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ABSTRACT 

Life insurers often claim that the life settlement industry reduces their sur-
render profits and leads to an adverse shift in their portfolio of insured risks, 
i.e., bad risks remain in the portfolio instead of surrendering. In this paper, 
we aim to quantify the effect of altered surrender behavior––subject to the 
health status of an insured––in a portfolio of life insurance contracts on the 
surrender profits of primary insurers. Our model includes mortality het-
erogeneity by applying a stochastic frailty factor to a mortality table. In the 
course of our investigation, we additionally analyze the impact of the 
premium payment method by comparing results for annual and single 
premium payments. 

 
 
1. INTRODUCTION 
 
In the life settlement market, life insurance policies of senior citizens with below-
average life expectancy are traded.1 With purchases of about $6.1 billion in face value 
in 2006, the U.S. life settlement industry is of considerable volume.2 However, the 
benefits and detriments of a secondary market for life insurance are controversial.3 In 
general, primary insurers have historically profited from lapse or surrender of 

                                                           
1  See, e.g., Doherty and Singer (2002, p. 4).  
2 See Conning & Company (2007). As the population ages, the potential of this secondary market 

generally increases. See Bhattacharya et al. (2004, p. 643), Doherty and Singer (2002, p. 4), 
Giacolone (2001, p. 6), and Maple Life Financial (2007, p. 3). 

3 From an insured’s perspective, see Deloitte Consulting LLP and the University of Connecticut 
(2005), as well as the corresponding discussion in Singer and Stallard (2005). From an insurer’s 
perspective, see Jenkins (2006). 
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policies,4 especially by insureds with impaired health.5 Adverse selection against 
insurance companies due to secondary market activity may lead to a decline of those 
profits, which is particularly true for lapse-supported products, i.e., policies that are 
priced based on persistency assumptions. This may result in the need to charge higher 
premiums or could decrease the safety level of life insurance companies.6 Even though 
this is a very topical issue in practice, no quantitative analyses have been conducted 
before. The aim of our paper is to fill this gap and investigate the impact of altered 
surrender behavior on an insurer’s surrender profit. We provide a model framework to 
quantify the effects of reduced surrender rates subject to the health status of insureds in 
a mortality heterogeneous universal life insurance portfolio. 
 
To date, the secondary market for life insurance has not received much attention in the 
academic literature. Giacolone (2001) provides a short overview, describing the devel-
opment of the life settlement industry, limitations on the market, and sources of com-
petition. Bhattacharya et al. (2004) empirically analyze the impact of state regulation 
on the viatical settlement market by estimating welfare losses.7 The benefits of a 
secondary market for policyholders and life insurance carriers are examined in Do-
herty and Singer (2002). These authors discuss the effects of modified surrender be-
havior due to secondary market activity but their aim is not to perform quantitative 
analyses in this respect from an insurer’s perspective (see also Doherty and Singer, 
2003). Doherty and Singer (2003) state that more than 20% of all policyholders above 
age 65 could consider selling their policy to the secondary market as an attractive 
alternative to lapse or surrender. 
 
Most of the literature dealing with the surrender of life insurance contracts concerns 
itself with valuation of the surrender option, e.g., Albizzati and Geman (1994), Ba-
cinello (2001, 2003a, 2003b, 2005), Grosen and Jørgensen (1997, 2000), Jensen et al. 
(2001), Steffensen (2002), and Tanskanen and Lukkarinen (2003). In addition, Ba-
cinello (2005) reveals differences in surrender option value between policies with sin-
gle or annual premium payments. In Outreville (1990), the emergency fund hypothesis 
is examined, which claims that surrender values serve as an emergency fund for poli-
cyholders in times of personal financial illiquidity. The hypothesis implies that the sur-
render decision is not primarily triggered by the development of interest rates. Tsai et 

                                                           
4  When a policy lapses due to insufficient premium payments, the contract is terminated without 

payout to the policyholder. This understanding of policy lapse is in contrast to exercise of the 
surrender option, where the cash surrender value of the policy is paid out. 

5  See Doherty and Singer (2002, pp. 15–16). 
6  See Doherty and Singer (2002, p. 6).  
7  In the viatical settlement market, policies of insureds with a considerably reduced life expectancy 

of less than two years are traded. 
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al. (2002) simulate the distribution for policy reserves in a pool of policies being con-
sidered for early surrender. Their analysis is based on an estimated empirical relation 
between surrender rates and interest rate. Kim (2005) describes surrender rates, using 
various explanatory variables based on different surrender rate models, and finds 
appropriate modeling assumptions for four policy types. 
 
In this paper, we quantitatively examine the effects of modified surrender behavior as 
implicated by the secondary market from an insurer’s perspective for the first time. 
Mortality heterogeneity in the insurance portfolio is taken into account by employing a 
continuously distributed frailty factor to a deterministic mortality table. The surrender 
dates are generated based on constant annual surrender rates. The joint mortality and 
surrender distribution is implemented using a double-decrement model as presented in 
Sanders (1968). 
 
In a simulation analysis, we quantify surrender profits for a portfolio of universal life 
policies using present values. In the base case, constant surrender rates and a surrender 
charge induce a positive surrender profit for the insurance company. In this setting, a 
decrease in surrender rates implies a reduction of surrender profits. However, we find 
that this effect is considerably enhanced when taking into account adverse selection. In 
this case, only good risks surrender, whereas insureds with reduced life expectancy 
choose the secondary market alternative and thus remain in the pool of insureds. Our 
results show that this behavior not only reduces surrender profits, but can even lead to 
a loss. One main finding is that the premium payment method––single or annual––has 
a substantial impact on surrender profits reduction. In particular, in the case of the 
more common annual premiums, surrender profits decline much more compared to the 
single premium case. 
 
The remainder of the paper is structured as follows. In Section 2, we present our model 
framework including the life insurance contract, mortality heterogeneity, and the 
double-decrement model. Numerical analyses and policy implications are discussed in 
Section 3. Section 4 summarizes the main findings. 
 
2. THE MODEL FRAMEWORK 
 
The model of mortality heterogeneity 
 
Mortality heterogeneity is considered by means of a stochastic frailty factor8 applied to 
a given deterministic mortality table. The one-year individual probability of death of a 
                                                           
8  See Jones (1998, p. 81) and Vaupel et al. (1979, p. 440). 
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person age x  is thus given by the product of the individual frailty factor 0d +∈\  and 
the annual probability of death xq′  from the mortality table: 
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where ω  is the limiting age of the mortality table. For 1d < , we let ( ) : 1Mq dω = . The 
superscript “M” stands for mortality probabilities. The parameter d  specifies an 
insured’s state of health. When 0 1d< < , the individual has an above-average life 
expectancy. The case of 1d =  corresponds to an insured with normal health, and when 

1d > , the person is impaired.9 For a given frailty factor d , the random variable 
( ),MK x d  denotes the individual remaining curtate lifetime. Its distribution function 
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where ( )M

k xp d  is the individual k -year survival probability. The frailty factor d  is a 
realization of a random variable D .10 For its distribution DF , we follow the assump-
tions in Hoermann and Ruß (2008): We let DF  be a continuous, right-skewed distribu-
tion on 0

+\  with an expected value of 1, such that the mortality table describes an indi-
vidual with normal health. As probabilities of death approaching zero are not realistic, 
the probability density function Df  is flat at zero, with ( )0 0Df = . The distribution of 
the stochastic frailty factor D   represents the distribution of different states of health 
and thus of different life expectancies in a portfolio. 
 
Net present value and premiums of the life insurance contract 
 
We consider a portfolio of lifelong universal life insurance contracts purchased by 
insureds who are all the same age x at inception. In case of death, each policy pays a 
fixed face amount Y. Policyholders pay either a single premium sB  or constant annual 
premiums aB . From the insurer’s perspective, the net present value ( DNPV ) of one 
average policy in the pool can be calculated by the difference of expected premium 
payments (paid at inception or at the beginning of each year until the stochastic year of 
death ( ),MK x D ) and the expected benefit payment (paid at the end of year 

                                                           
9  See Hoermann and Ruß (2008, pp. 5–6).  
10 See Jones (1998, pp. 80–83), Pitacco (2003, p. 14), and Vaupel et al. (1979, p. 440). 
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( ),MK x D ). The constant interest rate is denoted by i. Hence, the net present value in 
the case of annual premiums results to11 
 

( )
( )
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Given the distribution of the frailty factor D, we calibrate the annual premium Ba such 
that the MNPV  of the policy is zero, i.e., 
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In the case of a single premium payment Bs, Equation (2) simplifies to 
 

( ) ( )( )( ), 11
MK x DsB Y i − += ⋅Ε + .            (3) 

 
Hence, death of the insured before reaching the average life expectancy based on the 
frailty distribution D  causes a negative net present value for the insurer; an insured 
who survives longer than average generates a positive net present value. 
 
Policy reserves and surrender value of the life insurance contract 
 
In general, policyholders have the right to surrender their life insurance policy. If this 
right is exercised, a predetermined (cash) surrender value tS  is paid out that depends 
on the policy reserve tV  (cash value) at the surrender date t. In our model, surrender 
may take place only at the beginning of the year. As done in Tsai et al. (2002), the 
surrender payout is given by 
 

0.8 0.2 , 1, ,t t
tS V t T
T

⎛ ⎞= + ⋅ =⎜ ⎟
⎝ ⎠

… ,           (4) 

 
where at T xω= −  the maximum attainable age is reached. We use this formula, as it 
accounts for common characteristics of the surrender value. It is, e.g., always higher 

                                                           
11  As, e.g., in Tsai et al. (2002, p. 436), dividends, expenses, loadings, taxes, and new business are not 

taken into account. 
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than 80% of the policy reserve, and the surrender charge decreases with time.12 
According to U.S. law and as set forth in Bacinello (2003a), the cash surrender value 
of a life insurance policy must be less than the net single premium needed to fund 
future benefits.13 
 
Policy reserves tV  are calculated based on the mortality table according to the follow-
ing formula:14 
 

( )( )1 1 1

1

1
, 1,...,

1
t t x t

t
x t

V B i Yq
V t T

q
− − + −

+ −

′+ + −
= =

′−
,          (5) 

 
given 0 0V = . In the case of annual premium payments, Bt = Ba for all t. For a single 
premium, B0 = Bs and Bt = 0 for t = 1,…,T. In year t, the policy reserves 1tV −  and the 
premium are assumed to be compounded with the constant interest rate i. In case of 
survival, from this value, the cost of insurance given by the product of the death bene-
fit Y and the probability of death in year t is deducted, and the new reserve is thus 
given by tV . Following the usual practice, we do not consider the surrender option 
when determining the policy reserves as is done in Bacinello (2003b).15 
 
To avoid policy lapses, in our model, premiums and reserves must be calculated based 
on the same actuarial assumptions, i.e. the same interest rate i and the same mortality 
table; otherwise, reserves could become negative.16 Therefore, given the premiums 
calculated according to Equations (2) and (3), which depend on the frailty factor 
distribution, we need to adjust the mortality table that is used for calculating the policy 
reserves in Equation (5). By using a constant multiplier m, this leads to 
 

( ) ( ), 0,...,M
x t x tq m m q t T m+ +′= ⋅ = , 

 
with ( ) ( ) 1M

x T mq m+ = .  We calibrate m  such that the premium calculated under 
consideration of the stochastic frailty factor equals the expected benefits calculated 
based on the deterministically shifted mortality table. Thus, in the case of the single 
premium (Equation (3)), m  is adjusted such that 
 
                                                           
12  Beyond that, by substituting T  by a fixed number τ  with 1 Tτ≤ < , the formula allows to consider 

a restricted surrender charge period.  
13  See Bacinello (2003a, p. 466). 
14 See Bacinello (2001), Bowers et al. (1997), and Linnemann (2004). 
15  See Bacinello (2003b, p. 3). 
16  A (universal) life policy lapses if the cash value is insufficient to pay policy costs, see Carson 

(1996, p. 675).  
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(analogously for annual premium payments). The death and survival probabilities in 
Equation (5) are then replaced, leading to 
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for premiums calculated according to Equations (2) and (3), respectively. Based on the 
policy reserves given by Equation (7), the corresponding surrender value tS  can be 
computed by Equation (4). 
 
The double-decrement model 
 
The difficulty with double-decrement models lays in identifying the cause of termina-
tion, since the dependence structure between surrender and death distribution cannot 
be observed (one can only observe the minimum of the two causes). In this analysis, 
we employ the model developed in Sanders (1968). We denote the one-year surrender 
rate by ( ) ( )S

x tq d+  for t = 0,…,T(d) with ( ) ( ) 0S
x T dq d+ =  as the corresponding probability 

of death ( ) ( ) 1M
x T dq d+ =  for a given frailty factor d. The time until decrement ( ),MSK x d  

from either death or surrender has the distribution function 
 

( ) ( ) ( ) ( ) ( )( )
1

,
0

1 1MS

k
MS M S

k x x l x lK x d
l

F k q d q d q d
−

+ +
=

= = − − −∏ . 

 
The parameter d  still represents a realization of the stochastic frailty factor D . For a 
generated random number from the uniform distribution ( ( )0,1u U∼ ), the contract is 
terminated in year κ  if ( ) ( )1

MS MS
x xq d u q dκ κ+≤ < . Since the one-year decrement prob-

ability consists of the one-year probability of death and the one-year probability of sur-
render ( ( ) ( ) ( )MS M S

x x xq d q d q dκ κ κ+ + += + ), and can be decomposed to 
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the interval of the year of termination ( ) ( ))1,MS MS

x xq d q dκ κ+⎡⎣  can be split into two 
parts to determine the cause of termination, namely 
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( ) ( ) ( ) ( )),MS MS MS M
x x x xq d q d p d q dκ κ κ κ+⎡ +⎣  

 
and 
 

( ) ( ) ( ) ( ))1,MS MS M MS
x x x xq d p d q d q dκ κ κ κ+ +⎡ +⎣ . 

 
If the uniformly distributed random number occurs in the first interval, i.e., 

( ) ( ) ( )MS MS M
x x xu q d p d q dκ κ κ+< + , death occurred; otherwise, the termination is due to 

surrender.17 
 
In the case of annual payments, the net present value SNPV  of the policy including 
surrender is thus given by 
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where the benefit tL  paid to the policyholder at the time of termination t depends on 
the cause of termination. In case of surrender, t tL S= ; in case of death, tL Y= . 
 
Since premiums are calculated such that 0MNPV =  (see Equation (1)), SNPV  is the 
insurance company’s surrender profit. Surrender profits are generated by way of the 
surrender charge. In our model, for a zero surrender charge (i.e., reserves tV  are fully 
paid out) 0SNPV = . The same is true for zero surrender probabilities, where 

0S MNPV NPV= = . Thus, lowering positive surrender probabilities, ceteris paribus, 
reduces surrender profits. 
 
3. NUMERICAL ANALYSES 
 
We use the U.S. 2001 Commissioners Standard Ordinary (CSO) male ultimate com-
posite18 mortality table with limiting age 120ω =  as the basis for our numerical 
analyses. According to the NAIC Standard Nonforfeiture Law for Life Insurance, this 
table may be used to calculate cash surrender values.19 We consider a pool of 
policyholders aged 45 at inception of the contract. For the frailty factor, we let D 
follow a generalized gamma distribution, ( ), ,D α β γΓ∼ , with shape parameter 2α = , 
scale parameter 0.25β = , and shifted by 0.5γ = , as used in Hoermann and Ruß 
                                                           
17 See also Glasserman (2004, p. 57). 
18  Composite means that no distinction is made between smokers and nonsmokers. 
19  See Singer and Stallard (2005, p. 13). 
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(2008).20 For this parameterization, about 40% of frailty factors lie between 1.0 and 
3.5, which for a 65-year-old male leads to life expectancies between about 9 (for 

3.5d = ) to 17 (for 1d = ) years. For a 75-year-old male, life expectancies lie 
approximately between 5 (for 3.5d = ) and 11 (for 1.0d = ) years.21 
 
The interest rate is i = 3%, the death benefit Y = $100,000, and the constant surrender 
rate in the portfolio is set to ( ) 4%,  ,  0, ,S

x tq d d t T+ ≡ ∀ = … . The latter is a rather 
conservative assumption, as, e.g., the average surrender rate for all individual U.S. life 
insurance policies in 2006 was 6.6% according to the Life Insurers Fact Book 2006. 
According to A.M. Best (2007), the lapse ratio of total U.S. life, health, and fraternal 
insurance was 5.9% in 2006. Surrender occurs independent of the interest rate, 
meaning that no optimal exercise behavior is assumed. This assumption is supported 
by Tsai et al. (2002, p. 439), who state that, historically, no dependence between actual 
surrender behavior and interest rate has been observed. 
 
Numerical results are derived using Monte Carlo simulation with 100,000 sample 
paths (corresponds to a portfolio of 100,000 policies). To sample from mortality and 
surrender rates, we use Sanders’s (1968) method, as detailed in the previous section. 
 
Base case: Surrender leads to a positive net present value for the insurer 
 
In the base case, as described above, we first calibrate the premium such that the net 
present value without surrender ( MNPV ) is zero (see Equations (2) and (3)). This 
implies a single premium of Bs = $38,126 and an annual premium of Ba = $1,795. 
Second, the multiplier m is calculated in order to determine the policy reserves. In both 
cases, it is given by m = 0.9518 (Equation (6)). The surrender profits for single and 
annual premium payments are set out in Table 1. 
 

                                                           
20  The gamma distribution is a common choice for frailty models (see Olivieri, 2006, pp. 29–30). 

Further analysis revealed that the results are not very sensitive to changes in distributional 
assumptions of D. 

21  The chosen figures are realistic values for policies traded in the secondary market. See Doherty and 
Singer (2002, p. 4), Giacolone (2001, p. 2), Modu (2005, p. 1), and SOA Record (2005, p. 3). 
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Table 1: Base case with 45-year-old male policyholder at inception––premiums and 
surrender profits SNPV  (results for one average contract) 
  Single premium  Annual premium 
Bs, Ba $38,126 $1,795 

SNPV , ( ) 0% ,S
x tq d d t+ ≡ ∀  $0 $0 

SNPV , ( ) 4% ,S
x tq d d t+ ≡ ∀  $4,107 $1,360 

 
As a surrender charge is applied to the cash value, the surrender profits are positive for 

( ) 4%S
x tq d+ ≡ . Table 1 shows that surrender profits are much higher for the single 

premium payment ($4,107) than for annual premiums ($1,360). The reason for this 
outcome is illustrated in Figure 1. Part a) shows the number of deaths without 
surrender ( ( ) 0%S

x tq d+ ≡ ) at each age, starting at 45 (first year of the contract) to the 
limiting age 120, for the 100,000 policies. Given the premiums in Table 1, the net 
present value of one contract is zero on average. 
 
When introducing surrender rates as a second type of decrement in the portfolio, the 
curve showing number of deaths changes, as laid out in Part b) of Figure 1. The graph 
shows that the number of surrenders at the beginning of the policy duration is 
substantially higher compared to the number of deaths, which is due to the constant 
surrender rate of ( ) 4% ,S

x tq d d t+ ≡ ∀  and very low annual probabilities of death at 
early ages. Death probabilities increase with age, which is why the curve of the 
number of deaths increases until the age of 80. The absolute number of deaths 
decreases after age 80 since the number of insureds in the portfolio has been 
substantially reduced due to previous surrenders and deaths. The total number of 
decrements due to death and surrender over all ages sums up to 100,000. 
 
Part c) of Figure 1 displays deterministic net present values in the case of single and 
annual premiums. NPVt(D) is the difference between premium payments and the death 
benefit if an insured dies at age x+t, t = 0,…,T and NPVt(S) is the corresponding net 
present value in case of surrender, both discounted to policy inception. NPVt(S) repre-
sents the surrender profit, which depends on the surrender charge and the policy re-
serves (see Equation (4)). 
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Figure 1: Base case—number of decrements in simulation; SNPV  for surrender and 
death at deterministic dates 

a) Number of decrements due to death without surrender for ( ) 0% ,S
x tq d d t+ ≡ ∀  
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To calculate the net present value of an average contract in the portfolio (Equation (8)) 
for stochastic times of surrender and death, the deterministic values NPVt(D) and 
NPVt(S) are weighted with the number of decrements due to death and surrender, re-
spectively, at the time of the decrement given in Part b) of Figure 1. As shown in Part 
c) of that figure, NPVt(D) is much more negative in case of annual premium payments 
during the first 30 years of the contract than in the case of a single premium. When 
introducing the possibility of surrender, a substantial portion of negative net present 
value realizations are replaced by positive surrender profits. During the early years of 
the contract, NPVt(S) is higher for a single premium payment than in the annual pre-
mium case, which––given the same death and surrender rates––leads to the much 
higher surrender profit of $4,107 compared to $1,360 for the annual premium. 
 
The impact of the secondary market on surrender profits 
 
Surrender behavior depends on the insured’s health status.22 Individuals with above-
average health are generally considered more likely to surrender; however, the pattern 
is not as clear-cut for those with impaired health. On the one hand, their ill health 
makes it less likely that they will surrender but, on the other hand, the same ill health 
may make them more in need of money and thus more likely to surrender. The second 
effect is said to be stronger, but both will have adverse effects on the insurer. To assess 
the impact of adverse selection on surrender profits, we specifically focus on a change 
in the surrender behavior of impaired individuals as implicated by the secondary mar-
ket. 
 
We first assume that surrender rates are set to zero for all policyholders with a reduced 
life expectancy, i.e., with a frailty factor d greater than some barrier d*, and that 
surrender rates remain at 4% for all other policyholders over all ages (i.e., for all t, 

( ) 0%S
x tq d+ ≡  if d > d* and ( ) 4%S

x tq d+ ≡ , else). This means that, generally, the 
average surrender rate in the portfolio decreases. We compare the results in this 
secondary market scenario with the surrender profits in the base case given in Table 1. 
Figure 2 displays results for d* = 1 and d* = 1.25 (Part a) and b), respectively), i.e., 
impaired individuals with below-average life expectancy do not surrender their 
policies. 
 
The graphs in Figure 2 show the number of decrements due to death and surrender 
(“Death (d*)”; “Surrender (d*)”) for the case of altered surrender rates. The outcomes 
show that the secondary market scenario leads to much fewer surrenders compared to 
the base case (see Part b) in Figure 1). Thus, as we are only considering two causes of 
                                                           
22  See Doherty and Singer (2002, pp. 16, 21, 2003, pp. 63–73). 
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decrement, a much higher number of policies is terminated by death than by surrender. 
In the single premium case (Part a) of Figure 2), the original surrender profit of the 
base case is considerably reduced from $4,107 to $1,781, which means a reduction of 
56.6%. In the annual premium payment setting, the net present value even becomes 
negative, implying a reduction of more than 120%. This effect is explained by the 
negative selection of insured risks and the adverse interaction of surrender and death 
probabilities. Due to the highly negative net present value of the death benefit NPVt(D) 
during the early years of the contract (see Part c) of Figure 1), the annual premium 
payment case is considerably more affected. 
 
Figure 2: Secondary market scenario––number of decrements due to surrender and 
death with ( ) 0%S

x tq d+ ≡  if d > d*, ( ) 4%S
x tq d+ ≡ , else, for 0, ,t T= …  

a) * 1d = : Surrender rate ( ) 0%S
x tq d+ ≡  if d > 1; ( ) 4%S

x tq d+ ≡ , else; 0, ,t T= …  
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The effects are reduced if we consider only insureds with d > 1.25 (Part b) in Figure 
2). In this case, surrender profits are still substantially diminished by 32.2% (single 
premium payment) and 82.7% (annual premium payment). Overall, the results empha-
size the impact of the premium payment method, since net present values are much 



 14

more affected in the case of annual premiums, which, it should be noted, is by far the 
most common method of payment. 
 
To identify the impact of adverse selection, i.e., of setting ( ) 0%S

x tq d+ ≡  for impaired 
individuals ( *d d> ) only, we consider a modified surrender rate in the portfolio taking 
d* = 1.25 as an example. For this barrier value, in the simulation, 19,911 insureds out 
of 100,000 have a frailty factor d > d* and thus do not surrender their policy. The 
remaining individuals surrender at the usual rate of 4%S

x tq t+ ≡ ∀ . The new “average” 
surrender rate in the whole portfolio of insureds (independent of health status) is 
obtained by 
 

( ) ( )19,911 0% + 80,089 4% /100,000  3.2% ,s
x tq d d t+ = ⋅ ⋅ ≈ ∀ . 

 
The surrender profits for this “average” surrender rate are set out in Table 2. 
 
Table 2: Surrender profits SNPV  for average surrender rate ( ) 3.2% ,S

x tq d d t+ ≡ ∀   
(results for one contract on average) 

Premium SNPV  Reduction with respect to base case 

Single $3,632 -11.6% 

Annual $1,296 -4.7% 
 
Compared to the tremendous reduction of surrender profits in Figure 2, Part b)—
32.2% for a single premium—the decline is reduced to 11.6% when the decrease in 
surrender rates is distributed over the entire portfolio instead of setting ( ) 0%S

x tq d+ ≡  
for impaired individuals ( *d d> ) only. This effect is even greater for annual premium 
payments: surrender profits are reduced by 4.7% instead of 82.7%. In contrast to 
Figure 2, Part b), reducing the overall surrender rate leads to a stronger decline of net 
present value in the case of a single premium than for annual payments. 
 
We next modify the underlying assumption that all impaired individuals with a frailty 
factor d > d* do not surrender during the whole policy duration. In fact, it is predomi-
nantly policyholders older than 65 who make up the target group for the life settlement 
market. Hence, we now assume that impaired individuals have an average surrender 
rate of ( ) 4%S

x tq d+ ≡  until age 64, after which ( ) 0%, 65S
x tq d x t+ ≡ + ≥ . As before, all 

other policyholders continue to surrender at ( ) *4%, , 0, ,S
x tq d d d t T+ ≡ ≤ = … . The 

resulting decrement curves and surrender profits SNPV  are illustrated in Figure 3. 
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Figure 3: Secondary market scenario––number of decrements due to surrender and 
death with ( ) 0%S

x tq d+ ≡  if d > d* starting at age 65, ( ) 4%S
x tq d+ ≡ , else 

a) * 1d = : Surrender rate ( ) 0%S
x tq d+ ≡  if d > 1 and 65x t+ ≥ ; ( ) 4%S

x tq d+ ≡ , else 
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Compared to Figure 2, the reduction of surrender profits shown in Figure 3 is consid-
erably less, but the general trend is very similar. In particular, a change of surrender 
rates has a much stronger effect on the net present value for the annual premium pay-
ments scenario than in the single premium case. Furthermore, surrender profits are still 
reduced by 8.4% (single) and 24.6% (annual) in Part a) of Figure 3. 
 
An additional cushioning effect occurs when taking into consideration that only a cer-
tain percentage of insureds with d > d* have a zero surrender probability after age 65. 
Realistically, only a portion of insureds with reduced life expectancy will sell their 
policy to the secondary market. This further reduces the effect with respect to losses in 
the surrender profit. However, the key results and central effects remain the same. 
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Impact of age at inception on surrender profits 
 
We next look at the impact of the insured’s age at inception of the contract on surren-
der profits. In this section, we consider a portfolio of older policyholders where the 
insureds’ initial age is 55 instead of 45. As in the base case, we first need to calibrate 
the premiums such that the net present value MNPV  is zero. Equation (1) is satisfied 
for Bs = $48,915 and Ba = $2,789. The corresponding multiplier for the policy reserves 
is given by m = 0.9486. The resulting surrender profits are summarized in Table 3. 
 
Table 3: Base case with 55-year-old male policyholder at inception––premiums and 
surrender profits SNPV  (results for one contract on average) 
 Single premium  Annual premium 
Bs, Ba $48,915 $2,789 

SNPV , ( ) 0% ,S
x tq d d t+ ≡ ∀  $0 $0 

SNPV , ( ) 4% ,S
x tq d d t+ ≡ ∀  $4,522 $1,455 

 
Table 3 shows that premiums and surrender profits for an average surrender rate of 4% 
are higher when the portfolio is comprised of 55-year-old policyholders than when it 
contains 45-year-olds (see Table 1). Figure 4 illustrates results that are derived under 
the same scenario as was used in Figure 2 ( ( ) 0%S

x tq d+ ≡  if d > d*; ( ) 4%S
x tq d+ ≡  else; 

0, ,t T= … ). 
 
With a portfolio of 45-year-old insureds, the decline in profits is considerably stronger 
for the annual premium scenario than for the single payment case. In the portfolio of 
55-year-olds, the surrender profit with respect to the corresponding base case is less 
reduced for the single premium, and more reduced for the annual premium payment 
method compared to the portfolio of 45-year-olds in Figure 2. Overall, however, the 
difference between the two portfolios is not very great due to the adjustment in the 
amount charged for premiums.  
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Figure 4: Secondary market scenario––number of decrements due to surrender and 
death in a portfolio with 55-year-old insureds at contract inception with ( ) 0%S

x tq d+ ≡  if 
d > d*, ( ) 4%S

x tq d+ ≡ , else, for 0, ,t T= …  
a) * 1d = : Surrender rate ( ) 0%S

x tq d+ ≡  if d > 1; ( ) 4%S
x tq d+ ≡ , else; 0, ,t T= …  
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Selected additional numerical results 
 
Over time, the number of insureds in the portfolio decreases because of decrements 
due to death or surrender. The former especially concerns impaired insureds with 
reduced life expectancy. Thus, if we increase the year of age––age 65 in previous 
analyses––after which all impaired insureds (with *d d> ) change their surrender 
behavior to ( ) 0%S

x tq d+ ≡ , the discussed effects will be less distinctive. For example, 
setting the age to 75, the decline of net present value compared to the base case is 
about 2.7%, that is, $1,323 for annual premium payments (single: a 0.9% reduction, or 
$4,072); given an age of 65, the net present value was reduced about 13.8% to $1,172 
(single: 4.4% to $3,928; see Figure 3). Similar effects occur when surrender rates are 
assumed to decrease over the policy duration.  
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Furthermore, modifications of the surrender payout have an effect on surrender profits. 
For example, lowering the surrender charge reduces profits, which also implies less 
distinct effects of altered surrender behavior. The same is true if the surrender charge 
is imposed during only the first, e.g., 10 to 15 years. After this period, the surrender 
payout is equal to the policy reserves, which in our model leads to surrender profits of 
zero. 
 
When changing the interest rate from 3%i =  to 4%i = , lower premiums are obtained 
when solving Equations (2) and (3). The single premium Bs goes from 38,126 to 
28,651; annual premiums Ba are $1,545 instead of $1,795. In the base scenario with a 
constant surrender rate of 4%, an interest rate of 4% leads to net present values of 
$2,966 and $1,022 for single and annual premiums, respectively. In the secondary 
market scenario–– ( ) 4%S

x tq d+ ≡  for insureds with * 1.25d d> =  starting at age 65 (see 
Figure 3)––the corresponding net present value is $2,829 (single premium) and $881 
(annual premium). Compared to the base scenario, this means a decline of 4.6% and 
13.8%, respectively. These values approximately coincide with the 3% interest case 
(see Figure 3). 
 
Policy implications 
 
Our analyses revealed that reduced surrender rates by insureds with impaired health 
caused by secondary market activity result in a decline in profits for insurance compa-
nies. Not only are the surrender profits reduced, but there are negative effects from 
adverse selection. In practice, both effects are probably intensified due to the fact that 
the life settlement market, in order to minimize transaction costs, is mainly interested 
in policies with large face amounts (see SOA Record, 2005). In the future, life 
settlements will probably become an alternative for an increasing number of 
policyholders, i.e., it will not only be the large policies held by seniors that are traded, 
but also those held by younger adults with below-average life expectancy. 
 
To preserve their surrender profits, U.S. life insurers have looked for ways to compete 
with the secondary market. The simplest answer would be to pay health-dependent 
surrender values. Thus, a person surrendering his or her policy would receive the cur-
rent (net present) value from the insurance company, which should be close to or even 
higher than (because of less transaction costs) the price in the secondary market. How-
ever, according to Doherty and Singer (2002, p. 18), regulatory, actuarial, and 
administrative difficulties seem to outweigh the benefits gained from offering more 
competitive surrender values to impaired insureds. 
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As an answer to the viatical settlement market, the concept of accelerated death bene-
fits (ADBs) was developed by life insurance carriers in the early 1990s.23 An ADB 
rider on a policy provides the opportunity of receiving between 25–100% of the death 
benefit in the case of dread disease, long-term care, or terminal illness accompanied by 
a remaining life expectancy of (usually) less than 12 months. A further attempt to suc-
cessfully compete with the life settlement market involves expanding the ADB rider to 
cover chronic illnesses.24  
 
Furthermore, Doherty and Singer (2002, 2003) state that life insurers are lobbying for 
regulation of the life settlement industry and are refusing to allow their agents to deal 
with life settlement firms, a situation that is currently changing. Life insurers also 
attempt to identify so-called premium financed policies—polices purchased for the 
sole purpose of selling them to the secondary market.25 
 
4. SUMMARY 
 
In this paper, we study the impact of modified surrender rates on insurance company 
profit that occurs due to the opportunity of selling one’s policy to the secondary mar-
ket. This kind of analysis has not been conducted before, even though it is of great 
interest to insurers. By use of a stochastic frailty factor, we model a mortality 
heterogeneous pool of life insurance contracts. In the analysis, we first calibrate annual 
and single premiums such that the actuarial net present value of an average contract 
without consideration of surrender is zero. Next, surrender profits (generated due to 
surrender charges) are calculated by means of a double-decrement simulation analysis 
for different scenarios. In the base case, surrender rates are constant for the entire 
portfolio. The secondary market scenario assumes an asymmetric surrender behavior, 
i.e., impaired insureds do not surrender (but, e.g., sell their policies to the life 
settlement industry instead), while only good risks continue to surrender. 
 
In general, surrender profits are reduced when the portfolio’s surrender rate declines. 
However, our results showed that this effect is intensified by the secondary market 
scenario. We further found that the single premium payment method results in consid-
erably higher surrender profits and that negative effects from asymmetric surrender 
behavior are less severe with this type of payment scheme than they are when annual 
payments are made. Hence, in the case of the more common annual premiums, origi-
nally lower surrender profits experience a much stronger decline in the secondary 

                                                           
23 See Doherty and Singer (2002, pp. 31–33) and Giacolone (2001, p. 5). 
24  See Doherty and Singer (2003, p. 77). 
25  See Dunmore (2006) and Giacolone (2001). 
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market scenario. This reduction has shown to be even higher in a portfolio comprised 
of insureds who are older at contract inception. If only impaired insureds above age 65 
stop surrendering in the secondary market scenario, the effects are less distinct but still 
quite evident. Effects are further reduced if only a portion of impaired insureds or 
decreasing surrender rates are taken into account. 
 
In the long run, both consumers and life insurance carriers will benefit from a com-
petitive secondary market. On the one hand, increasing competition in the life settle-
ment market will allow consumers to obtain higher prices for their policies. On the 
other hand, primary insurers may benefit if the secondary market causes a stronger 
demand for life insurance. However, life insurers will need to abandon lapse-supported 
pricing, which could also aid in reducing the volatility of their profits. 
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