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Abstract In recent years, market-consistent valuation approaches have gained an increasing im-

portance for insurance companies. This has triggered an increasing interest among practitioners

and academics, and a number of studies on such valuation approaches have been published.

However, despite the fact that many models are structurally similar, no generic modeling setup

has been proposed so far.

In this paper, we present such a generic model for the valuation of life insurance con-

tracts and embedded options. Furthermore, we describe various numerical valuation approaches

within our generic setup. We particularly focus on contracts containing early exercise features

since these present (numerically) challenging valuation problems.

Based on an example of participating life insurance contracts, we illustrate the different

approaches and compare their efficiency in a simple and a generalized Black-Scholes setup, re-

spectively. Moreover, we study the impact of the considered early exercise feature on our exam-

ple contract and analyze the influence of model risk by additionally introducing an exponential

Lévy model.

Keywords Life insurance · Risk-neutral valuation · Embedded options · Bermudan options ·
Nested simulations · PDE methods · Least-squares Monte Carlo

1 Introduction

In recent years, market-consistent valuation approaches for life insurance contracts have gained

an increasing practical importance.

In 2001, the European Union initiated the “Solvency II” project to revise and extend current

solvency requirements, the central intention being the incorporation of a risk-based framework

for adequate risk management and option pricing techniques for insurance valuation. Further-

more, in 2004 the International Accounting Standards Board issued the new International Fi-

nancial Reporting Standard (IFRS) 4 (Phase I) which is also concerned with the valuation of

life insurance liabilities. Although Phase I just constitutes a temporary standard, experts agree
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that fair valuation will play a major role in the future permanent standard (Phase II), which is

expected to be in place by 2010 (see [29]).

However, so far, most insurance companies only have little knowledge about risk-neutral

valuation techniques and, hence, mostly rely on simple models and brute force Monte Carlo

simulations. This is mainly due to the fact that predominant software solutions (e.g. Moses,

Prophet, or ALM.IT) were initially designed for deterministic forecasts of an insurer’s trade

accounts and only subsequently extended to perform Monte Carlo simulations. In academic

literature, on the other hand, there exists a variety of different articles on the valuation of life

insurance contracts. There is, however, no generic modeling setup and there are hardly any

detailed comparisons of different numerical valuation approaches. Moreover, some studies do

not apply methods from financial mathematics appropriately to the valuation of life insurance

products (e.g. questionable worst-case scenarios in [23] and [33]; see Sec. 3.1 below for details).

The objective of this article is to formalize the valuation problem for insurance contracts in a

general way and to provide a survey on concrete valuation methodologies. We particularly focus

on the valuation of insurance contracts containing early-exercise features, such as surrender op-

tions, withdrawal guarantees, or options to change the premium payment method. While almost

all insurance contracts contain such features, insurers usually do not include these in their price

and risk management computations even though they may add considerably to the value of the

contract.

The remainder of the text is organized as follows: In Sect. 2, we present a generic model for

life insurance contracts. Subsequently, in Sect. 3, we describe different numerical valuation ap-

proaches. Based on an example of participating life insurance contracts, we carry out numerical

experiments in Sect. 4. Similarly to most prior literature on the valuation of life contingencies

from a mathematical finance perspective, we initially assume a general Black-Scholes frame-

work. We compare the obtained results as well as the efficiency of the different approaches and

analyze the influence of a surrender option on our example contract. However, as is well-known

from various empirical studies, several statistical properties of financial market data are not de-

scribed adequately by Brownian motion and, in general, guarantees and options will increase

in value under more suitable models. Therefore, we analyze the model risk for our valuation

problem by introducing an exponential Lévy model and comparing the obtained results for our

example to those from the Black-Scholes setup. We find that the qualitative impact of the model

choice depends on the particular model parameters, i.e. that there exist (realistic) parameter

choices for which either model yields higher values, which is in contrast to the general notion.

Finally, the last section summarizes our main results.

2 Generic contracts

We assume that financial agents can trade continuously in a frictionless and arbitrage-free fi-

nancial market with finite time horizon T .1 Let
(
!F ,F F ,QF ,FF = (F F

t )t∈[0,T ]
)
be a com-

plete, filtered probability space, where QF is a pricing measure and FF is assumed to sat-
isfy the usual conditions. In this probability space, we introduce the q1-dimensional vector

(YFt )t∈[0,T ] = (YF,(1)t , . . . ,Y
F,(q1)
t )t∈[0,T ] of locally bounded, adapted Lévy processes, and call it

the state process of the financial market.

Within this market, we assume the existence of a locally risk-free asset (Bt)t∈[0,T ] with

Bt = exp
{∫ t
0 ru du

}
, where rt = r

(
t,YFt
)
is the short rate. Moreover, we allow for n ∈ N other

risky assets (A(i)
t )t∈[0,T ], 1≤ i≤ n, traded in the market with2

A
(i)
t = A(i)(t,YFt ), 1≤ i≤ n.

1 In actuarial modeling, it is common to assume a so-called limiting age meaning that a finite time horizon

naturally suffices in view of our objective.
2 We denote by A

(i)
t only assets which are not solely subject to interest rate risk, e.g. stocks or immovable

property. The price processes of non-defaultable bonds traded in the market are implicitly given by the short rate

process.
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In order to include the mortality component, we fix another probability space
(
!M,GM,PM

)

and a homogenous population of x-year old individuals at inception. Similar to [12,20], we as-

sume that a q2-dimensional vector of locally bounded, adapted Lévy processes (YMt )t∈[0,T ] =
(YM,(q1+1)
t , . . . ,YM,(q)

t )t∈[0,T ], q = q1+ q2, on
(
!M,GM,PM

)
is given. Now let !(·, ·) : R+ ×

Rq2 → R+ be a positive continuous function and define the time of death Tx of an individual as

the first jump time of a Cox process with intensity
(
!(x+ t,YMt )

)
t∈[0,T ], i.e.

Tx = inf

{
t

∣∣∣∣
∫ t

0
!(x+ s,YMs )ds≥ E

}
,

where E is a unit-exponentially distributed random variable independent of (YMt )t∈[0,T ] and mu-

tually independent for different individuals. Also, define subfiltrations FM =
(
FM
t

)
t∈[0,T ] and

H = (Ht)t∈[0,T ] as the augmented subfiltrations generated by (YMt )t∈[0,T ] and (1{Tx≤t})t∈[0,T ],

respectively. We set GM
t = FM

t ∨Ht and GM =
(
GM
t

)
t∈[0,T ].

Insurance contracts can now be considered on the combined filtered probability space

(
! ,G ,Q,G = (Gt)t∈[0,T ]

)
,

where ! = !M ×!F , G = F F ∨GM , Gt = F F
t ∨GM

t , and Q = QF ⊗PM is the product

measure of independent financial and biometric events. We further let F = (Ft)t∈[0,T ], where

Ft = F F
t ∨FM

t . A slight extension of the results by Lando ([34], Prop. 3.1) now yields that for

anFt-measurable payment Ct , we have for u≤ t3

BuEQ [B−1t Ct 1{Tx>t}
∣∣Gu
]

= 1{Tx>u}BuEQ
[
B−1t Ct exp

{
−
∫ t

u
!(x+ s,Ys)ds

}∣∣∣∣Fu

]
,

which can be readily applied to the valuation of insurance contracts. For notational convenience,

we introduce the realized survival probabilities

t p
(t)
x := EQ [1{Tx>t}

∣∣Ft ∨H0

]
= exp

{
−
∫ t

0
!(x+ s,YMs )ds

}
,

t−u p
(t)
x+u :=

t p
(t)
x

up
(u)
x

= exp

{
−
∫ t

u
!(x+ s,YMs )ds

}
, 0≤ u≤ t,

as well as the corresponding one-year realized death probability

q
(t)
x+t−1 = 1− p

(t)
x+t−1 = 1− 1p

(t)
x+t−1.

WhileQF is specified as some given equivalent martingale measure, there is some flexibility

in the choice of PM . In a complete financial market, i.e. if QF is unique, with a deterministic

evolution of mortality and under the assumption of risk-neutrality of an insurer with respect

to mortality risk (cf. [2]), Møller ([39]) points out that if PM denotes the physical measure,

Q as defined above is the so-called Minimal Martingale Measure (see [44]). This result can

be extended to incomplete market settings when choosing QF to be the Minimal Martingale

Measure for the financial market (see e.g. [42]). However, in [22], Delbaen and Schachermayer

quote “the use of mortality tables in insurance” as “an example that this technique [change

of measure] in fact has a long history” in actuarial sciences, indicating that the assumption of

risk-neutrality with respect to mortality risk may not be adequate. Then, the measure choice

depends on the availability of adequate mortality-linked securities traded in the market (see [21]

for a particular example and [13] for a survey on mortality-linked securities) and/or the insurer’s

3 In what follows, we write !(x + t,Yt ) := !(x + t,YMt ) and r (t,Yt ) := r
(
t,YFt
)
, where (Yt)t∈[0,T ] :=(

YFt ,YMt
)
t∈[0,T ] is the state process.
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preferences (see [10] or [40]). In what follows, we assume that the insurer has chosen a measure

PM for valuation purposes, so that a particular choice for the valuation measureQ is given.

To obtain a model for our generic life insurance contract, we analyze the way such contracts

are administrated in an insurance company. An important observation is that cash flows, such as

premium payments, benefit payments, or withdrawals, are often not generated continuously but

only at discrete points in time. For the sake of simplicity, we assume that these discrete points

in time are the anniversaries " ∈ {0, . . . ,T} of the contract.
Therefore, the valueV" of some life insurance contract at time " by the risk-neutral valuation

formula is:

V" = B"

T

#
!="

EQ [B−1! C!
∣∣F"

]
,

where C! is the cash flow at time ! , 0≤ ! ≤ T .

Since the value of our contract under the assumption that the insured in view is alive at time

t only depends on the evolution of mortality and the financial market, and as these again only

depend on the evolution of (Ys)s∈[0,t], we can write:

Vt = Ṽ (t,Ys,s ∈ [0, t]).

But saving the entire history of the state process is cumbersome and, fortunately, unnecessary:

Within the bookkeeping system of an insurance company, a life insurance contract is usually

managed (or represented) by several accounts saving relevant information about the history

of the contract, such as the account value, the cash-surrender value, the current death benefit,

etc. Therefore, we introduce m ∈ N virtual accounts (Dt)t∈[0,T ] = (D(1)
t , . . . ,D(m)

t )t∈[0,T ], the so-

called state variables, to store the relevant history. In this way, we obtain a Markovian structure

since the relevant information about the past at time t is contained in (Yt ,Dt). Furthermore,
we observe that these virtual accounts are usually not updated continuously, but adjustments,

such as crediting interest or guarantee updates, are often only made at certain key dates. Also,

policyholders’ decisions, such as withdrawals, surrenders, or changes to the insured amount,

often only become effective at predetermined dates. To simplify notation, we again assume that

these dates are the anniversaries of the contract. Therefore, to determine the contract value at

time t if the insured in view is alive, it is sufficient to know the current state of the stochastic

drivers and the values of the state variables at )t* = max{n ∈ N|n ≤ t}, i.e. the value of the
generic life insurance contract can be described as follows:

Vt =V (t,Yt ,Dt) =V (t,Yt ,D)t*), t ∈ [0,T ].

We denote the set of all possible values of (Yt ,Dt) by$t .
Most models for the market-consistent valuation of life insurance contracts presented in lit-

erature fit into this framework. For example, in [14], Brennan and Schwartz price equity-linked

life insurance policies with an asset value guarantee. Here, the value of the contract at time t

only depends on the value of the underlying asset which is modeled by a geometric Brownian

motion, i.e. we have an insurance contract which can be described by a one-dimensional state

processes and no state variables.

Participating life insurance contracts are characterized by an interest rate guarantee and

some bonus distribution rules, which provide the possibility for the policyholder to participate

in the earnings of the insurance company. Furthermore, these contracts usually contain a sur-

render option, i.e. the policyholder is allowed to lapse the contract at time " ∈ {1, . . . ,T}. Such
contracts are, for instance, considered in [15,25,38]. All these models can be represented within

our framework. Moreover, the setup is not restricted to the valuation of one “entire” insurance

contracts, but, on one hand, it can also be used to determine the value of multiple contracts at

a time (see [26]) or, on the other hand, parts of insurance contracts, such as embedded options.

Clearly, we can determine the value of an arbitrary option by computing the value of the same
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contract in- and excluding that option, ceteris paribus. The difference in value of the two con-

tracts is the value of the option. For example, the generic model can be used in this way to

analyze paid-up and resumption options within participating life insurance contracts such as in

[23] or exchange options such as in [41]. Alternatively, the value of a certain embedded option

may be determined by isolating the cash-flows corresponding to the considered guarantee (see

[8]).

In [9], Bauer et al. consider Variable Annuities including so-called Guaranteed Minimum

Death Benefits (GMDBs) and/or Guaranteed Minimum Living Benefits (GMLBs). Again, their

model structure fits into our framework. Bauer et al. use one stochastic driver to model the asset

process and eight state variables to specify the contract.

3 A survey of numerical methods

The contracts under consideration are often relatively complex, path-dependent derivatives, and

in most cases, analytical solutions to the valuation problems cannot be found. Hence, one has

to resort to numerical methods. In this section, we present different possibilities to numerically

tackle these valuation problems.

3.1 Monte Carlo simulations

Monte Carlo simulations are a simple and yet useful approach to the valuation of insurance

contracts provided that the considered contract does not contain any early exercise features, i.e.

policyholders cannot change or (partially) surrender the contract during its term. We call such

contracts European.

In this case, we can simulate K paths of the state process (Yt)t∈[0,T ], say (Y (k)
t )t∈[0,T ], k =

1, . . . ,K, and compute the numéraire process, the realized survival probabilities as well as the
state variables at each anniversary of the contract. Then, the “value” of the contract for path k,

V
(k)
0 , 1≤ k≤K, is given as the sum of discounted cash flows in path k, and, by the Law of Large

Numbers (LLN), the risk-neutral value of the contract at inception V0 may be estimated by the

sample mean for K sufficiently large.

However, if the contract includes early exercise features, the problem is more delicate since

the value of the option or guarantee in view depends on the policyholder’s actions.

The question of how to incorporate policyholder behavior does not have a straight-forward

answer. From an economic perspective, one could assume that policyholders will maximize their

personal utility, which would lead to a non-trivial control problem similar as for the valuation

of employee stock options (see [16], [28], or references therein). However, the assumption of

homogenous policyholders does not seem proximate. In particular, the implied assertion that

options within contracts with the same characteristics are exercised at the same time does not

hold in practice, and it is not clear how to include heterogeneity among policyholders.

Alternatively, it is possible to assess the exercise behavior empirically. For such an approach,

our framework provides a convenient setup: A regression of historical exercise probabilities on

the state variables could yield coherent estimates for future exercise behavior. However, aside

from problems with retrieving suitable data, when adopting this methodology insurers will face

the risk of systematically changing policyholder behavior, which has had severe consequences

in the past. For example, the UK-based mutual life insurer Equitable Life, the world’s oldest life

insurance company, was closed to new business due to solvency problems arising from a mis-

judgment of policyholders’ exercise behavior of guaranteed annuity options within individual

pension policies.

Hence, in compliance with ideas from the new solvency and financial reporting regulations,

we take a different approach and consider a valuation of embedded options as if they were traded

in the financial market. While from the insurer’s perspective, the resulting “value” may exceed

the actual or realized value, it is a unique “supervaluation” in the sense that policyholders have
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the possibility (or the option) to exercise optimally with respect to the financial value of their

contract. Moreover, the resulting “superhedging” strategy for attainable embedded options is

unique in the same sense.

In order to determine this value, we need to solve an optimal stopping problem. To illustrate

it, let us consider a life insurance contract with surrender option. The option is most valuable if

the policyholder behaves “financially rational”, i.e.

V0 = sup
%∈&0

EQ

[
(B% )−1 % p

(%)
x C(% ,Y%,D%)+

%−1

#
"=0

(B"+1)−1" p
(")
x q

("+1)
x+" f ("+1,Y"+1,D")

∣∣∣∣∣F0

]

where C(" ,y" ,d" ) is the surrender value at time " and f (" ,y" ,d"−1) is the death benefit upon
death in [" − 1,") if the state process and the state variables take values y" and d" (d"−1 at
t = " − 1), respectively, and &0 denotes the set of all stopping times in {1, . . . ,T}. Clearly,
maximizing the exercise value over each single sample path and computing the sample mean,

as e.g. pursued in [23] and [33] for different types of contracts, overestimates this value.

To determine a Monte Carlo approximation of this value, which we refer to as the contract

value in what follows, we need to rely on so-called “nested simulations”. We do not allow for

surrenders at inception of the contract, so we define C(0,y0,d0) := 0. By the Bellman equation

(see e.g. [11] for an introduction to dynamic programming and optimal control) the contract

value at time " , " ∈ {0, . . . ,T −1}, is the maximum of the exercise value and the continuation
value. The latter is the weighted sum of the discounted expectation of the contract value given

the information (y" ,d" ) ∈$" , i.e.

V (" ,y" ,d")

= max
{
C(" ,y" ,d"),B" EQ

[
B−1"+1 p

("+1)
x+" V ("+1,Y"+1,D"+1)

∣∣∣(Y" ,D") = (y" ,d" )
]

+B" EQ
[
B−1"+1 q

("+1)
x+" f ("+1,Y"+1,D")

∣∣∣(Y" ,D") = (y" ,d" )
]}

.

We now generate a tree with T time steps and b ∈ N branches out of each node. We start

with initial value Y0 and then generate b independent successors Y
1
1 , . . . ,Yb1 . From each node we

generate again b successors and so on. To simplify notation, let X
l1 l2...l"
" = (Y l1l2...l"" ,Dl1l2...l"

" ).
With this notation, an estimator for V" , " ∈ {0, . . . ,T}, at node Y l1...l"" is

V̂
l1...l"
" :=






max

{
C(" ,Xl1...l"" ), B

l1 ...l"
"
b #bl=1(B

l1...l" l
"+1 )−1 pl1...l" lx+" V̂

l1...l" l
"+1

+ B
l1 ...l"
"
b #bl=1(B

l1...l" l
"+1 )−1ql1 ...l" lx+" f ("+1,Y l1...l" l"+1 ,Dl1...l"

" )
}

," ∈ {0, . . . ,T −1}

C(" ,Xl1...l"" ) ," = T

where B
l1...l"
" and p

l1 ...l"
x+"−1 (q

l1 ...l"
x+"−1) denote the values of the bank account and the one-year

survival (death) probability at t = " in sample path (Y0,Y
l1
1 , . . . ,Y l1...l"" ), respectively.

Using K replications of the tree, we determine the sample mean V̄0(K,b), and by the LLN
we get V̄0(K,b)→EQ[V̂0] as K→' almost surely. Hence, fixing b, we can construct an asymp-

totically valid (1− ( ) confidence interval for EQ
[
V̂0
]
. But this estimator for the risk-neutral

value V0 =V (0,X0) is biased high (see [24], p. 433), i.e.

EQ
[
V̂0
]
≥V (0,X0),

where, in general, we have a sharp inequality. However, under some integrability conditions

the estimator is asymptotically unbiased and hence, we can reduce the bias by increasing the

number of branches b in each node.

In order to construct a confidence interval for the contract valueV (0,X0), following [24], we
introduce a second estimator. It differs from the estimator introduced above in that all but one

replication are used to decide whether to exercise the option or not, whereas in case exercising
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is not decided to be optimal, the last replication is employed. More precisely, we define for

" ∈ {0, . . . ,T −1}

v̂
l1...l"
"u :=






C(" ,Xl1...l"" ) , if B
l1...l"
"
b−1

b

#
l=1,l +=u

(Bl1...l" l"+1 )−1 pl1...l" lx+" v̂
l1...l" l
"+1

+B
l1...l"
"
b

b

#
l=1,l +=u

(Bl1...l" l"+1 )−1ql1...l" lx+" f ("+1,Y l1...l" l"+1 ,Dl1...l"
" )

≤C(" ,Xl1...l"" )

B
l1...l"
" (Bl1...l"u"+1 )−1 pl1...l"ux+" v̂

l1...l"u
"+1 , otherwise

+Bl1 ...l"" (Bl1...l"u"+1 )−1ql1 ...l"ux+" f ("+1,Y l1...l"u"+1 ,Dl1...l"
" )

.

Then, averaging over all b possibilities of leaving out one replication, we obtain

v̂
l1 ...l"
" :=

{
1
b #

b
u=1 v̂

l1...l"
"u . ," ∈ {0, . . . ,T −1}

C(" ,Xl1...l"" ) ," = T
.

Again using K replications of the tree, we obtain a second estimator for the contract value by the

sample mean v̄0(K,b) which is now biased low, and we can construct a second asymptotically
valid (1−( ) confidence interval, this time for EQ [v̂0].

Taking the upper bound from the first confidence interval and the lower bound from the

second one, we obtain an asymptotically valid (1−( )-confidence interval for V0:
(
v̄0(K,b)− z (

2

sv(K,b)√
K

,V̄0(K,b)+ z (
2

sV (K,b)√
K

)
,

where z (
2
is the (

2
-quantile of the standard normal distribution. sV (K,b) and sv(K,b) denote the

sample standard deviations of the K replications for the two estimators.

The drawback for non-European insurance contracts is that the number of necessary sim-

ulation steps increases exponentially in time. Since insurance contracts are usually long-term

investments, the computation of the value using “nested simulations” is therefore rather exten-

sive and time-consuming. Moreover, for different options with several (or even infinitely many)

admissible actions, such as withdrawals within variable annuities, the complexity will increase

dramatically.

3.2 A PDE approach

P(I)DE methods bear certain advantages in comparison to the Monte Carlo approach. On one

hand, they include the calculation of certain sensitivities (the so-called “Greeks”; see e.g. [27],

Chapter 13), which are useful for hedging purposes. On the other hand, they often present a

more efficient method for the valuation of non-European insurance contracts. The idea for this

algorithm is based on solving the corresponding control problem on a discretized state space

and, for special insurance contracts, was originally presented in [25] and [45].

The value Vt of our generic insurance contract depends on t, the state process Yt , and the

state variables Dt . By arbitrage arguments, it can be shown that the value function is almost

surely left-continuous at all policy anniversaries " ∈ {1, . . . ,T} (see [45]), i.e.

Vt
a.s.→ V" as t → "- .

Between two policy anniversaries, the evolution of the value function V depends on t and Yt
only, since the state variables remain constant. Consequently, given the state variables D"−1 =
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d"−1 and the value function at some time t0 ∈ ["−1,"), Vt0 , depending on whether the insured
in view is alive at time t0 or not, the value function on the interval ["−1, t0] is

Vt = EQ
[
exp

{
−
∫ t0

t
rs+!(x+ s,Ys)ds

}
Vt0(“alive”)

∣∣∣∣Ft

]

︸ ︷︷ ︸
=:F(t,Yt )

+EQ
[
exp

{
−
∫ t0

t
rs ds

}(
1− exp

{
−
∫ t0

t
!(x+ s,Ys)ds

})
Vt0(“dead”)

∣∣∣∣Ft

]
.

Applying Itô’s formula for Lévy processes (see e.g. Prop. 8.18 in [18]), we obtain

dF(t,Yt) = k(t,Yt−,F(t,Yt−))dt+dMt ,

with drift term k(t,Yt−,F(t,Yt−)) and local martingale part Mt . Since, by construction,
(
exp

(
−
∫ t

0
rs+!(x+ s,Ys)ds

)
F(t,Yt)

)

t∈["−1,t0 ]

is aQ-local martingale, under certain technical conditions, the drift needs to be zeroQ-almost
surely. This is a standard technique akin to the well-known Feynman-Kac formula. We thus

obtain a P(I)DE for the function F : (t,y) -→ F(t,y):

−r(t,y)F(t,y)−!(t,y)F(t,y)+ k(t,y,F(t,y)) = 0 (1)

with terminal condition

F(t0,y) =V (t0,y,d"−1,“alive”).
Since the value function at maturity T is known for all (y,d)∈$T , we can construct a backwards
algorithm to obtain the value function on the whole interval [0,T ]:

For t = T − u, u ∈ {1, . . . ,T}, evaluate the P(I)DE (1) for “all possible” dT−u with
terminal condition

F(T −u+1,yT−u+1) = sup
)T−u+1∈*T−u+1

V (T −u+1,h)T−u+1(yT−u+1,dT−u)), (2)

where *" is the set of all options that may be exercised at t = " , and h)" :$" →$"

denotes the transition function which describes how the state variables change at t = "
if option )" is exercised. Then, set

V (T −u,yT−u,dT−u)
= F(T −u,yT−u)

+EQ
[
exp

{
−
∫ T−u+1

T−u
rs ds

}
q

(T−u+1)
x+T−u f (T −u+1,yT−u+1,dt−u)

∣∣∣∣FT−u

]
.

In order to apply the algorithm, the state spaces$" , " = 0, . . . ,T , are discretized and interpola-
tion methods are employed to determine the right-hand sides of (2) if the arguments are off the

grid. In particular, it is necessary to solve the P(I)DE for all state variables on the grid separately,

so that the efficiency of the algorithm highly depends on the evaluation of the P(I)DEs.

In [45], the classical Black-Scholes model and a deterministic evolution of mortality are

assumed. In this case, the resulting PDE is the well-known Black-Scholes PDE, which can be

transformed into a one-dimensional heat equation, from which an integral representation can be

derived when the terminal condition is given. If a modified Black-Scholes model with stochastic

interest rates is assumed as in [47], the situation gets more complex: The PDE is no longer

analytically solvable and one has to resort to numerical methods.

For a general exponential Lévy process driving the financial market, PIDEs with non-local

integral terms must be solved. Several numerical methods have been proposed for the solution,

e.g. based on finite difference schemes (see e.g. [4,19]), based on wavelet methods ([37]), or

Fourier transform based methods ([30,36]).

While, in comparison to Monte Carlo simulations, the complexity does not increase expo-

nentially in time, the high number of P(I)DEs needing to be solved may slow down the algorithm

considerably.
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3.3 A least-squares Monte Carlo approach

The least-squaresMonte Carlo (LSM) approach by Longstaff and Schwartz ([35]) was originally

presented for pricing American options but has recently also been applied to the valuation of

insurance contracts (see e.g. [5] and [41]). We present the algorithm for life insurance contracts

with a simple surrender option. Subsequently, problems for the application of this method to

more general embedded options as well as potential solutions are identified.

As pointed out by Clément et al. ([17]), the algorithm consists of two different types of

approximations. Within the first approximation step, the continuation value function is replaced

by a finite linear combination of certain “basis” functions. As the second approximation, Monte

Carlo simulations and least-squares regression are employed to approximate the linear combi-

nation given in step one.

Again, let C(" ,y" ,d" ) be the payoff at time " ∈ {1, . . . ,T} if the stochastic drivers and
the state variables take values y" and d" , respectively, and the option is exercised at this time.

Furthermore, letC(s," ,ys,ds), " < s≤ T describe the cash flow at time s given the state process

ys and the state variables ds, conditional on the option not being exercised prior or at time " ,
and the policyholder following the optimal strategy according to the algorithm at all possible

exercise dates s ∈ {"+1, . . . ,T} assuming that the policyholder is alive at time " .
The continuation value g(" ,Y" ,D") at time " is the sum of all expected future cash flows

discounted back to time " under the information given at time " , i.e.

g(" ,Y" ,D") = EQ

[
T

#
s="+1

exp

{
−
∫ s

"
rudu

}
C(s," ,Ys,Ds)

∣∣∣∣∣F"

]
.

To determine the optimal strategy at time t = " , i.e. to solve the optimal stopping problem, it is
now sufficient to compare the surrender value to the continuation value and choose the greater

one. Hence, we obtain the following discrete valued stopping time % = %1:

{
%T = T

%" = "1{C(" ,Y" ,D" )≥g(" ,Y" ,D" )} + %"+11{C(" ,Y" ,D" )<g(" ,Y" ,D" )}, 1≤ " ≤ T −1 (3)

and the contract value can be described as

V (0,Y0,D0) = EQ
[
exp

(
−
∫ %

0
rudu

)
% p

(%)
x C(% ,Y%,D%)

∣∣∣∣F0

]

+EQ

[
%−1

#
"=0

exp

{
−
∫ "+1

0
ru du

}
" p

(")
x q

("+1)
x+" f ("+1,Y"+1,D")

∣∣∣∣∣F0

]
. (4)

Following [17], we assume that the sequence (Lj(Y" ,D")) j≥0 is total in L2(+((Y" ,D"))), " =
1, . . . ,T−1, and satisfies a linear independence condition (cf. condition A1 and A2 in [17]), such
that g(" ,Y" ,D") can be expressed as

g(" ,Y" ,D") =
'

#
j=0

, j(")L j(Y" ,D"), (5)

for some , j(") ∈ R, j ∈ N∪{0}.
For the first approximation, we replace the infinite sum in (5) by a finite sum of the first J

basis function. We call this approximation g(J).

Similarly to (3) and (4), we can now define a new stopping time %(J) and a first approxima-
tion V (J) for the contract value by replacing g by g(J).

However, in general the coefficients (, j("))J−1j=0 are not known and need to be estimated.

We use K ∈ N replications of the path (Y" ,D"), 0 ≤ " ≤ T , and denote them by (Y(k)
" ,D

(k)
" ),

1 ≤ k ≤ K. The coefficients are then determined by a least-squares regression. We assume that

the optimal strategy for s≥ "+1 is already known and hence, for each replication the cash flows
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C(s," ,Y
(k)
s ,D

(k)
s ), s ∈ {" + 1, . . . ,T}, are known. Under these assumptions, the least-squares

estimator for the coefficients is

,̂ (K)(") = arg min
,(")∈RJ

{
K

#
k=1

[
T

#
s="+1

exp

(
−
∫ s

"
r
(k)
u du

)
C(s," ,Y

(k)
s ,D

(k)
s )

−
J−1

#
j=0

, j(")L j(Y
(k)
" ,D

(k)
" )

]2

 .

Replacing (, j("))J−1j=0 by (,̂ (K)
j ("))J−1j=0, we obtain the second approximation g

(J,K) and again,

we define the stopping time %(J,K) and another approximation V(J,K) of the value function by

replacing g by g(J,K).

With the help of these approximations, we can now construct a valuation algorithm for our

insurance contract:

First, simulate K paths of the state process up to time T and compute the state variables

under the assumption that the surrender option is not exercised at any time. Since the

contract value, and hence, the cash flow at maturity T is known for all possible states,

define the following cash flows:

C(T,T −1,Y (k)
T−1,D

(k)
T−1)

= p
(T )
x+T−1C(T,Y

(k)
T ,D

(k)
T )+q

(T )
x+T−1 f (T,Y

(k)
T ,D

(k)
T−1), 1≤ k ≤ K.

For "=T −u, u ∈ {1, . . . ,T −1}, compute g(J,K) as described above and determine the

optimal strategy in each path by comparing the surrender value to the continuation value.

Then, determine the new cash flows.4 For s ∈ {T −u+1, . . . ,T}, we have

C(s,T −u−1,Y (k)
s ,D(k)

s )

=






0 , if the option is exercised
at T −u

p
(T−u)
x+T−u−1 ·C(s,T −u,Y

(k)
s ,D

(k)
s ) , otherwise

,

and for s= T −u we set

C(T −u,T −u−1,Y (k)
T−u,D

(k)
T−u)

=






p
(T−u)
x+T−u−1 ·C(T −u,Y

(k)
T−u,D

(k)
T−u) , if the option is exercised

+q(T−u)
x+T−u−1 · f (T +u,Y (k)

T−u,D
(k)
T−u−1) at T −u

q
(T−u)
x+T−u−1 · f (T +u,Y (k)

T−u,D
(k)
T−u−1) , otherwise

.

At time "=0, discount the cash flows in each path and average over all K paths, i.e.

V (J,K)(0,Y0,D0) :=
1

K

K

#
k=1

V
(J,K,k)
0 (0,Y0,D0)

with

V (J,K,k)(0,Y0,D0) :=
T

#
s=1

C(s,0,Y (k)
s ,D

(k)
s )exp

(
−
∫ s

0
r
(k)
u du

)
.

4 Note that we do not use the estimated continuation value but the actual cash flows for the next regression.

Otherwise the estimator will be biased (cf. [35]).
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The two convergence results in Sect. 3 of [17] ensure that, under weak conditions, the algorithm

gives a good approximation of the actual contract value when choosing J and K sufficiently

large.

The LSM algorithm can be conveniently implemented for insurance contracts containing a

simple surrender option since the new future cash flows can be easily determined: If the surren-

der option is exercised at "0 ∈ {1, . . . ,T − 1}, the cash flow C("0,"0− 1,Y"0 ,D"0) equals the
surrender value and all future cash flows are zero.

If we have more complex early exercise features, the derivation of the future cash flows

could be more involved since the contract may not be terminated. For example, if a withdrawal

option in a contract including a Guaranteed Minimum Withdrawal Benefit is exercised, this

will change the states variables at that time. However, the future cash flows for the new state

variables will not be known from the original sample paths, i.e. it is necessary to determine the

new future cash flows up to maturity T . This may be very tedious if it is a long-term insurance

contract and the option is exercised relatively early. In particular, if the option can be exercised

at every anniversary and if the withdrawal is not fixed but arbitrary with certain limits, this may

increase the complexity of the algorithm considerably.

A potential solution to this problem could be employing the discounted estimated condi-

tional expectation for the regression instead of the discounted future cash flows. However, this

will lead to a biased estimator (see [35], Sect. 1). But even if this bias is accepted, another prob-

lem regarding the quality of the regression function may occur. In the LSM algorithm, we deter-

mine the coefficients of the regression function with the help of sample paths that are generated

under the assumption that no option is exercised at any time, i.e. the approximation of the con-

tinuation value will be good for values which are “close” to the used regressors. But g(J,K) may

not be a good estimate for contracts with, e.g., high withdrawals because withdrawals reduce

the account balance, and hence, the new state variables will not be close to the regressors. An

idea of how to resolve this problem might be the application of different sampling techniques:

For each period, we could determine a certain number of different initial values, simulate the

development for one period, compute the contract value at the end of this period and use the

discounted contract value as the regressand. However, determining these initial values, again, is

not straight-forward. We leave the further exploration of this issue to future research.

Aside from these problems, the LSM approach bears profound advantages in comparison

to the other approaches: On one hand, the number of simulation steps increases linearly in time

and, on the other hand, it avoids solving a large number of P(I)DEs. Also, in contrast to the

P(I)DE approach, the LSM approach is independent of the underlying asset model: The only

part that needs to be changed in order to incorporate a new asset model is the Monte Carlo

simulation.

4 Example: A participating life insurance contract

In this section, we compare the results obtained with the three different numerical approaches

for a German participating life insurance contract including a surrender option.

4.1 The contract model

We consider the participating term-fix contract from [8] and [47]. While this contract is rather

simple and, in particular, does not depend on biometric events, it presents a convenient example

to illustrate advantages and disadvantages of the presented approaches and to compare them

based on numerical experiments.

We use a simplified balance sheet to model the insurance company’s financial situation (see

Table 1). Here, At denotes the market value of the insurer’s asset portfolio, Lt is the policy-

holder’s account balance, and Rt = At − Lt is the bonus reserve at time t. Disregarding any

charges, the policyholder’s account balance at time zero equals the single up-front premium P,
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Table 1 Simplified balance sheet

Assets Liabilities

At Lt
Rt

At At

that is L0 = P. During its term, the policyholder may surrender her contract: If the contract is

lapsed at time "0 ∈ {1, . . . ,T}, the policyholder receives the current account balance L"0 . Fur-
thermore, we assume that dividends are paid to shareholders at the anniversaries in order to

compensate them for adopted risk.

As in [8] and [47], we use two different bonus distribution schemes, which describe the

evolution of the liabilities: The MUST-case describes what insurers are obligated to pass on

to policyholders according to German regulatory and legal requirements, whereas the IS-case

models the typical behavior of German insurance companies in the past; this distribution rule

was first introduced by Kling et al. (see [32]).

4.1.1 The MUST-case

In Germany, insurance companies are obligated to guarantee a minimum rate of interest g on

the policyholder’s account, which is currently fixed at 2.25%. Furthermore, according to the

regulation about minimum premium refunds in German life insurance, a minimum participation

rate ( of the earnings on book values has to be passed on to the policyholders. Since earnings
on book values usually do not coincide with earnings on market values due to accounting rules,

we assume that earnings on book values amount to a portion y of earnings on market values.

The earnings on market values equal A−" − A+
"−1, where A

−
" and A

+
" = A−" − d" describe the

market value of the asset portfolio shortly before and after the dividend payments d" at time " ,
respectively. Therefore, we have

L" = (1+g)L"−1+
[
(y
(
A−" −A+

"−1
)
−gL"−1

]+
, 1≤ " ≤ T. (6)

Assuming that the remaining part of earnings on book values is paid out as dividends, we have

d" = (1−( )y
(
A−" −A+

"−1
)
1{(y(A−" −A+

"−1)>gL"−1}
+
[
y
(
A−" −A+

"−1
)
−gL"−1

]
1{(y(A−" −A+

"−1)≤gL"−1≤y(A−" −A+
"−1)}. (7)

4.1.2 The IS-case

In the past, German insurance companies have tried to grant their policyholders stable but yet

competitive returns. In years with high earnings, reserves are accumulated and passed on to

policyholders in years with lower earnings. Only if the reserves dropped beneath or rose above

certain limits would the insurance companies decrease or increase the bonus payments, respec-

tively.

In the following, we give a brief summary of the bonus distribution introduced by Kling et

al. ([32]), which models this behavior.

The reserve quota x" is defined as the ratio of the reserve and the policyholder’s account,

i.e. x" = R"
L"

= A+
" −L"
L"

= A−" −d"−L"
L"

. Let z ∈ [0,1] be the target interest rate of the insurance
company and , ∈ [0,1] be the proportion of the remaining surplus after the guaranteed interest
rate is credited to the policyholder’s account that is distributed to the shareholders. Whenever

the target interest rate z leads to a reserve quota between specified limits a and b with

L" = (1+ z)L"−1
d" = , (z−g)L"−1
A+
" = A−" −d"

R" = A+
" −L" ,
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then exactly the target interest rate z is credited to the policyholder’s account.

If the reserve quota drops below a or exceeds b when crediting z to the policyholder’s ac-

count, then the rate is chosen such that it exactly results in a reserve quota of a or b, respectively.

However, (6) needs to be fulfilled in any case. Hence, by combining all cases and conditions,

we obtain (see [47]):

L" = (1+g)L"−1+max
{[

(y
(
A−" −A+

"−1
)
−gL"−1

]+
,

(z−g)L"−11{((1+a)(1+z)+,(z−g))L"−1≤A−" ≤((1+b)(1+z)+,(z−g))L"−1}

+
1

1+a+,

[
A−" − (1+g)(1+a)L"−1

]

1{(1+a)(1+g)L"−1<A−" <((1+a)(1+z)+,(z−g))L"−1}

+
1

1+b+,

[
A−" − (1+g)(1+b)L"−1

]
1{((1+b)(1+z)+,(z−g))L"−1<A−" }

}
,

and

d" = max

{
,
[
(y
(
A−" −A+

"−1
)
−gL"−1

]+
,

, (z−g)L"−11{((1+a)(1+z)+,(z−g))L"−1≤A−" ≤((1+b)(1+z)+,(z−g))L"−1}

+
,

1+a+,

[
A−" − (1+g)(1+a)L"−1

]

1{(1+a)(1+g)L"−1<A−" <((1+a)(1+z)+,(z−g))L"−1}

+
,

1+b+,

[
A−" − (1+g)(1+b)L"−1

]
1{((1+b)(1+z)+,(z−g))L"−1<A−" }

}
.

4.2 Asset models (I)

We consider two different asset models, namely a geometric Brownian motion with determinis-

tic interest rate (constant short rate r), and a geometric Brownian motion with stochastic interest

rates given by a Vasicek model (see [46]).

In the first case, we have the classical Black-Scholes (BS) setup, so the asset process under

the risk-neutral measure Q evolves according to the SDE:

dAt = rAt dt++AAt dWt , A0 = P(1+ x0),

where r is the constant short rate, +A > 0 denotes the volatility of the asset process A, andW is a

standard Brownian motion under Q. Since we allow for dividend payments at each anniversary
of the contract, we obtain

A−t = A+
t−1 exp

(
r− + 2A

2
++A (Wt −Wt−1)

)
.

In the second case, we have a generalized Black-Scholes model with

dAt = rtAt dt+-+AAt dWt +
√
1−-2+AAt dZt , A0 = P(1+ x0),

drt = . (/ − rt) dt++r dWt , r0 > 0,

where - ∈ [−1,1] describes the correlation between the asset process A and the short rate r, +r
is the volatility of the short rate process, andW and Z are two independent Brownian motions.

/ and . are constants. Hence,

A−t = A+
t−1 exp

(∫ t

t−1
rsds−

+ 2A
2

+
∫ t

t−1
-+AdWs+

∫ t

t−1

√
1−-2+AdZs

)
.
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We refer to this model as the extended Black-Scholes (EBS) model.

According to the risk-neutral valuation formula, the value for our participating life insurance

contract including a surrender option is given by:5

VNON−EUR
0 = sup

%∈&0
EQ
[
exp

{
−
∫ %

0
ru du

}
L%

∣∣∣∣F0

]
. (8)

For a discussion of the problems occurring when implementing a suitable hedging strategy

as well as potential solutions, we refer to [8] and [47].

4.3 Choice of parameters and regression function

To compare results, we use the same parameters as in [8] and [47]. We let the guaranteed min-

imum interest rate g = 3.5%,6 the minimum participation rate ( = 90%, and the minimal pro-

portion of market value earnings that has to be identified as book value earnings in the balance

sheet y= 50%. Moreover, the reserve corridor is defined to be [a,b] = [5%,30%], the proportion
of earnings that is passed on to the shareholders is fixed at , = 5%, and the volatility of the asset
portfolio is assumed to be +A = 7.5%. The correlation between asset returns and money market
returns is set to - = 0.05. We consider a contract with maturity T = 10 years. The initial invest-

ment is P= 10,000, the insurer’s initial reserve quota is x0 = 10%, and the initial (or constant)

interest rate r0 = r is set to 4%. In the Vasicek model, the volatility of the short rate process +r
is chosen to be 1%, the mean reversion rate is . = 0.14, and the mean reversion level / = 4%.

A crucial point in the LSM approach for non-European contracts is the choice of the regres-

sion function as a function of the state process and the state variables. Clearly, in the current

setup, the state processes are (At)t∈[0,T ] and (At ,rt)t∈[0,T ] for the BS and the EBS model, respec-

tively, and the state variables can be represented by (D")"∈{1,...,T−1} = (A+
" ,A" ,L")"∈{1,...,T−1}

in both models. Using a top down scheme, we found that a regression function with eight dif-

ferent terms is sufficient; more terms do not make a significant difference. We estimate the

continuation value with the help of the following regression function:7

g(8)(D") = g(8)(A+
" ,A" ,L") = ,0(")+,1(")A+

" +,2(")L" +,3(")x" +,4(")x2"
+,5(")er" +,6(")(er" )2+,7(")r" ,

where x" = A+
" −L"
L"

is the reserve quota and ,0("), . . .,,7(") ∈ R. We use the same regression
function at all times " ∈ {1, . . . ,T −1} but, of course, the coefficients may vary. Note that in
this particular setup, the dimensionality of the problem can be further reduced by modifying the

state process: Here, it is sufficient to consider

Ãt = A+
"−1 ·

At

A"−1

and rt as above in the corresponding one period problem, i.e. for t ∈ ["−1," ], and consequently,
it suffices to save (A+

" ,L") as the state variables in both asset models (cf. [8,47]).
Note that we do not have to specify a regression function for the European contract case:

Here, the LSM approach trivially coincides with the simple Monte Carlo approach.

5 &0 is the set of all stopping times in {1, . . . ,T}.
6 The largest German insurer “Allianz Lebensversicherungs-AG” reports an average guaranteed interest rate of

approximately 3.5% in 2006 (see [3], p. 129).
7 Note that in the BS model, the last three terms may be discarded.
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4.4 Numerical experiments

The valuation of European contracts, i.e. contracts without surrender option, is simple. Here,

Monte Carlo simulations provide a fast and accurate valuation methodology. Therefore, we

focus on the valuation of non-European contracts.

We start by analyzing the valuation via “Nested Simulations”. Table 2 shows our results for

5,000 trees with 1 to 7 paths per node in the MUST-case and the BS setting. Aside from the two

estimators V̂0 and v̂0, the (real) times for the procedures are displayed.
8 The difference between

Table 2 ”Nested Simulations” for a non-European contract

paths per node V̂0 v̂0 time

1 10523.4 10055.0 < 1 sec.

2 10411.0 10051.6 15 sec.

3 10395.6 10100.3 11 min. 37 sec.

4 10388.8 10169.8 2 h 47 min.

5 10380.2 10228.6 ≈ 1 day

6 10378.6 10270.3 ≈ 6 days

7 10375.6 10293.8 ≈ 30 days

the two estimators is relatively large even for 7 paths per node. In particular, this means that

resulting confidence intervals are relatively wide. Hence, although Monte-Carlo simulations are

the only considered approach where confidence intervals may be produced, the computational

effort to produce results in a reliable range is enormous.

Within the PDE and LSM approach, on the other hand, we find that for both asset models,

the contract values resulting from the two approaches differ by less than 0.2% of the initial

investment (see Table 3). However, the PDE approach is more sensitive to discretization errors

and takes significantly more time: In the BS model, in the current computation environment, it

takes approximatively 10 minutes to compute the non-European contract value with the PDE

approach, whereas with the LSM approach, we obtain the result in approximately 24 seconds.

The difference is even more pronounced in the EBS model. Here we have about 40 hours with

the PDE approach compared to about 30 seconds with the LSM approach.

Table 3 Contract values in the two asset models9

MUST BS IS BS MUST EBS IS EBS

PDE LSM PDE LSM PDE LSM PDE LSM

NON-EUR 10360.4 10361.2 10919.1 10920.0 10619.1 10603.9 11103.0 11088.9

EUR 10360.4 10361.2 10919.1 10920.0 10449.9 10452.0 11020.7 11022.9

SUR 0 0 0 0 169.2 151.9 82.3 66.0

While clearly all results depend on the particular implementations and the contract in view,

due to the magnitude of the differences, we conclude that for the valuation of non-European

insurance contracts for financial reporting within Solvency II and/or IFRS 4, the LSM approach

appears to be the superior choice for determining the risk-neutral value. However, if additional

sensitivities need to be computed for risk management purposes (“the Greeks”), the PDEmethod

may still present a valuable alternative.

8 All numerical experiments were carried out on a Linux machine with a Pentium IV 2.40 Ghz CPU and 2.0

GB RAM, with no other user processes running.
9 The values for the PDE approach are taken from [8] and [47], respectively. Here, the PDE approach is only

used to valuate the surrender option. The European contract values are calculated using Monte Carlo techniques

to obtain a higher accuracy. The difference of the European contract values is due to Monte Carlo errors.
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4.5 Influence of the surrender option

While values for the surrender option within this particular contract model have been calculated

before in [8] and [47] via PDE approaches, no detailed sensitivity analyses are presented due

to the high computational effort. However, the LSM approach allows for such analyses. We

fix the parameters as indicated above (cf. Sec. 4.3), but as in the latter part of [47] choose an

alternative value for the volatility parameter. For the S&P 500 index, Schoutens ([43]) finds an

implied volatility of 18.12%, but since insurers’ asset portfolios contain a limited proportion of

risky assets only,10 we choose + = 0.03624, which approximately corresponds to a portfolio
consisting of 20% S&P 500 and 80% short maturity bonds.

Table 4 Value of the surrender option in the BS model

MUST g=2.25% g=3.5% g=4.0% IS g=2.25% g=3.5% g=4.0%

NON-EUR 9885.3 9966.8 10065.8 NON-EUR 10326.3 10450.8 10565.9

EUR 8976.0 9687.8 10065.8 EUR 10177.8 10419.5 10565.9

SUR 909.3 279.0 0.0 SUR 148.5 31.3 0.0

Table 4 presents the values of the surrender option in the BSmodel for three different choices

of the guaranteed rate g. We find that for low g in the MUST-case, the surrender option is of

significant value. However, the non-European contract values are almost equal to the initial

premium of 10,000, so this is clearly due to the possibility of surrendering the contract early

in its term. The surrender option is considerably less valuable in the IS-case since the target

interest rate exceeds the riskless interest rate, and therefore, in most cases, it is advantageous

not to exercise. Moreover, for a high guaranteed rate g, the rationale for surrendering decreases

in both case since the contract is close to the riskless asset with an additional option feature.

Figure 1 illustrates the influence of g on the value of the surrender option in the EBS model.

We observe the same effects as in the BS model. The option value is smaller in the IS-case than

in the MUST-case, and it is decreasing in g. However, in this case the value of the option is

positive even for guaranteed interest rates exceeding 4% because interest rates could increase

over the term of the contract.

All in all, we find that even though in many cases the influence of the surrender option is not

very pronounced, the value for some parameter combinations is significant. In particular, this

means that in changing environments, as e.g. increasing interest rates, the option adds signifi-

cantly to the value of the contract and, hence, should not be disregarded by insurance companies.

Moreover, for different kinds of non-European options and/or contracts, the influence may be

significantly more pronounced (see e.g. [9] for Guaranteed Minimum Benefits within Variable

Annuities).

4.6 Asset models (II)

Although the Black-Scholes model is still very popular in practice, numerous empirical studies

suggest that it is not adequate to describe many features of financial market data. Exponential

Lévy models present one possible alternative and have become increasingly popular. To assess

the influence of model risk on our example contract, we introduce a third asset model with a

normal inverse Gaussian (NIG) process driving the asset process (At)t∈[0,T ]. This model better

represents the statistical properties of empirical log returns. Similar exponential Lévy models

have been applied to the valuation of insurance contracts by different authors (see e.g. [6] or

[31]).

10 By the regulation on investments ([1]), German insurers are obligated to keep the proportion of stocks within

their asset portfolio below 35%. For example, the German“Allianz Lebensversicherungs-AG” reports a proportion

of 21% stocks in 2006 (see [3], p. 32).
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Fig. 1 Influence of g on the value of the surrender option in the EBS model

The probability density function of an NIG(, ,0 ,( ,m) distribution is given by

*NIG(x,, ,0 ,( ,m) =
,(

1
exp
(
(
√
,2−0 2+0 (x−m)

) K1
(
,
√
( 2+(x−m)2

)

√
( 2+(x−m)2

,

where K1 denotes the modified Bessel function of the third kind with index 1, and an NIG

process is defined as a Lévy process (Xt)t∈[0,T ] at zero with Xt ∼ NIG(, ,0 ,( · t,m · t) (see [7]
or [43] for more details).

As in the classical BS model, we assume a constant short rate r and define our exponential

Lévy (NIG) model by

At = A0e
Xt ,

where Xt ∼ NIG(, ,0 ,( · t,m · t) under “a” risk-neutral measure Q: Financial markets driven
by Lévy processes are generally not complete, and hence, the equivalent martingale measure is

not unique. There are different methods of how to choose a valuation measure, e.g. by the so-

called Esscher transform or the mean correcting method. As in [31], we use the mean correcting

method. Here, the parameters , , 0 , and ( are calibrated to observed option prices, and the
parameter m is chosen such that the discounted price process is a martingale underQ, i.e.

m= r+(

(√
,2− (0 +1)2−

√
,2−0 2

)
.

Hence, under the risk-neutral measureQ, for this asset model we have

A−t = A+
t−1e

Xt−Xt−1 , Xt ∼ NIG(, ,0 ,( · t,m · t).

Again following [31], we choose the parameters resulting from the calibration procedure for

the S&P 500 index from [43] based on call options prices, i.e. , = 6.1882, 0 = −3.8941, and
( = 0.1622, where the volatility from [43] is adapted according to our assumptions on the asset
portfolio.
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4.7 Model risk: The BS model vs. the NIG model

While one may expect that the contract increases in value when changing the asset process from

a geometric Brownian motion to an exponential Lévy model, Table 5 illustrates that this is not

always the case.11 At least in the MUST-case, the question of whether the European contract

value is higher for the BS or the NIG model depends on the guaranteed minimum interest rate.

This can be explained by considering the different shapes of the two corresponding density

Table 5 European contract values in the BS and NIG model

g=2.25% g=3.5% g=4.0%

BS NIG BS NIG BS NIG

MUST 8976.0 9040.0 9687.8 9671.4 10065.8 10042.5

IS 10177.8 10279.0 10419.5 10490.0 10565.9 10613.3

functions. In the MUST-case, for a European contract with maturity T = 1, we have

L1 = (1+g)P+
[
(y
(
A−1 −A+

0

)
−gP

]+ = (1+g)P+
[
P
(
(y(1+ x0) (eX1−1)−g

)]+
,

where X1 is Normal and NIG distributed in the BS and the NIG model, respectively, and thus

V i
0 = EQ

[
L1e

−r]= e−r
[
(1+g)P+

∫ '

c
P [(y(1+ x0) (eu−1)−g]2 i(u)du

]
, i ∈ {BS,NIG}.

(9)

where c = log
(

g
(1+x0)(y

+1
)
and 2BS (2NIG) is the corresponding density of the log returns

within the BS (NIG) model.
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Fig. 2 Influence of g on the difference in the contract values (MUST-case, T = 1)

The left-hand side of Figure 2 now illustrates the difference in values for the two models

3V0 =VNIG0 −VBS0 ,

and we find that for g smaller than approximately 3%, the contract is worth more in the NIG

model, whereas for g between 3% and 7%, the BS model yields higher contract values. If the

guaranteed interest rate is unrealistically high (≥ 7%), the difference is comparatively negligi-
ble. In order to analyze this behavior, in view of (9) it is now sufficient to compare both density

functions with parameters fitted to the data as described above (see the right-hand side of Figure

2): For low values of g, the interest rate guarantee is worth more within the NIG model due to

the increased kurtosis of the corresponding distribution. However, for an increasing level of g,

11 Since the differences in contract values for the two asset models are consistent for European and non-

European contracts, we only present results for European contracts.
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this influence vanishes and the option in the BS model becomes more valuable due to the skew-

ness of the NIG distribution. In contrast, in the IS-case the contract is worth more in the NIG

model since the target rate z is credited unless very extreme outcomes occur, which are clearly

“more likely” under the NIG distribution.

But not only the guaranteed minimum interest rate g influences this relationship. The left-

hand side of Figure 3 illustrates the influence of the stock proportion within the insurer’s asset

portfolio on the difference in contract values in the two models for the MUST-case, g = 3.5%,
and T = 10. For small proportions, the difference of the two contract values is negative, i.e.

the value in the BS model is higher, due to the afore-mentioned effect. However, a higher stock

proportion increases the volatility, and in the NIG model, the tails “fatten” faster than in the BS

model. From a stock proportion of about 30%, this leads to a higher value for the NIG driven

model.
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Fig. 3 Influence of the stock proportion on the difference in the contract values (MUST-case, T = 10)

The right-hand side of Figure 3 shows combinations of g and the stock proportion that result

in a “fair” contract,12 i.e. the contract value equals the initial investment of 10,000. For low g and

the standard parameters, the contract values lie below 10,000. Hence, the stock proportion needs

to be increased in order to yield a fair contract. Since for small g, the NIG model leads to higher

contract values than the BS model, the increase in the stock proportion is comparatively lower

in the NIG model. In contrast to this, in the IS-case we cannot find any realistic fair parameter

combinations at all.

All in all, our analyses show that for our example contract and a realistic range for the

parameters, the influence of the asset model on the contract value is rather small and it depends

on the particular parameter choice which model leads to the higher value. However, clearly the

influence may be a lot more pronounced for different embedded options and/or contracts.

5 Conclusion

In this paper, we construct a generic valuation model for life insurance benefits and give a sur-

vey on existing valuation approaches. Firstly, we explain how to use Monte Carlo simulations

for the valuation. The Monte Carlo approach yields fast results for European contracts, i.e. con-

tracts without any early exercise features, but it is inefficient for the valuation of long-term

non-European contracts: In this case, the number of necessary simulation steps to obtain ac-

curate results may be extremely high. Secondly, we present a discretization approach based on

the consecutive solution of certain partial (integro-)differential equations (PDE approach). This

approach is more apt for the valuation of long-term non-European contracts and allows for the

calculation of the “Greeks”, but depending on the model specifications solving the P(I)DEs can

be very complex and can slow down the algorithm considerably.

12 For a discussion of the notion “fairness” we refer to [8].
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Lastly, we discuss the so-called least-squares Monte Carlo approach. It combines the advan-

tages of the Monte Carlo and the PDE approach: On one hand, it is a backward iterative scheme

such that early exercise features can be readily considered and, on the other hand, it remains

efficient even if the dimension of the state space becomes larger as the valuation is carried out

by Monte Carlo simulations rather than the numerical solution of P(I)DEs.

We apply all algorithms to the valuation of participating life insurance contracts and ini-

tially consider two asset models, namely the classical Black-Scholes setup and a generalized

Black-Scholes model with stochastic interest rates. Our numerical experiments show that the

differences in the computational time needed for the valuation of non-European contracts is

enormous.

Furthermore, again based on the example of participating life insurance contracts, we ana-

lyze the influence of the “early exercise feature”, i.e. a surrender option, as the difference be-

tween the non-European and European contract. We find that for many scenarios, the surrender

option is (almost) worthless in this particular case. However, we demonstrate that the sensi-

tivities of European and non-European contract values with respect to key contract parameters

differ considerably, so that disregarding this contract feature may be misleading.

Finally, we study the impact of model risk on our example contract by additionally intro-

ducing an exponential Lévy (NIG) model for the asset side. Comparing the NIG model to the

classical Black-Scholes model, we find that for realistic parameter combinations, the influence

is not very pronounced. In particular, it depends on the parameter choice which model yields

higher contract values.

All in all, this article provides a framework for the market-consistent valuation of life insur-

ance contracts and a survey as well as a discussion of different numerical methods for applica-

tions in practice and academia. Our numerical experiments give insights on the effectiveness of

the different methods and show that the influence of early exercise features should be analyzed.
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ing early-exercise options under Lévy processes (2007). MPRA Paper No. 1952, http://mpra.ub.uni-

muenchen.de/1952/

37. Matache, A.M., von Petersdorff, T., Schwab, C.: Fast deterministic pricing of options on Lévy driven assets.
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