads to an 
algorithm for the numerical evaluation of the contract value. We restrict the presentation to 
the case of a rational policyholder, i.e. we assume an optimal withdrawal strategy. However, 
for deterministic, probabilistic or stochastic withdrawal strategies the approach works 

analogously after a slight modification of the function F
~

 in Section 4.2.3. 

                                            

14  For an introduction to Monte Carlo methods see, e.g., Glasserman (2003). 
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4.2.1 A quasi-analytic solution 

The time t value tV  of a contract depends solely on the state variables at time t 

( )E
t

W
t

D
t

I
t

A
ttttt GGGGGDWAy ,,,,,,,= . Since besides At, the state variables change 

deterministically between two policy anniversaries, the value process tV  is a function of t, At 

and the state vector at the last policy anniversary ⎣ ⎦+t , i.e. ⎣ ⎦( )+= ttt yAtVV ;, . 

At the discrete points in time Tt ,...,2,1= , we distinguish the value right before death 

benefit payments and withdrawals ( )+−−
−

=
1

;,
t

yAtVV tt  and the value right after these events 

( )+++ = ttt yAtVV ,, .  

If the insured does not die in the period ( ]1, +tt , the knowledge of the withdrawal amount 

1+tE  and the account value −
+1tA  determine the development of the state variables from +t  

to ++ )1(t . We denote the corresponding transition function by ( ) ( )+
+

+
+

+−
+ =

+ 111 ,,
1 tttE yAyAf

tt
. 

Similarly, by ( ) ( )+
+

+
+

+−
+− = 1111 ,, ttt yAyAf

t
 we denote the transition function in case of death 

within ( ]1, +tt . 

By simple arbitrage arguments (cf. Tanskanen and Lukkarinen (2004)), we can conclude that 

tV  is a continuous process. Furthermore, with Itô’s formula (see, e.g. Bingham and Kiesel 

(2004)) one can show that the value function τV  for all [ )1, +∈ ttτ  satisfies a Black-Scholes 

partial differential equation (PDE), which is slightly modified due to the existence of the fees 

ϕ. Hence, there exists a function IRIRIRv →× ++:  with ),(),,( avyaV t ττ =+  

[ ),1, +∈∀ ttτ  +∈ IRa  and v satisfies the PDE 

 ( ) 0
2

2
22

2
1 =−−++ rv

da
dvar

da
vda

d
dv ϕσ

τ
          (8) 

with the boundary condition 

( ) ( )( ) ( )( )+
−+

+
+ +++−=+

+ ttxtEtx yaftVqyaftVqatv
t

,,1,,1)1(,1 1010
, +∈ IRa , 

which, in particular, is dependent on the insured’s survival. For a derivation and 
interpretation of the PDE (8) and the boundary condition, see Ulm (2006). 

Thus, we can determine the time-zero value of the contract 0V  by the following backward 

iteration: 

t = T: 

At maturity, we have ( ) TTTTT DWLyATV ++=++ ,, . 
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t = T-k: 

Let ( )+
+−

+
+−+− 11 ,,1 kTkT yAkTV  at time (T-k+1) be known for all possible values of 

the state vector. Then, the time (T-k) value of the contract is given by the solution 
( )akTv ,−  of the PDE (8) with boundary condition 

 
( )

( ) ( )( ) ( )( ) .,,1,,1sup1

,1

101
1

0

+
−−−+

+
−

∈
−+ +−++−−

=+−

+−∞
++−

kTkTxkTE
IRE

kTx yafkTVqyafkTVq

akTv

kT
kT

 

A solution of the PDE (8) can be obtained by defining 
2
1

:
2

−
−

=
σ

ϕυ r
, r+= 22

2
1

: υσρ  and 

( )xx evexg σρτυσ ττ ,),( −= . Then, ( ) ( )xtx

t
etvexg σρυσ

τ
τ ,1),(lim 1

1
+= +−

+→
 and g satisfies a one- 

dimensional heat equation, 

 0
2
1

2

2

=+
dt
dg

dx
gd

,             (9) 

a solution of which is given by 15  

( )
( )

( ) ( )duutg
t

ux
t

xg ,1
)1(2

exp
)1(2

1
),(

2

+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+
−

−
−+

= ∫
∞

∞− ττπ
τ .     (10) 

Thus, we have 

 ( )

( )
( )

( ) ( ) λλλ
στ

λ
στπ

υτρ dav
tt

eatv t
t

1
1

0
2

2

2

)1(

)1(2
log

exp
)1(2

1
),( +

−
∞

−+− ∫ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+
−

−+
= .   (11) 

By substituting 
⎭
⎬
⎫

⎩
⎨
⎧ −−+⋅= 2

2
1

exp)( σϕσλ ruu , we obtain  

 

( )

( )
( ) ( )( )( )

( )( )( )
,

,,1

,,1sup1

,,

10

1
1

0

du
yAufkTVq

yAufkTVq
ue

yAkTV

kTkTkTx

kTkTE
iRE

kTx
r

kTkT

kT
kT

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+−+

+−−
Φ=

−

+
−−−−+

+
−−

∈
−+∞

∞−

−

+
−−

+−∞
++−∫

λ

λ     (12) 

where Φ  denotes the cumulative distribution function of the standard normal distribution. 

                                            

15 Cf. Theorem 3.6 of chapter 4, Karatzas and Shreve (1991).  
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4.2.2 Discretization via a Finite Mesh 

In general, the integral (12) cannot be evaluated analytically. Therefore, we have to rely on 
numerical methods to find an approximation of the value function on a finite mesh. Here, a 

finite mesh is defined as follows: Let ( )8∞
+⊆ IRYt be the set of al possible state vector values. 

We denote a finite set of possible values for any of the eight state variables as a set of mesh 
basis values. Let a set of mesh basis values for each of the eight state variables be given. 
Provided that the Cartesian product of these eight sets is a subset of Yt, we denote it by 

tt YGrid ⊆  and call it a Yt -mesh or simply a mesh or a grid. An element of tGrid  is called a 

grid point. For a given grid tGrid , we iterate the evaluation backwards starting at t = T. At 

maturity, the value function is given by: 

 ( ) TTTTTTT GridyDWLyATV ∈∀++=  ,,, . 

We repeat the iteration step described above T times and thereby obtain the value of the 
contract at every integer time point for every grid point. In particular, we obtain the time 
zero value of the contract V0. Within each time period, we have to approximate the integral 
(11) with the help of numerical methods. This will be described in the following Section. 

4.2.3 Approximation of the Integral 

Following Tanskanen and Lukkarinen (2004), for +∈ IRa  and a given state vector +
−kTy , we 

define the function 

( )
( ) ( )( ) ( )( ).,,1,,1sup1

,
~

1

1

01
1

0

+
−−−+

+
−

∈
−+

+
−+−

+−++−−=
+−∞

++−

kTkTxkTE
IRE

kTx

kTkT

yafkTVqyafkTVq
yaF

kT
kT

   (13) 

Thus, (12) is equivalent to 

 ( ) ( )duyAuFueyAkTV kTkTkT
r

kTkT ∫
∞

∞−

+
−−+−

−+
−− Φ=− ,)(

~
)(,, 1 λ  for kTkT Gridy −

+
− ∈ ,  

where 
⎭
⎬
⎫

⎩
⎨
⎧ −−+⋅= 2

2
1

exp)( σϕσλ ruu  as above. In order to evaluate the integral, we evalu-

ate the function ( )+
−+− kTkT yaF ,

~
1  for each kTkT Gridy −

+
− ∈  and for a selection of possible values 

of the variables a. In between, we interpolate linearly.  

Thus, let kTkT Gridy −
+

− ∈  and Amax > 0, a maximal value for a, be given. We split the interval 

[ ]max,0 A  in M subintervals via { }Mmm
M

A
m ,...,2,1,0,: max ∈=α . Let ( )+

−+−= kTmkTm yF ,
~

1 αγ . 

Then, for any +∈ IRa , ( )+
−+− kTkT yaF ,

~
1  can be approximated by 
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Hence, it suffices to determine the values ( ) { }MmyF kTmkTm ,...,2,1,0,,
~

1 ∈= +
−+− αγ . When 

determining the mγ , theoretically the function 
1+−kTEf  has to be evaluated for any possible 

withdrawal amount 1+−kTE . For our implementation, we restrict the evaluation to a finite 

amount of relevant values ET-k+1. Furthermore, due to the definition of 1
~

+−kTF (see (13)), it is 

necessary to evaluate V after the transition of the state vector from +− )( kT  to ++− )1( kT . 

Since the state vector and, thus, the arguments of the function are not necessarily elements 

of 1+−kTGrid ,  ( )+
−+−+− kTkT yAkTV ,,1 1  has to be determined by interpolation from the 

surrounding mesh points.  

We interpolate linearly in every dimension. Due to the high dimensionality of the problem, 
the computation time highly depends on the interpolation scheme. In order to reduce 
calculation time and the required memory capacity, we reduced the dimensionality by only 
considering the relevant accounts for the considered contracts. In particular, when the death 
benefit account Dt is strictly positive, i.e. if the insured has died before time t, the account 
value At will be zero. Conversely, as long as At is greater than zero, Dt remains zero, i.e. the 
insured is still alive at time t. Thus, the dimensionality can always be reduced by one. 
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Furthermore, in our numerical analyses, we only consider contracts with at most one GMDB-
option and at most one GMLB-option. Therefore, by only considering the relevant state 
variables, we can further reduce the dimensionality to a maximum of 4. 

However, for a contract with term to maturity of 25 years, using about 40,000 to 65,000 
lattice points, 600 steps for the numerical calculation of the integral, and a discretization of 
the optimal strategy to 52 points, the calculation of one contract value under optimal 
policyholder strategy on a single CPU (Intel Pentium IV 2.80 GHz, 1.00 GB RAM) still takes 
between 15 and 40 hours. 

5 Results 
We use the numerical methods presented in Section 4 to calculate the risk-neutral value of 
Variable Annuities including Guaranteed Minimum Benefits for a given guarantee fee ϕ . We 
call a contract, and also the corresponding guarantee fee, fair if the contract’s risk-neutral 
value equals the single premium paid, i.e. if the equilibrium condition ( )ϕ00 VVP ==  holds. 

Unless stated otherwise, we fix the risk-free rate of interest r = 4%, the volatility σ = 15%, 
the contract term T=25 years, the single premium amount P = 10,000, the age of the 
insured x0 = 40, the sex of the insured male, the surrender fee s = 5%, and use best 
estimate mortality tables of the German society of actuaries (DAV 2004 R). 

For contracts without GMWB, we analyze two possible policyholder strategies: Strategy 1 
assumes that clients neither surrender nor withdraw money from their account. Strategy 2 
assumes deterministic surrender probabilities which are given by 5% in the first policy year, 
3% in the second and third policy year, and 1% thereafter. In addition, we calculate the risk-
neutral value of some policies assuming rational policyholders. 

For contracts with GMWB, we assume different strategies which are described in Section 
5.2.4. 

5.1 Determining the fair Guarantee Fee  

In a first step, we analyze the influence of the annual guarantee fee on the value of 
contracts including three different kinds of GMAB options. For contract 1, the guaranteed 
maturity value is the single premium (money-back guarantee), contract 2 guarantees an 
annual ratchet base, whereas a roll-up base at a roll-up rate of %6=i  is considered for 
contract 3. Figure 1 shows the corresponding contract values as a function of the annual 
guarantee fee assuming neither surrenders nor withdrawals.  
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Figure 1: Contract value as a function of the annual guarantee fee 

For contract 1, a guarantee fee of ϕ = 0.07% leads to a fair contract. The fair guarantee fee 
increases to 0.76% in the ratchet case. The risk-neutral value of contract 3 exceeds 10,000 
for all values of ϕ. Thus, under the given assumptions there exists no fair guarantee fee for a 
contract including a 6% roll-up GMAB. As a consequence, such guarantees can only be 
offered if the guarantee costs are subsidized by other charges or if irrational policyholder 
behavior is assumed in the pricing of the contract.  

5.2 Fair Guarantee Fees for Different Contracts 

5.2.1 Contracts with a GMDB Option 

We analyze three different contracts with a minimum death benefit guarantee. Contract 1 
provides a money-back guarantee in case of death, contract 2 an annual ratchet death 
benefit and contract 3 a 6% roll-up benefit. 

Table 1 shows fair guarantee fees for these contracts under the two policyholder strategies 
described above. 

                            contract  
strategy 

Money-back 
guarantee 

Ratchet benefit 
base  

6% roll-up 
benefit base 

1: no withdrawals or 
surrenders 

0.01% 0.04% 0.14% 

2: deterministic surrender 
probability 

< 0% < 0% 0.05% 

Table 1: Fair guarantee fee for contracts with GMDB under different consumer behavior 
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Assuming that customers neither surrender their contracts nor withdraw any money before 
maturity, the fair guarantee fee for all these contracts is rather low. However, the 
guaranteed death benefit included in contract 3 is significantly more expensive than the 
other guarantees. 

If policyholders surrender their contracts at the surrender rates assumed in strategy 2, the 
fair guarantee fee strongly decreases for two reasons: Policyholders pay fees before 
surrendering but will not receive any benefits from the corresponding options. Secondly, 
surrender fees can be used to subsidize the guarantees of the clients who do not surrender. 
For contracts 1 and 2, surrender fees exceed the value of the remaining clients’ options. 
Thus, the risk-neutral value of the contract exceeds the single premium even if no fee is 
charged for the option.  

Thus, our results are consistent with Milevsky and Posner (2001), who find that GMDB 
options are generally overpriced in the market. 

Overall, the guarantee fees are rather low, since a benefit payment is only triggered in the 
event of death. There is no possibility for rational consumer behavior in terms of exercising 
the option when it is in the money. The only way of rational policyholder behavior is 
surrendering a contract when the option is far out of the money: It is optimal to surrender 
the contract if the expected present value of future guarantee fees exceeds the value of the 
option plus the surrender fee. However, for the considered surrender charge of 5%, 
surrendering a contract is almost never optimal. Thus, the contract value for a rational 
policyholder hardly differs from the value under strategy 1. However, for lower surrender 
charges, policyholder behavior would be more important. 

5.2.2 Contracts with a GMAB Option 

We analyze three different contracts with a minimum accumulation benefit guarantee. Again, 
contract 1 provides a money-back guarantee at the end of the accumulation phase, contract 
2 an annual ratchet guarantee and contract 3 a 6% roll-up benefit base. The value of these 
contracts under policyholder strategy 1 has been displayed as a function of ϕ in Figure 1 
above. 

Table 2 shows the fair guarantee fee for these three contracts under the two given 
policyholder strategies. In addition, we show the fair guarantee fee if an additional 6% roll-
up death benefit is included (columns “with DB”). 

Money-back 
guarantee 

Ratchet benefit 
base  

6% roll-up benefit 
base 

                       contract 
 
strategy  w/o DB with DB w/o DB with DB w/o DB with DB 
1: no withdrawals or 
surrenders 

0.07% 0.23% 0.76% 0.94 --- --- 

2: deterministic 
surrender probability 

< 0% 0.12% 0.57% 0.74% --- --- 

Table 2: Fair guarantee fee for contracts with GMAB under different consumer behavior 
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The fair guarantee fees for the contracts differ significantly. For the money-back guarantee, 
the fair guarantee fee is below 0.25%, even if the GMDB option is included. The fee for the 
ratchet guarantee is significantly higher. Even under strategy 2 and without additional death 
benefit it exceeds 0.5%. In any case, the fair guarantee fee of the ratchet guarantee is at 
least four times as high as the corresponding fair guarantee fee of the money-back 
guarantee. For a roll-up rate of 6%, the value of the pure maturity guarantee without fund 
participation (i.e. ϕ = 100%) exceeds 10,000 under both surrender scenarios. Thus, even 
under the assumed surrender pattern, a 6% roll-up GMAB cannot be offered at a fair price. 

The additional fee for death benefit (difference between columns “with DB” and “w/o DB”) 
always exceeds the fair guarantee fee of the pure death benefit guarantee shown in Table 1, 
and is hardly reduced by the assumed surrenders. 

Further analyses showed that rational policyholder behavior hardly influences the risk-neutral 
value of the contracts: The values under optimal policyholder behavior are very close to the 
values under strategy 1 (no surrender or withdrawal). This is not surprising since for the 
money-back guarantee, surrender is rarely optimal due to the rather high surrender charges. 
In the case of a ratchet guarantee, the actual guarantee level is annually adjusted to a 
potentially increasing fund value. Thus, the guarantee is always at or in the money at a 
policy anniversary date. However, as explained above, surrendering is usually only optimal if 
the option is out of the money. 

5.2.3 Contracts with a GMIB Option 

A GMIB option gives the policyholder the possibility to annuitize the minimum benefit base at 
an annuity factor that is fixed at t=0. Whether or not the option is in the money depends on 
both, the fund value and the ratio of the guaranteed annuity factor and the current annuity 
factor at annuitization. Usually, the guaranteed annuity factor is calculated based on 

conservative assumptions which are supposed to lead to a ratio 
guar

current

ä
ä

ä =: <1. However, 

increasing longevity and decreasing interest rates may change this ratio during the term of 
the contract and make the guarantee extremely valuable at annuitization. 

We analyze three different GMIB-contracts for different values of ä. Again, the minimum 
benefit base for contract 1 is the single premium, contract 2 includes an annual ratchet 
guarantee whereas contract 3 comes with a 6% roll-up benefit base. The three contracts are 
analyzed with and without the additional GMDB option from the previous Section. The 
respective fair guarantee fees are shown in Table 3. 

Obviously, for 1=ä , the fair guarantee fees are the same as for the corresponding GMAB 
options. The value of the guarantee highly depends on the value of ä. Since best estimates 
about future mortality rates are subject to high uncertainty, this assumption bears a 
significant risk for the insurer that cannot be hedged with existing financial instruments. 
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Money-back 
guarantee 

Ratchet benefit 
base  

6% roll-up benefit 
base 

                          contract  
 
strategy w/o DB with DB w/o DB w/o DB with DB w/o DB 

ä=1.2 0.14% 0.31% 1.55% 1.83% --- --- 
ä=1.0 0.07% 0.23% 0.76% 0.94% --- --- 
ä=0.8 0.03% 0.18% 0.25% 0.40% --- --- 

1: no 
withdrawals 
or surrenders 

ä=0.6 0.01% 0.16% 0.05% 0.19% 2.32% 3.76% 
ä=1.2 0.04% 0.18% 1.24% 1.40% --- --- 
ä=1.0 < 0% 0.12% 0.57% 0.74% --- --- 
ä=0.8 < 0% 0.10% 0.15% 0.29% > 4% > 4% 

2: 
deterministic 
surrender 
probability 

ä=0.6 < 0% 0.08% < 0% 0.11% 1.45% 1.88% 

Table 3: Fair guarantee fee for contracts with GMIB under different consumer behavior 

The difference between the fair guarantee fee with or without surrender is huge. Thus, 
basing the product calculation on estimates about future policyholder behavior bears a 
significant non-diversifiable risk for the insurer. 

For any ä, the values of the three contract types differ considerable. Under strategy 1, there 
is no fair guarantee fee for a contract with 6% roll-up guarantee for ä ≥ 0.8, i.e. the 
expected present value of the guaranteed annuities exceeds the single premium. For 

6.0=ä , the fair guarantee fee equals 2.32% and is much higher than typical charges for 
these options in the market. Even under strategy 2, the fair guarantee fee is about twice as 
high as the option price observed in the market. Thus, there is evidence that insurers base 
their calculations not only on the assumption of irrational surrender behavior. They may also 
assume other irrationalities, e.g. that policyholders take the lump sum payment (i.e. the 
account value without guarantee) even if the annuitization option is in the money. 

For the reason described in Section 5.2.2, there is almost no difference between rational 
policyholder behavior and strategy 1 for contracts with a money-back or a ratchet guarantee. 
However, in the case of a 6% roll-up benefit base, rational policyholder behavior increases 
the fair guarantee fee from 2.32% to over 4%. Thus, there have to be many scenarios, 
where it is optimal to surrender the contract, i.e. the expected present value of future 
guarantee fees exceeds the value of the option plus the surrender fee. 

5.2.4 Contracts with a GMWB Option 

In this Section, we analyze a contract with a GMWB option where the initial premium is 
guaranteed for withdrawals during the life of the contract. The maximum guaranteed annual 
withdrawal amount is 7% of the initial premium. We analyze this contract with and without a 
GMDB option (6% roll-up). The third contract considered includes a GMWB with a step-up 
feature: The total withdrawal amount is increased by 10% after year 5 and 10, respectively, 
if no withdrawals have occurred until then. 

We assume the following policyholder behavior: Under strategy 1, the policyholder 
withdraws 7% of the initial premium for 14 years starting with year j and surrenders the 
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contract thereafter. For the contract without step-up, we let j=1 while we admit j=1, j=6 
and j=11 for the contract with step-up, i.e. the policyholder starts withdrawing immediately 
after the start of the contract or immediately after a step-up date. Of course, if withdrawals 
start in the first year, there is no difference between the contracts with and without step-up. 

In addition we consider the following stochastic customer strategy: The policyholder 
withdraws 7% of the initial premium if and only if the fund value is lower than the remaining 
total guaranteed amount of withdrawals, i.e. if W

tt GA < . Once 0=W
tG , the contract is 

surrendered. This might be a strategy of a policyholder who tries to intuitively increase the 
value of the policy without using financial mathematics.  

The fair guarantee fees for these contracts are shown in Table 4. 

                          contract  
strategy  

without step-up with step-up  without step-up, 
with DB 

j=1: 0.19% 
j=6: 0.15% 

1: withdrawals of 700 
p.a., starting in year 
j=1, 6 or 11 

j=1: 0.19% 

j=11: 0.14% 

0.23% 

2: withdrawals of 700 if 
W
tt GA < . 

0.19% 0.2% 0.28% 

Table 4: Fair guarantee fee for contracts with GMWB under different consumer behavior  

The difference between the two strategies is rather small. Furthermore, the results for j=6 
and j=11 show that it is not a reasonable strategy to wait with early redemptions until a 
step-up happens. Of course, this may be different if the guaranteed amount is increased by 
more than 10% at a step-up date. 

The additional fee for including a GMDB option is significantly lower than for the GMAB and 
GMIB contracts, because every withdrawal leads to a reduction of the guaranteed death 
benefit. Since strategy 2 results in fewer withdrawals, the additional GMDB fee is slightly 
higher in this case. 

The fair guarantee fees shown are lower than the prices of these guarantees in the market. 
However, for GMWB options, the fair guarantee fee under rational consumer behavior 
increases significantly since there are a variety of options for the customer over the term of 
the contract. Optimal strategies can not be easily described since they are path-dependent. 
Without step-ups, the fair guarantee fee assuming rational consumer behavior is more than 
twice as high as under the above strategies. Milevsky and Salisbury (2006) calculate even 
higher guarantee fees using a surrender fee of s=1% (compared to 5% in our case). Further 
analyses showed that reducing the surrender fee in our model significantly raises the fair 
guarantee fee. For a surrender fee of 0, the fair guarantee fee even exceeds 1%.   
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Finally, we analyze the influence of the annual maximum guaranteed withdrawal amount on 
the fair guarantee fee for the contract without step-up. We allow for annual withdrawal 
amounts of xW=5%, xW=7%, and xW=9%. The fair guarantee fees are displayed in Table 5. 

                            contract  
strategy 

xW=5% xW =7% xW =9% 

1: withdrawals of 700 
p.a., starting in year j=1 

0.05% 0.19%% 0.38% 

Table 5: Influence of the annual maximum free withdrawal amount on the fair guarantee 
fee for a contract with GMWB 

Although the guaranteed total withdrawal amount remains unchanged, the annual maximum 
withdrawal amount notably influences the fair guarantee fee. Rather low annual redemptions 
lead to a fair guarantee fee of only 0.05% while a fee of 0.38% is necessary to back a 
GMWB option with 9% annual withdrawals.  

5.3 Sensitivity Analyzes with respect to Capital Market Parameters 

We consider a contract with an annual ratchet GMIB for ä=1 as described in Section 5.2.3. 
Further, we assume a customer who neither surrenders nor withdraws money from the 
account. We vary the risk-free rate of interest r as well as the fund volatility σ. Table 6 shows 
the fair guarantee fee for different combinations of the capital market parameter values. 

                 risk-free rate  
 
volatility 

r=3% r =4% r =5% 

σ = 10% 0.46% 0.28% 0.20% 
σ = 15% 1.09% 0.76% 0.56% 
σ = 20% 1.94% 1.40% 1.05% 

Table 6: Influence of the capital market parameters r and σ on the fair guarantee fee for a 
contract with GMIB 

As expected, the fair guarantee fee is a decreasing function of the risk-free rate of interest 
and an increasing function of the asset volatility since, on the one hand, the risk-neutral 
value of a guarantee decreases with increasing interest rates and, on the other hand, options 
are more expensive when volatility increases. Changes in the volatility have a tremendous 
impact on the option values and, thus, on the fair guarantee fee.  

At the inception of the contract and with some products also during the term of the contract, 
the insured has the possibility to influence the volatility by choosing the underlying fund from 
a predefined selection of mutual funds (cf. Section 2.1). Since the charged fees usually do 
not depend on the fund choice, this possibility presents another valuable option for the 
policyholder. For any risk-free rate r, the fair guarantee fee for σ = 20% is more than four 
times as high as the one for σ =10%. Thus, one important risk management tool for insurers 
offering variable annuity guarantees is the strict limitation and control of the types of 
underlying funds offered within those products.  
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6 Summary and Outlook 
The present paper introduces a model, which permits a consistent and extensive analysis of 
all kinds of guarantees currently offered within Variable Annuity contracts in the US. We 
derived fair prices for numerous types of contracts and several policyholder strategies. We 
found that some guarantees are noticeably overpriced, whereas others, e.g. guaranteed 
annuities within GMIB options, are clearly offered under their risk-neutral value. 

The fact that some of these guarantees are underpriced implies that insurers, on the one 
hand, assume cross subsidizations from other fees and, on the other hand, assume that their 
customers do not act rationally. The insurers’ assumptions, in particular the assumption that 
the policyholders will not exercise annuitization options in GMIB contracts even when they 
are in the money, seem risky. Especially when customers specifically choose a product with a 
guaranteed annuitization option, one can expect that their decision will be based on financial 
optimality.  

Since the fee is a percentage of the account value, it is especially high if the underlying fund 
price is high. However, then the corresponding options are out of the money. When the 
customers are acting rationally, this could lead to higher surrender rates if options are out of 
the money and lower surrender rates if options are in the money. Furthermore, with the 
increasing discussion about products with embedded guarantees, customers and financial 
advisors will get more and more educated about their options and how to exercise them in 
the most beneficial way. Also, it is quite possible that market participants specialize on 
finding arbitrage possibilities and speculating against insurers, maybe by strategically buying 
such policies in the secondary market16 or by consulting policyholders about an optimal 
behavior. 

In our numerical analysis, we use the rather simple Black-Scholes model with constant 
coefficients. Besides a different asset model, e.g. of Lévy type, including stochastic interest 
rates for these long term contracts seems worthwhile. In general, including a more realistic 
asset model, i.e. with fatter tails and a skewed distribution of the returns, and stochastic 
interest rates would rather increase the values of the options. Furthermore, besides option 
and management fees, we did not include any other charges. Since charges have a negative 
effect on the development of the account value, this will further increase the option values 
and therefore the fair guarantee fees necessary to back the options. Thus, all in all, our 
model tends to underestimate option values. Therefore, the fact that some options are 
already underpriced in our model is a clear signal that insurers should scrutinize their 
calculation schemes. 

                                            

16 Coventry First, a company specializing in the secondary market for insurance policies, announced in 2005 that 
they plan to buy Variable Annuities in the future, if their intrinsic value exceeds the surrender value, cf. Footnote 
5 in Milevsky und Salisbury (2006).  
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In the present paper, we focus on the pricing of such guarantees in Variable Annuity 
contracts. In our future research, besides extending the asset model, we plan to take a 
closer look at the ongoing risk-management of these guarantees. In particular, we want to 
assess the implementation of efficient hedging strategies to secure the insurer’s liquidity. In 
a recent survey amongst American insurers (cf. Lehman Brothers (2005)), it turned out that 
often only the Delta-risk17 is hedged, whereas a protection of Rho- and Vega-risks seems 
rather uncommon. Thus, it is questionable whether these long-term guarantees are covered 
adequately.  

Another proposal for future research is to further analyze optimal policyholder strategies 
which can also be extracted from our algorithm. In particular, if a contract contains multiple 
options, it is not clear how these options interact and which effect these interactions have on 
optimal strategies.  
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