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Abstract: If we trade in financial markets we are interested in buying at low and selling at 

high prices. We suggest an active trading algorithm which tries to solve this type of problem. 

The algorithm is based on reservation prices. The effectiveness of the algorithm is analyzed 

from a worst case and an average case point of view. We want to give an answer to the 

questions if the suggested active trading algorithm shows a superior behaviour to buy-and-

hold policies. We also calculate the average competitive performance of our algorithm using 

simulation on historical data.  
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1 Introduction 

Many major stock markets are electronic market places where trading is be carried out 

automatically. Trading policies which have the potential to operate without human interaction 

are of great importance in electronic stock markets. Very often such policies are based on data 

from technical analysis [She02, RL99, RS03]. Many researchers have also studied trading 

policies from the perspective of artificial intelligence, software agents and neural networks 

[CE08, FRY04, SR05]. 

 In order to carry out trading policies automatically they have to be converted into 

trading algorithms. Before a trading algorithm is applied one might be interested in its 

performance. The performance analysis of trading algorithms can basically be carried by three 

different approaches. One is Bayesian analysis where a given probability distribution for asset 

prices is a basic assumption. Another one is assuming uncertainty about asset prices and 

analysing the trading algorithm under worst case outcomes; this approach is called 

competitive analysis. The third one is a heuristic approach where trading algorithms are 
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designed and the analysis is done on historic data by simulation runs. In this paper we apply 

the second and the third approach in combination. We consider a multiple trade problem and 

analyse an appropriate trading algorithm from a worst case point of view. Moreover we 

evaluate its average case performance empirically and compare it to other trading algorithms. 

 The reminder of this paper is organized as follows. In the next section we formulate 

the problem and perform a worst case competitive analysis of the proposed trading algorithm. 

In Section 3 different trading policies for the multiple trade problem are introduced. Section 4 

gives a literature overview on heuristic trading rules for multiple trading problems. In Section 

5 detailed experimental findings from our simulation runs are presented. We finish with some 

conclusions in the last section.  

 

 

2 Problem Formulation 

If we trade in financial markets we are interested in buying at low prices and selling at high 

prices. Let us consider the single trade and the multiple trade problem. In a single trade 

problem we search for the minimum price m and the maximum price M in a time series of 

prices for a single asset. At best we buy at price m and sell later at price M. In a multiple trade 

problem we trade assets sequentially in a row, e.g. we buy some asset u today and sell it later 

in the future. After selling asset u we buy some other asset v and sell it later again; after 

selling v we can buy w which we sell again, etc. If we buy and sell (trade) assets k times we 

call the problem k-trade problem with k > 1. 

 As we do not know future prices the decisions to be taken are subject to uncertainty. 

How to handle uncertainty for trading problems is discussed in [YFKT01]. In [Yan98] and 

[YFKT92] online algorithms are applied to a search problem. Here a trader owns some asset 

at time t = 0 and obtains a price quotation m < p(t) < M at points of time t = 1, 2,…,T. The 

trader must decide at every time t whether or not to accept this price for a sell. Once some 

price p(t) is accepted trading is closed and the trader’s payoff is calculated. The horizon T and 

the possible minimum and maximum prices m and M are known to the trader. If the trader did 

not accept a price at the first T-1 points of time he must be prepared to accept some minimum 

price m at time T. The problem is solved by an online algorithm. 

 An algorithm ON computes online if for each j = 1,…, n-1, it computes an output for j 

before the input for j+ 1 is given. An algorithm computes offline if it computes a feasible 

output given the entire input sequence j = 1,…, n-1. We denote an optimal offline algorithm 

by OPT. An online algorithm ON is c-competitive if for any input I 
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ON(I) > 1/c * OPT(I). 

 

 The competitive ratio is a worst-case performance measure. In other words, any c-

competitive online algorithm is guaranteed a value of at least the fraction 1/c of the optimal 

offline value OPT(I), no matter how unfortunate or uncertain the future will be. When we 

have a maximization problem c > 1, i.e. the smaller c the more effective is ON. For the search 

problem the policy (trading rule) [Yan98]  

 

accept the first price greater or equal to reservation price p* = )*( mM  

 

has a competitive ratio cs = 
m

M
 where M and m are upper and lower bounds of prices p(t) 

with p(t) from [m, M]. 

 

This result can be transferred to k-trade problems if we modify the policy to  

 

buy the asset at the first price smaller or equal and sell the asset at the first price 

greater or equal to reservation price p* = )*( mM  

 

In the single trade problem we have to carry out the search twice. In the worst case we get a 

competitive ratio of cs for buying and the same competitive ratio of cs for selling resulting in 

an overall competitive ratio for the single trade problem of ct = cs cs = M/m. In general we get 

for the k-trade problem a competitive ratio of ct(k) = ∏
= ki

)M(i) / m(i
,...,1

)( . If m and M are constant 

for all trades ct(k) = (M/m)k. The ratio ct can be interpreted as the rate of return we can achieve 

by buying and selling assets.  

 The bound is tight for arbitrary k. Let us assume for each of k trades we have to 

consider the time series (M, (Mm)1/2, m, m, (Mm)1/2, M). OPT always buys at price m and sells 

at price M resulting in a return rate of M/m; ON buys at price (Mm)1/2 and sells at price 

(Mm)1/2 resulting in a return rate of 1, i.e. OPT/ON = M/m = c. If we have k trades OPT will 

have a return of (M/m)k and ON of 1k , i.e. OPT(k)/ON(k) = (M/m)k = c(k). 

 In the following we apply the above modified reservation price policy to multiple 

trade problems. 

 



 4 

3 Multiple Trade Problem 

In a multiple trade problem we have to choose points of time for selling current assets and 

buying new assets over a known time horizon. The horizon consists of several trading periods 

i of different types p; each trading period consists of a constant number of h days. We differ 

between p = 1, 2, …,6 types of periods with length h from  {7, 14, 28, 91, 182, 364} days e.g. 

period type p = 6 has length h = 364 days; periods of type p are numbered with i = 1,…,n(p). 

There is a fixed length h for each period type p, e.g. period length h = 7 corresponds to period 

type p = 1, period length h = 14 corresponds to period type p = 2, etc. For a time horizon of 

one year, for period type p = 1 we get n(1) = 52 periods of length h = 7, for type p = 2 we get 

n(2) = 26 periods of length h = 14, etc. 

 We may choose between three trading policies. Two elementary ones are Buy-and-

Hold (B+H), a passive policy, and Market Timing (MT), an active policy. The third one is a 

random (Rand) policy. As a benchmark we use an optimal offline algorithm called Market 

(MA). We assume that for each period i there is an estimate of the maximum price M(i) and 

the minimum price m(i). Within each period i = 1,…,n(p) we have to buy and sell an asset at 

least once. The annualized return rate R(x), with x from {MT, Rand, B+H, MA} is the 

performance measure used. At any point of time of the horizon the policy either holds an asset 

or an overnight deposit.  

 In order to describe the different policies we define a holding period with respect to 

MT. A holding period is the number of days h between the purchase of asset j and the 

purchase of another asset j’ (j’ ≠ j) by MT. Holding periods are determined by either 

reservation prices RPj(t) which give a trading signal or when the last day T of the period is 

reached.  

 

MARKET TIMING (MT) 

MT calculates reservation prices RPj(t) for each day t for each asset j. At each day t, MT must 

decide whether to sell asset j or to hold it another day considering the reservation prices. Each 

period i, the first offered price pj(t) of asset j with pj(t) > RPj(t) is accepted by MT and asset j 

is sold. The asset j* , which is bought by MT is called MTasset. MT chooses the MTasset j*  if 

RPj* (t) - pj* (t) = max{ RPj(t)- pj(t) | j = 1,…,m} and pj* (t) < RPj* (t). If there was no trading 

signal in a period related to reservation prices then trading is done on the last day T of a 

period. In this case MT must sell asset j and invest in asset j’  at T. The holding period 

showing buying (Buy) and selling (Sell) points of time and an interval with overnight deposit 

(OD) for MT is shown in Figure 1. 
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Figure 1: Holding period for MT 

 

RANDOM (Rand) 

Rand will buy and sell at randomly chosen prices pj(t) within the holding period of MT (cf. 

Figure 2). 

 

Figure 2: Trading Possibilities for Rand 

 

BUY AND HOLD (B+H) 

B+H will buy at the first day t of the period and sell at the last day T of the period.  

 

MARKET (MA) 

To evaluate the performance of these three policies empirically we use as a benchmark the 

optimal offline policy. It is assumed that MA knows all prices pj(t) of a period including also 

these which were not presented to MT if there were any. In each period i MA will buy at the 

minimum price pmin > m(i) and sell at the maximum possible price pmax < M(i) within the 

holding period of MT (cf. Figure 3). 

 

 

Figure 3: Trading possibilities for MA 

 

 The performance of the investment policies is evaluated empirically. Clearly, all 

policies cannot beat the benchmark policy MA. The policies are tested using historical 
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XETRA DAX data for a consecutive 364-day period from 2007.01.01 to 2007.12.31 (see 

Section 5). 

 

 

4 Heuristic Trading Policies 

We give a brief overview on the experimental analysis on heuristic trading policies for 

multiple trade problems. The policies discussed in [She02] and [CE08] outperformed the buy-

and-hold policy on the selected data set.  

 In [She02] simple market-timing heuristics are investigated that outperform the buy-

and-hold policy with data from 1970 to 2000. Trading Signals are generated by the value of 

the short spread between the Earning/Price (E/P) ratio of the S&P500 index and selected 

interest rates. The earnings are forecasted for the coming period and divided by the actual 

asset price. Trading policies either invest in the S&P500 index or in treasury bills over a 

period of one month depending on predefined thresholds. If the spread is above some 

threshold level, it is invested in the market index for the next month and if the spread is below 

it, the portfolio is liquidated at the end of the month and the money is invested in 30-day 

treasury-bills for the next month. At the end of each month spreads are considered again. As a 

benchmark portfolio values are compared with these of S&P500 index buy-and-hold from 

1970 to 2000. Results show that all trading policies outperform the S&P500 index generating 

higher mean returns. In particular, the policy based on the spread between the E/P ratio and a 

short-term interest rate beats the market index even when transaction costs are incorporated. 

 [CE08] explore the profitability of stock trading by using a neural network (NN) to 

assist the trading decisions which are based on two technical indicators, the volume adjusted 

moving average (VAMA) and the ease of movement (EMV) indicator. VAMA is a moving 

average, where prices are replaced by volume. EMV illustrates the relationship between the 

rates of price and volume change of an asset. Trading is simulated over a time horizon of 

1508 days from January 1998 to December 2003. At each time only one asset of the S&P500 

index is in the portfolio. Different types of period lengths are investigated: 1 week (5-days), 4 

weeks (21-days) and 13 weeks (55-days). Trading signals are generated by VAMA and EMV 

with and without NN support. Transaction costs are not considered. The VAMA rule buys if 

the price of the asset is smaller than the VAMA and sells if the price is greater. The EMV 

trading rule buys when the smoothing value of EMV crosses above zero from below and sells 

when the smoothing value of EMV crosses below zero from above. Trading rules might not 

be executed depending on the results of the NN which predict the next day’s VAMA and 
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EMV. Benchmarks are VAMA, EMV, a single moving average (SMA) and buy-and-hold. 

Different combinations of trading policies are tested: VAMA + NN, VAMA + NN + Filter, 

VAMA + NN + SMA, and EMV + NN + VAMA. For the combined cases, trading signals 

must match for all components (for more details see Tables 6 and 7 in [CE08]). Results show 

that trading with NN support is helpful to generate better trading decisions. The EMV + NN + 

VAMA policy outperforms all benchmarks.  

 [RL99] examine variable length moving average (VMA) trading rules in ten emerging 

equity markets in Latin America and Asia from January 1982 to April 1995. The average 

returns incorporating trading costs for each rule and country are compared to buy-and-hold 

the S&P500 and Nikkei225 indices. Trading signals are generated by two different types of 

moving average returns (MAR), called short MAR and long MAR. The short MAR is 

calculated over period lengths of 1, 2, and 5 days, the long MAR over 50, 150, and 200 days. 

Six VMA trading policies generate buying signals when the short MAR exceeds the long 

MAR and selling signals when the long MAR exceeds the short MAR. They were tested over 

a time horizon from January 1982 to April 1995. Results show that VMA trading rules 

applied to emerging markets do not beat the buy-and-hold alternative.  

 In [RS03] two trading policies are suggested which are applied in [FRY04] to stock 

trading agents in the context of the Penn-Lehman Automated Trading simulator. The first 

agent represents a market-making policy exploiting market volatility without predicting the 

direction of the stock price movement. The second agent uses technical analysis. Both agents 

trade over 15 days from February 24th to March 18th 2003 the Microsoft Corp. (MSFT) asset. 

The market-making policy fixes a selling price x and a buying price y for MSFT. When prices 

go beyond x a sell order is placed when prices drop on y a buy order. The reverse policy sells 

when prices go upwards and buys when prices go downwards. The experimental analysis is 

designed as a tournament with three rounds, each lasting one week. Both policies survived the 

first round; the market-making policy did not survive the second round. The reverse policy 

won the tournament but without achieving any profit. Here buy-and-hold was not simulated. 

 In [SR05] the potential of combining traditional price-based policies with policies 

based on order book information is investigated. Order books ensure that a trader will never 

pay more for the stock than the limit price he set. Tested policies are Static Order Book 

Imbalance (SOBI), Volume Average Weighted Prices (VWAP), Trend Following (TF) and 

Reverse Policy. SOBI buys (sells) if order book sell prices are greater (smaller) than the order 

book buy prices. VWAP buys (sells) if the markets average buying (selling) prices are greater 

(smaller) than VWAP buying (selling) prices. TF calculates a long and a short trend line from 
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ticker prices and buys (sells) if slopes of long (short) and short (long) match (both negative / 

positive). The fourth policy implemented is the reverse strategy discussed in [FRY04]. All 

four policies were tested over a 15-day period from 2004.01.05 to 2004.01.23 with NASDAQ 

order book information. Three mixed policies which combine 2, 3 or all of the four policies 

were considered: SOBI + VWAP + Reverse + TF, SOBI + Reverse and SOBI + Reverse + 

TF. Results compare returns and Sharpe ratio. For a period length of 15 days the best 

combined policy is SOBI + Reverse + TF in terms of return, the reverse policy is the overall 

winner in terms of Sharpe ratio. 

 

 

5 Experimental Results 

We want to investigate the performance of the trading policies discussed in Section 3 using 

experimental analysis. Tests are run for all p = 1, 2, …, 6 period types with the number of 

periods n(p) from {52, 26, 13, 4, 2, 1} and period length h  from {7, 14, 28, 91, 182, 364} 

days. The following assumptions apply for all tested policies: 

 

1. There is an initial portfolio value greater zero. 

2. Buying and selling prices pj(t) of an asset j are the closing prices of day t. 

3. At each point of time all money is invested either in assets or in 3% overnight deposit. 

4. Transaction costs are 0.0048% of the market value but between 0.60 and 18.00 Euro. 

5. When selling and buying is on different days the money is invested in overnight deposit. 

6. At each point of time t there is at most one asset in the portfolio. 

7. In each period i at least one buying and one selling transaction must be executed. At the 

latest on the last but one day of each period asset j has to be bought and on the last day it 

has to be sold.  

8. In period i = 1 all policies buy the same asset j on the same day t at the same price pj(t); 

the asset chosen is the one MT will chose (MTasset).  

9. In periods i = 2,…,n(p)-1 trades are carried out according to the different policies. 

10. In the last period i = n(p) the asset has to be sold at the last day of that period. No 

further transactions are carried out from there on.  

11. If the reservation price is calculated over h days, the period length is (also) h days. 

 

 We simulate all policies using historical XETRA DAX data from the interval 

2007.01.01 until 2007.12.31. This interval we divide into n(p) periods where n(p) is from {52, 
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26, 13, 4, 2, 1} and p is from {7, 14, 28, 91, 182, 364}. With this arrangement we get 52 

periods of length 7 days, 26 periods of length 14 days, etc.  

 

We carried out simulation runs in order to find out 

(1) if MT shows a superior behaviour to buy-and-hold policies 

(2) the influence of m and M on the performance of MT 

(3) the average competitive ratio for policies for MA and MT 

 

 Two types of buy-and-hold policies are used for simulation; one holds the MTasset 

within each period (MT_B+H) and the other holds the index over all periods (Index_B+H) of 

a simulation run. Thus, MT_B+H is synchronized with the MT policy, i.e, MT_B+H buys on 

the first day of each period the same asset which MT buys first in this period (possibly not on 

the first day) and sells this asset on the last day (note that this asset may differ from the one 

MT is selling on the last day) of the period. Using this setting we compare both policies 

related to the same period. Index_B+H is a common policy applied by ETF investment funds 

and it is also often used as a benchmark although it is not synchronized with the MT policy. 

In addition to these policies also the random policy Rand is simulated. Rand buys the same 

asset which MT buys on a randomly chosen day within a holding period. 

 We first concentrate on question (1) if MT shows a superior behaviour to the policies 

MT_B+H and Index_B+H. For calculating the reservation prices we use estimates from the 

past, i.e. in case of a period length of h days m and M are taken from the prices of these h days 

which are preceding the actual day t*  of the reservation price calculation, i.e. m = min {p(t) | t 

= t*-1, t*-2, ..., t*-h} and M = max {p(t) | t = t*-1, t*-2, ..., t*-h}. In Table 5-1 the trading 

results are displayed considering also transaction costs. The return rates are calculated 

covering a time horizon of one year. For the three active policies (MA, MT, Rand) the 

transaction costs are the same because all follow the holding period of MT; in all these cases 

there is a flat minimum transaction fee. 
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Historic Annualized Returns Including Transaction Costs 

Policy 1 Week 

n(7) = 52 

2 Weeks 

n(14) = 26 

4 Weeks 

n(28) = 13 

3 Months 

n(91) = 4 

6 Months 

n(182) = 2 

12 Months 

n(364) = 1 

MA 418.18% 138.40% 201.61% 47.93% 72.95% 61.95% 

MT 41.08% 1.37% 54.86% 6.08% 32.39% 31.35% 

MT_ B+H 9.70% 0.50% 17.18% 15.80% 45.30% 35.29% 

Index_B+H 20.78%  20.78% 20.78% 20.78% 20.78% 20.78% 

Rand -23.59% -21.23% 17.18% -18.23% 6.20% 15.42% 

Table 5-1: Annualized Return Rates for different period lengths 

 

 MT dominates MT_B+H and Index_B+H in two cases (1 and 4 weeks). MT_B+H 

dominates MT and Index_B+H in two cases (6 and 12 months). Index_B+H dominates MT 

and MT_B+H in two cases (2 weeks and 3 months). MT generates the best overall annual 

return rate when applied to 4 weeks. MT_B+H generates the worst overall annual return rate 

when applied to 2 weeks. MT_B+H policy improves its performance in comparison to Index 

_B+H and MT policy proportional to the length of the periods.  

 We might conclude the longer the period the better the relative performance of 

MT_B+H. MT outperforms Index B+H in four of six cases and it outperforms MT_B+H in 

three of six cases; MT and MT_B+H have the same relative performance. If the period length 

is not greater than 4 weeks MT outperforms MT_B+H in all cases. If the period length is 

greater than 4 weeks MT_B+H outperforms MT in all cases. Index_B+H outperforms 

MT_B+H in three of six cases.  

 If we consider the average performance we have 27.86% for MT, 20.78% for 

Index_B+H, and 20.63% for MT_B+H. MT is not always the best but it is on average the 

best. From this we conclude that MT shows on average a superior behaviour to buy-and-hold 

policies under the assumption that m and M are calculated by historical data. 

 In general we would assume that the better the estimates of m and M the better the 

performance of MT. Results in Table 5-1 show, that the longer the periods the worse the 

relative performance of MT. This might be due to the fact that for longer periods historical m 

and M are worse estimates in comparison to those for shorter periods. In order to analyse the 

influence of estimates of m and M we run all simulations also with the observed m and M of 

the actual periods, i.e. we have optimal estimates. Results for optimal estimates are shown in 

Table 5-2 and have to be considered in comparison to the results for historic estimates shown 

in Table 5-1.  
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 Now we can answer question (2) discussing the influence of m and M on the 

performance of MT. The results are displayed in Table 5-2. It turns out that in all cases the 

return rate of policy MT improves significantly when estimates of m and M are improved. For 

all period lengths now MT is always better than MT_B+H and Index_B+H. From this we 

conclude that the estimates of m and M are obviously of major importance for the 

performance of the MT policy. 

 

Clairvoryant Annualized Returns Including Transaction Costs 

Policy 1 Week 

n(7) = 52 

2 Weeks 

n(14) = 26 

4 Weeks 

n(28) = 13 

3 Months 

n(91) = 4 

6 Months 

n(182) = 2 

12 Months 

n(364) = 1 

MA 418.18% 315.81% 280.94% 183.43% 86.07% 70.94% 

MT 102.60% 87.90% 76.10% 81.38% 55.11% 54.75% 

MT_ B+H 9.70% -4.40% 22.31% 19.79% 45.30% 35.29% 

Index_B+H 20.78%  20.78% 20.78% 20.78% 20.78% 20.78% 

Rand -23.59% -101.3% -10.67% 47.37% 46.08% 15.42% 

Table 5-2: Annualized returns for optimal historic estimates 

 

 Now we concentrate on question (3) discussing the average competitive ratio for 

policies MA and MT. We now compare the experimental competitive ratio cec to the 

analytical competitive ratio cwc. To do this we have to calculate OPT and ON for the 

experimental case and the worst case. We base our discussion on the return rate R = sp / bp as 

the performance measure where sp is the selling price and bp is the buying price. We assume 

that we have precise forecasts for m and M. 

 A detailed example for the evaluation of the competitive ratio is presented in Table 5-3 

considering a period length of 12 months. In this period six trades were executed using 

reservation prices based on the clairvoyant test set. The analytical results are based on the 

consideration that MA achieves the best possible return and MT achieves a return of zero. 

E.g. for the first trade MA achieves a return rate of 14.03 % and MT achieves a return rate of 

0 % i.e. MT achieves absolutely 14.03 % less than MA and relatively a multiple of 1.1403. 

The experimental result are also based on the consideration that MA achieves the best 

possible return and MT now achieves the return rate generated during the experiment. E.g. for 

the first trade MA achieves a return rate of 14.03 % and MT achieves a return rate of 13.22%, 

i.e. MT achieves absolutely 0.82 % less than MA and relatively a multiple of 1.0072. 
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Clairvoyant Analytical Results Experimental Results 
# Trades 
n(364)=1 

Holding 
Period 

Buy at   Sell at    Periodic 
Return 

Ratio 
MA/MT 

Buy at 
 

Sell at   Periodic 
Return 

Ratio 
MA/MT 

1st trade 
 

Week  
1-14 

   1.1403 
 

   1,0072 

MA  37,91 43,23 1.1403  37,91 43,23 1,1403  
MT  p* p* 1  37,91 42,92 1,1322  
2nd Week 

14-24 
   1.011    1,0069 

MA  34.25 38.15 1.011  34,25 38,15 1,1139  
MT  p* p* 1  34,25 37,89 1,1063  
3rd Week 

24-25 
   1.0111    1,0000 

MA  13.54 13.69 1.0111  13,54 13,69 1,0111  
MT  p* p* 1  13,54 13,69 1,0111  
4th Week 

25-30 
   1.0643    1,0167 

MA  33.57 35.73 1.0643  33,57 35,73 1,0643  
MT  p* p* 1  34,13 35,73 1,0469  
5th Week 

30-46 
   1.1489    1,0646 

MA  51.23 58.86 1.1489  51,23 58,86 1,1489  
MT  p* p* 1  52,37 56,52 1,0792  
6th Week 

46-52 
   1.0881    1,0061 

MA  82.16 89.4 1.0881  82,16 89,4 1,0881  
MT  p* p* 1  82,66 89,4 1,0815  
Table 5-3: Periodic results for period length one year  

 

 We compared the analytical results with the experimental results based on annualized 

returns for the period lengths 1, 2, 4 weeks, 3, 6, and 12 months. The overall annual return 

rates for all period lengths are presented in Table 5-4. Transaction costs are not taken into 

account in order not to bias results. As the policies are always invested there is no overnight 

deposit. 
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Table 5-4: Competitive ratio and annualized return rates 

 

 For the period of 12 months the analytical worst case ratio (OPT/1) is 1.7108 and the 

average experimental ratio (OPT/ON) is 1.1045. The percentage the experimental ratio 

reaches of the worst case ratio which can be calculated by (1/ON) is 64.56%. The values for 

the other period lengths are also given in Table 5-4. It turns out that the average experimental 

ratio reaches at least 49.06%, at most 64.56% and on average 57.07% of the analytical worst 

case ratio; the longer the period the closer is the experimental ratio to the analytical ratio. In 

terms of return the experimental return reached by MT reaches at least 27.33%, at most 

77.22% and on average 45.67% of the analytic and experimental return of MA. 

 

 

5.Conclusions 

We carried out several experiments to answer three questions. The first is whether MT shows 

a superior behaviour to buy-and-hold policies or not. The second discusses the influence of 

estimates for upper and lower bounds, m and M, for asset prices on the performance of MT. 

The third question asks for the average competitive ratio for policies MA and MT. 

 In order to answer these questions six clairvoyant simulations with optimal estimates 

for m and M as well as six simulations with historical estimates for m and M were performed. 

To answer the first question MT outperforms buy-and-hold in all cases even when transaction 

costs are incorporated in the clairvoyant test set. Simulations based on historical estimates of 

m and M show that MT outperforms buy-and-hold in one third of the cases and on average. 

We conclude that if the period length is small enough MT outperforms B+H.  

Clairvoyant Ratio Annualized Return 
Period  # Trades OPT/1  OPT/ON 1/ON MA MT MA-MT MT/MA 
12 Month 
n(364)=1 

6 1.7108 1.1045  
 

64.56% 71.08% 54.89% 16.19% 77.22% 

6 Months 
n(182)=2 

7 1,8624 1.1994 
 

64.40% 86.24% 55.28% 30.96% 64.10% 

3 Months 
n(91)=4 

18 2.8387 1.5613 
 

55.00% 183.87% 81.82% 102.05% 44.50% 

4 Weeks 
n(28)=13 

38 
 

3.8185 2.1571 
 

56.49% 281.85% 77.02% 204.83% 27.33% 

2 Weeks 
n(14)=26 

48 4.1695 2.2055 
 

52.90% 316.95% 89.05% 227.90% 28.10% 

1 Week 
n(7)=52 

52 4.1711 2.0462 49.06% 317.11% 103.84% 213.27% 32.75% 

Average    57,07% 209.52% 76.98% 132.53% 45.67% 
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 From this we can answer the second question discussing the influence of m and M on 

the performance of MT. It is obvious that the better the estimates of m and M the better the 

performance of MT. Results show that the longer the periods, the worse are estimates by 

historical m and M in comparison to those for shorter periods. As a result, the performance of 

MT gets worse the longer the periods become. 

 The third question asks for the average competitive ratio for policies MA and MT. 

Fortunately, these results show that it is very difficult to get close to the (analytical) worst 

cases under (simulated) real-life considerations. It turns out that the shorter the periods are the 

less MT achieves in comparison to MA. The longer the periods, the closer is the experimental 

ratio to the analytical ratio. A MT trading policy which is applied to short periods leads to 

small intervals for estimating historical m and M. In this case there is a tendency to buy too 

late (early) in increasing (decreasing) markets and to sell too late (early) in decreasing 

(increasing) markets due to unknown overall trend directions, e.g. weekly volatility leads to 

wrong selling decisions during an upward trend.  

 The paper leaves also some open questions for future research. One is that of better 

forecasts of future upper and lower bounds of asset prices to improve the performance of MT. 

The suitable period length for estimating m and M is an important factor to provide an optimal 

trading signal, e.g. if the period length is h days estimates for historical m and M were also be 

calculated over h days. Simulations with other period lengths for estimating m and M could be 

of interest. Moreover, the data set of one year is very small. Future research should consider 

intervals of 5, 10, and 15 years. 
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