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Abstract: If we trade in financial markets we are interdsite buying at low and selling at
high prices. We suggest an active trading algorithimch tries to solve this type of problem.
The algorithm is based on reservation prices. Tfexteveness of the algorithm is analyzed
from a worst case and an average case point of. Wég/ want to give an answer to the
guestions if the suggested active trading algoridimaws a superior behaviour to buy-and-
hold policies. We also calculate the average coitiyveperformance of our algorithm using

simulation on historical data.
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1 Introduction

Many major stock markets are electronic market gdawhere trading is be carried out
automatically. Trading policies which have the mtied to operate without human interaction
are of great importance in electronic stock markéesy often such policies are based on data
from technical analysis [She02, RL99, RS03]. Maagearchers have also studied trading
policies from the perspective of artificial intgdince, software agents and neural networks
[CE08, FRY04, SRO05].

In order to carry out trading policies automaligahey have to be converted into
trading algorithms. Before a trading algorithm gpked one might be interested in its
performance. The performance analysis of tradiggridhms can basically be carried by three
different approaches. One is Bayesian analysisavagiven probability distribution for asset
prices is a basic assumption. Another one is asgumncertainty about asset prices and
analysing the trading algorithm under worst caseécaues; this approach is called
competitive analysis. The third one is a heuristpproach where trading algorithms are
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designed and the analysis is done on historic lokatsimulation runs. In this paper we apply
the second and the third approach in combinatioa.cdhsider a multiple trade problem and
analyse an appropriate trading algorithm from astva@ase point of view. Moreover we
evaluate its average case performance empiricatlycampare it to other trading algorithms.
The reminder of this paper is organized as follolwsthe next section we formulate
the problem and perform a worst case competitiatyars of the proposed trading algorithm.
In Section 3 different trading policies for the tipie trade problem are introduced. Section 4
gives a literature overview on heuristic tradintesufor multiple trading problems. In Section
5 detailed experimental findings from our simulatrons are presented. We finish with some

conclusions in the last section.

2 Problem Formulation
If we trade in financial markets we are intereste@uying at low prices and selling at high
prices. Let us consider the single trade and théipteu trade problem. In &ingle trade
problem we search for the minimum prigceand the maximum pric® in a time series of
prices for a single asset. At best we buy at pmi@nd sell later at prickl. In amultiple trade
problem we trade assets sequentially in a row,veegouy some assattoday and sell it later
in the future. After selling asset we buy some other assetand sell it later again; after
sellingv we can buyw which we sell again, etc. If we buy and sell (gpdsset& times we
call the problenk-trade problem withk > 1.

As we do not know future prices the decisions éadken are subject to uncertainty.
How to handle uncertainty for trading problems iscdssed in [YFKTO1]. In [Yan98] and
[YFKT92] online algorithms are applied tosaarch problemHere a trader owns some asset
at timet = 0 and obtains a price quotation< p(t) <M at points of time = 1, 2,...T. The
trader must decide at every tih@vhether or not to accept this price for a sellc®@some
pricep(t) is acceptedrading is closed and the trader’s payoff is caltad. The horizoit and
the possible minimum and maximum priecesndM are known to the trader. If the trader did
not accept a price at tliiest T-1 points of time he must be prepared to accept samenum
pricem at timeT. The problem is solved by an online algorithm.

An algorithm ON computes online if for each 1,...,n-1, it computes an output fpr
before the input for+1 is given. An algorithm computes offline if it cpotes a feasible
output given the entire input sequence 1,..., n-1. We denote an optimal offline algorithm

by OPT. An online algorithm ON iscompetitive if for any inpuk



ON(l) > 1/c * OPT().

The competitive ratio is a worst-case performamsasure. In other words, ay
competitive online algorithm is guaranteed a valtiat least the fraction d/of the optimal
offline value OPTK), no matter how unfortunate or uncertain the itwill be. When we
have a maximization probleo 1, i.e. the smaller the more effective is ON. For the search

problem the policy (trading rule) [Yan98]

accept the first price greater or equal to reseiwatprice p* = v(M*m)

M
has a competitive ratio; = \Fm whereM andm are upper and lower bounds of priggd

with p(t) from [m, M].
This result can be transferredikdrade problems if we modify the policy to

buy the asset at the first price smaller or equadl sell the asset at the first price

greater or equal to reservation price p*v(M*m)

In the single trade problem we have to carry oatdbarch twice. In the worst case we get a
competitive ratio ot for buying and the same competitive ratiocofor selling resulting in

an overall competitive ratio for the single tradelgem ofc; = cscs= M/m. In general we get

for thek-trade problem a competitive ratio @fk) = |_| (M() / m(i)) . If mandM are constant
i=1,...k

for all tradesci(K) = (M/m)*. The ratioc; can be interpreted as the rate of return we chieee
by buying and selling assets.
The bound is tight for arbitrarl. Let us assume for each kftrades we have to

1/2 1/2

consider the time serieM( (Mm)~4, m, m, (Mm)~<, M). OPT always buys at price and sells

Y2 and sells at price

at priceM resulting in a return rate &¥/m; ON buys at price \m)
(Mm)Y? resulting in a return rate of 1, i.e. OPT/ONW#m = c. If we havek trades OPT will
have a return of/m)* and ON of £, i.e. OPTK/ON(K) = (M/m)* = c(K).

In the following we apply the above modified resgion price policy to multiple

trade problems.



3 Multiple Trade Problem
In a multiple trade problem we have to choose goaittime for selling current assets and
buying new assets overkaowntime horizon. The horizon consists of severalitrggeriods
i of different typeg; each trading period consists of a constant nurobardays. We differ
betweerp = 1, 2, ...,6 types of periods with lendgtiirom {7, 14, 28, 91, 182, 364} days e.qg.
period typep = 6 has lengtih = 364 days; periods of tygeare numbered with=1,...n(p).
There is a fixed length for each period typp, e.g. period length = 7 corresponds to period
typep = 1, period lengtih = 14 corresponds to period type= 2, etc. For a time horizon of
one year, for period type= 1 we gen(1) = 52 periods of length= 7, for typep = 2 we get
n(2) = 26 periods of length = 14, etc.

We may choose between three trading policies. €lementary ones are Buy-and-
Hold (B+H), a passive policy, and Market Timing (M®&n active policy. The third one is a
random (Rand) policy. As a benchmark we use anmgptoffline algorithm called Market
(MA). We assume that for each periothere is an estimate of the maximum phé@) and
the minimum pricem(i). Within each period = 1,...n(p) we have to buy and sell an asset at
least once. The annualized return r&g), with x from {MT, Rand, B+H, MA} is the
performance measure used. At any point of timéefiorizon the policy either holds an asset
or an overnight deposit.

In order to describe the different policies weinkefa holding period with respect to
MT. A holding period is the number of daysbetween the purchase of asgeind the
purchase of another asgét(j’ # j) by MT. Holding periods are determined by either
reservation priceRB(t) which give a trading signal or when the last dagf the period is
reached.

MARKET TIMING (MT)

MT calculateseservation priceRB(t) for each day for each assgt At each day, MT must
decide whether to sell asgair to hold it another day considering the reseowgprices. Each
periodi, the first offered price;(t) of assef with pj(t) > RB(t) is accepted by MT and asset
is sold. The ass¢t, which is bought by MT is called MTasset. MT che®she MTassgt if
RB«(t) - p=(t) = maXRB(t)- pi(t) |j = 1,...m} and pi(t) < RB«(t). If there was no trading
signal in a period related to reservation priceentlrading is done on the last dayof a
period. In this case MT must sell asgetnd invest in assgt at T. The holding period
showing buying (Buy) and selling (Sell) points wh¢ and an interval with overnight deposit
(OD) for MT is shown in Figure 1.



Holding Period
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Figure 1: Holding period for MT

RANDOM (Rand)
Rand will buy and sell at randomly chosen pripg within the holding period of MT (cf.
Figure 2).

Holding Period
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Figure 2: Trading Possibilities for Rand

BUY AND HOLD (B+H)
B+H will buy at the first day of the period and sell at the last dagf the period.

MARKET (MA)

To evaluate the performance of these three poliempirically we use as a benchmark the
optimal offline policy. It is assumed that MA know8 pricesp;(t) of a period including also
these which were not presented to MT if there vaeng In each period MA will buy at the
minimum pricepmin > M(i) and sell at the maximum possible prggx < M(i) within the
holding period of MT (cf. Figure 3).

Holding Period
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Figure 3: Trading possibilities for MA

The performance of the investment policies is @ai@d empirically. Clearly, all

policies cannot beat the benchmark policy MA. Thadigees are tested using historical



XETRA DAX data for a consecutive 364-day periodnir@2007.01.01 to 2007.12.31 (see
Section 5).

4 Heuristic Trading Policies

We give a brief overview on the experimental analysn heuristic trading policies for
multiple trade problems. The policies discussefbime02] and [CE08] outperformed the buy-
and-hold policy on the selected data set.

In [She02] simple market-timing heuristics aredstigated that outperform the buy-
and-hold policy with data from 1970 to 2000. TragiBignals are generated by the value of
the short spread between the Earning/Price (EMR) od the S&P500 index and selected
interest ratesThe earnings are forecasted for the coming periatl divided by the actual
asset price. Trading policies either invest in 8&P500 index or in treasury bills over a
period of one month depending on predefined thidshdf the spread is above some
threshold level, it is invested in the market indexthe next month and if the spread is below
it, the portfolio is liquidated at the end of theomth and the money is invested in 30-day
treasury-bills for the next month. At the end ofleanonth spreads are considered again. As a
benchmark portfolio values are compared with thes&&P500 index buy-and-hold from
1970 to 2000. Results show that all trading padioetperform the S&P500 index generating
higher mean returns. In particular, the policy loage the spread between the E/P ratio and a
short-term interest rate beats the market inder &leen transaction costs are incorporated.

[CEO8] explore the profitability of stock tradiray using a neural network (NN) to
assist the trading decisions which are based orntéalmnical indicators, the volume adjusted
moving average (VAMA) and the ease of movement (BENMMicator. VAMA is a moving
average, where prices are replaced by volume. ElM¥tiates the relationship between the
rates of price and volume change of an asset. figaidi simulated over a time horizon of
1508 days from January 1998 to December 2003. ¢t 8me only one asset of the S&P500
index is in the portfolio. Different types of peditengths are investigated: 1 week (5-days), 4
weeks (21-days) and 13 weeks (55-days). Tradinpsgare generated by VAMA and EMV
with and without NN support. Transaction costs rawe considered. The VAMA rule buys if
the price of the asset is smaller than the VAMA arlls if the price is greater. The EMV
trading rule buys when the smoothing value of EM¥sses above zero from below and sells
when the smoothing value of EMV crosses below Zeym above. Trading rules might not

be executed depending on the results of the NN twpredict the next day’s VAMA and



EMV. Benchmarks are VAMA, EMV, a single moving aage (SMA) and buy-and-hold.
Different combinations of trading policies are &s5tVAMA + NN, VAMA + NN + Filter,
VAMA + NN + SMA, and EMV + NN + VAMA. For the comibied cases, trading signals
must match for all components (for more details Balgles 6 and 7 in [CEO08]). Results show
that trading with NN support is helpful to generbédter trading decisions. The EMV + NN +
VAMA policy outperforms all benchmarks.

[RL99] examine variable length moving average (VMrading rules in ten emerging
equity markets in Latin America and Asia from Jaygua982 to April 1995. The average
returns incorporating trading costs for each ruid aountry are compared to buy-and-hold
the S&P500 and Nikkei225 indices. Trading signais generated by two different types of
moving average returns (MAR), called short MAR dondg MAR. The short MAR is
calculated over period lengths of 1, 2, and 5 d#hesJong MAR over 50, 150, and 200 days.
Six VMA trading policies generate buying signalsemhthe short MAR exceeds the long
MAR and selling signals when the long MAR exceddsghort MAR. They were tested over
a time horizon from January 1982 to April 1995. ®iss show that VMA trading rules
applied to emerging markets do not beat the buykanhd alternative.

In [RS03] two trading policies are suggested whacé applied in [FRY04] to stock
trading agents in the context of the Penn-Lehmatomated Trading simulator. The first
agent represents a market-making policy exploitmayket volatility without predicting the
direction of the stock price movement. The secayghtiuses technical analysis. Both agents
trade over 15 days from February™4 March 18 2003 the Microsoft Corp. (MSFT) asset.
The market-making policy fixes a selling pricand a buying pricg for MSFT. When prices
go beyondk a sell order is placed when prices dropyanbuy order. The reverse policy sells
when prices go upwards and buys when prices go wavds. The experimental analysis is
designed as a tournament with three rounds, eatihgeone week. Both policies survived the
first round; the market-making policy did not swevithe second round. The reverse policy
won the tournament but without achieving any praédiére buy-and-hold was not simulated.

In [SRO5] the potential of combining traditionalige-based policies with policies
based on order book information is investigatedle®@books ensure that a trader will never
pay more for the stock than the limit price he Seisted policies are Static Order Book
Imbalance (SOBI), Volume Average Weighted Price8VAP), Trend Following (TF) and
Reverse Policy. SOBI buys (sells) if order book pates are greater (smaller) than the order
book buy prices. VWAP buys (sells) if the marketerage buying (selling) prices are greater
(smaller) than VWAP buying (selling) prices. TFaahtes a long and a short trend line from



ticker prices and buys (sells) if slopes of longoft) and short (long) match (both negative /
positive). The fourth policy implemented is the esse strategy discussed in [FRYO04]. All
four policies were tested over a 15-day period f2064.01.05 to 2004.01.23 with NASDAQ

order book information. Three mixed policies whimmbine 2, 3 or all of the four policies

were considered: SOBI + VWAP + Reverse + TF, SOBeverse and SOBI + Reverse +
TF. Results compare returns and Sharpe ratio. Fpereod length of 15 days the best
combined policy is SOBI + Reverse + TF in termseattirn, the reverse policy is the overall

winner in terms of Sharpe ratio.

5 Experimental Results

We want to investigate the performance of the tr@giolicies discussed in Section 3 using
experimental analysis. Tests are run forpat 1, 2, ..., 6 period types with the number of
periodsn(p) from {52, 26, 13, 4, 2, 1} and period lendth from {7, 14, 28, 91, 182, 364}
days. The following assumptions apply for all tegpelicies:

. There is an initial portfolio value greater zero

. Buying and selling pricgs(t) of an assejtare the closing prices of day

. At each point of time all money is invested eitin assets or in 3% overnight deposit.
. Transaction costs are 0.0048% of the markeevalu between 0.60 and 18.00 Euro.

. When selling and buying is on different daysni@ney is invested in overnight deposit.

D O~ WDN R

. At each point of timéthere is at most one asset in the portfolio.

7. In each period at least one buying and one selling transactiostiie executed. At the
latest on the last but one day of each period @§dset to be bought and on the last day it
has to be sold.

8. In periodi = 1 all policies buy the same asgen the same dayat the same pricg(t);

the asset chosen is the one MT will chose (MTasset)

9. In periods = 2,...n(p)-1 trades are carried out according to the diffeparticies.

10. In the last period = n(p) the asset has to be sold at the last day of t@abg No
further transactions are carried out from there on.

11. If the reservation price is calculated ohe@lays, the period length is (aldoylays.

We simulate all policies using historical XETRA BAdata from the interval
2007.01.01 until 2007.12.31. This interval we dévidton(p) periods whera(p) is from {52,



26, 13, 4, 2, 1} angb is from {7, 14, 28, 91, 182, 364}. With this argement we get 52
periods of length 7 days, 26 periods of length dyis¢ etc.

We carried out simulation runs in order to find out
(1) if MT shows a superior behaviour to buy-and-holtiges
(2) the influence ofn andM on the performance of MT
(3) the average competitive ratio for policies for MAdaVI T

Two types of buy-and-hold policies are used fonwdation; one holds the MTasset
within each period (MT_B+H) and the other holds itdex over all periods (Index_B+H) of
a simulation run. Thus, MT_B+H is synchronized witle MT policy, i.e, MT_B+H buys on
the first day of each period the same asset whi€hblys first in this period (possibly not on
the first day) and sells this asset on the last(daje that this asset may differ from the one
MT is selling on the last day) of the period. Usithgs setting we compare both policies
related to the same period. Index_B+H is a comnuaicypapplied by ETF investment funds
and it is also often used as a benchmark althouighniot synchronized with the MT policy.
In addition to these policies also the random poRand is simulated. Rand buys the same
asset which MT buys on a randomly chosen day waholding period.

We first concentrate on question (1) if MT showsugerior behaviour to the policies
MT_B+H and Index_B+H. For calculating the resematprices we use estimates from the
past, i.e. in case of a period lengtthafaysm andM are taken from the prices of thdsdays
which are preceding the actual d&yof the reservation price calculation, ine.= min{p(t) | t
= t*-1, t*-2, ..., t-h} andM = max {p(t) | t = t*-1, t*-2, ..., t*-h}.In Table 5-1 the trading
results are displayed considering also transactiosts. The return rates are calculated
covering a time horizon of one year. For the thaedve policies (MA, MT, Rand) the
transaction costs are the same because all folewnolding period of MT; in all these cases

there is a flat minimum transaction fee.



Historic Annualized Returns Including Transaction Costs

Policy 1 Week| 2 Weeks |4 Weeks |3 Months| 6 Months | 12 Months
n(7) =52| n(14) =26 | n(28)=13|n(91) =4|n(182)=2|n(364) =1

MA 418.18% | 138.40% 201.61% 47.93% 72.95% 61.95%

MT 41.08% 1.37% 54.86% 6.08% 32.39% 31.35%

MT_B+H | 9.70% 0.50% 17.18% 15.80% 45.30% 35.29%

Index_B+H | 20.78%  (20.78% 20.78% 20.78% 20.78% 20.78%

Rand -23.59% | -21.23% 17.18% -18.23% | 6.20% 15.42%

Table 5-1: Annualized Return Rates for differentiqutlengths

MT dominates MT_B+H and Index_B+H in two casesa(id 4 weeks). MT_B+H
dominates MT and Index_B+H in two cases (6 and daths). Index B+H dominates MT
and MT_B+H in two cases (2 weeks and 3 months). ddmerates the best overall annual
return rate when applied to 4 weeks. MT_B+H gemsréite worst overall annual return rate
when applied to 2 weeks. MT_B+H policy improvesptsformance in comparison to Index
_B+H and MT policy proportional to the length o&tperiods.

We might conclude the longer the period the bether relative performance of
MT_B+H. MT outperforms Index B+H in four of six aas and it outperforms MT_B+H in
three of six cases; MT and MT_B+H have the sansadivel performance. If the period length
is not greater than 4 weeks MT outperforms MT_B-+Hall cases. If the period length is
greater than 4 weeks MT_B+H outperforms MT in adlses. Index B+H outperforms
MT_B+H in three of six cases.

If we consider the average performance we hav@624.for MT, 20.78% for
Index_B+H, and 20.63% for MT_B+H. MT is not alwatyge best but it is on average the
best. From this we conclude that MT shows on aveeaguperior behaviour to buy-and-hold
policies under the assumption timaandM are calculated by historical data.

In general we would assume that the better thenatds ofm andM the better the
performance of MT. Results in Table 5-1 show, tet longer the periods the worse the
relative performance of MT. This might be due te fact that for longer periods historical
andM are worse estimates in comparison to those fateshperiods. In order to analyse the
influence of estimates oh andM we run all simulations also with the obsenm@ndM of
the actual periods, i.e. we have optimal estim&esults for optimal estimates are shown in
Table 5-2 and have to be considered in comparizdhet results for historic estimates shown
in Table 5-1.
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Now we can answer question (2) discussing theuémite ofm and M on the
performance of MT. The results are displayed inl@&h2. It turns out that in all cases the
return rate of policy MT improves significantly wihestimates ofm andM are improved. For
all period lengths now MT is always better than M¥H and Index_B+H. From this we
conclude that the estimates af and M are obviously of major importance for the

performance of the MT policy.

Clairvoryant | Annualized Returns Including Transaction Costs

Policy 1 Week| 2 Weeks |4 Weeks |3 Months| 6 Months | 12 Months
n(7) =52|n(14) =26 | n(28) =13|n(91) =4|n(182)=2|n(364) =1

MA 418.18% | 315.81% 280.94% 183.43% | 86.07% 70.94%

MT 102.60% | 87.90% 76.10% 81.38% 55.11% 54.75%

MT_B+H 9.70% -4.40% 22.31% 19.79% 45.30% 35.29%

Index_B+H 20.78%  [20.78% 20.78% 20.78% 20.78% 20.78%

Rand -23.59% | -101.3% -10.67% 47.37% 46.08% 15.42%

Table 5-2: Annualized returns for optimal histaggtimates

Now we concentrate on question (3) discussing aberage competitive ratio for
policies MA and MT. We now compare the experimertampetitive ratioce; to the
analytical competitive ratia,.. To do this we have to calculate OPT and ON far th
experimental case and the worst case. We basasmusdion on the return rafe= sp/ bp as
the performance measure whes the selling price anlp is the buying price. We assume
that we have precise forecastsioandM.

A detailed example for the evaluation of the cotitipe ratio is presented in Table 5-3
considering a period length of 12 months. In thesigu six trades were executed using
reservation prices based on the clairvoyant testTdee analytical results are based on the
consideration that MA achieves the best possibigrmeand MT achieves a return of zero.
E.qg. for the first trade MA achieves a return ratd4.03 % and MT achieves a return rate of
0 % i.e. MT achieves absolutely 14.03 % less thak aid relatively a multiple of 1.1403.
The experimental result are also based on the deraion that MA achieves the best
possible return and MT now achieves the returngateerated during the experiment. E.g. for
the first trade MA achieves a return rate of 120and MT achieves a return rate of 13.22%,
i.e. MT achieves absolutely 0.82 % less than MA i@hakively a multiple of 1.0072.
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Clairvoyant Analytical Results Experimental Results

# Trades | Holding | Buy at | Sell at | Periodic | Ratio Buy at | Sell at | Periodic | Ratio

n(364)=1| Period Return | MA/MT Return | MA/MT

1*trade | Week 1.1403 1,0072
1-14

MA 37,91 | 43,23 | 1.1403 37,91 43,28 11,1408

MT p* p* 1 37,91 | 42,92 | 1,1322

2 Week 1.011 1,0069
14-24

MA 34.25 | 38.15 | 1.011 34,25 38,1% 11,1139

MT p* p* 1 34,25 | 37,89 | 1,1063

3¢ Week 1.0111 1,0000
24-25

MA 13.54 | 13.69 | 1.0111 13,54 13,69 1,011f

MT p* p* 1 13,54 | 13,69 | 1,0111

4" Week 1.0643 1,0167
25-30

MA 33.57 | 35.73 | 1.0643 33,57 3578 11,0648

MT p* p* 1 34,13 | 35,73 | 1,0469

5" Week 1.1489 1,0646
30-46

MA 51.23 | 58.86 | 1.1489 51,23 58,86 1,148P

MT p* p* 1 52,37 | 56,52 | 1,0792

6" Week 1.0881 1,0061
46-52

MA 82.16 | 89.4 1.0881 82,16] 89,4 1,0881

MT p* p* 1 82,66 | 89,4 1,0815

Table 5-3: Periodic results for period length oeary

We compared the analytical results with the expental results based on annualized
returns for the period lengths 1, 2, 4 weeks, 3arg 12 months. The overall annual return
rates for all period lengths are presented in T&bde Transaction costs are not taken into
account in order not to bias results. As the pediare always invested there is no overnight
deposit.
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Clairvoyant Ratio Annualized Return

Period # Trades OPT/1 OPT/ON | 1/ON MA MT MA-MT | MT/MA
12 Month| 6 1.7108 | 1.1045 |64.56% | 71.08% 54.89% 16.19% 77.22
n(364)=1

6 Months | 7 1,8624 | 1.1994 |64.40% | 86.24% 55.28% 30.96% 64.10
n(182)=2

3 Months | 18 2.8387 | 1.5613 |55.00% | 183.87% | 81.82% 102.05%  44.50
n(91)=4

4 Weeks | 38 3.8185 | 2.1571 |56.49% | 281.85% | 77.02% 204.83%  27.33
n(28)=13

2 Weeks | 48 4.1695 | 2.2055 |52.90% | 316.95% | 89.05% 227.90%  28.10
n(14)=26

1Week |52 4.1711 | 2.0462 49.069 317.11%  103.84P6  213.2Y% 75%R2.
n(7)=52

Average 57,07% | 209.52%| 76.98% 132.53%  45.67

Table 5-4: Competitive ratio and annualized retates

For the period of 12 months the analytical woestecratio (OPT/1) is 1.7108 and the
average experimental ratio (OPT/ON) is 1.1045. Peecentage the experimental ratio
reaches of the worst case ratio which can be cdlby (1/ON) is 64.56%. Thalues for
the other period lengths are also given in Tabfe B-turns out that the average experimental
ratio reaches at least 49.06%, at most 64.56% aral/erage 57.07% of the analytical worst
case ratio; the longer the period the closer isetterimental ratio to the analytical ratio. In
terms of return the experimental return reachedvidly reaches at least 27.33%, at most

77.22% and on average 45.67% of the analytic apdremental return of MA.

5.Conclusions

We carried out several experiments to answer thuestions. The first is whether MT shows
a superior behaviour to buy-and-hold policies ot. filne second discuss#®e influence of
estimates for upper and lower bounasandM, for asset prices on the performance of MT.
The third question asks for the average competititie for policies MA and MT.

In order to answer these questions six clairvogamulations with optimal estimates
for mandM as well as six simulations with historical estiesaform andM were performed.
To answer the first question MT outperforms buy-aottl in all cases even when transaction
costs are incorporated in the clairvoyant test Sehulations based on historical estimates of
m andM show that MT outperforms buy-and-hold in one ttofdhe cases and on average.

We conclude that if the period length is small egtoMT outperforms B+H.
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From this we can answer the second question disushe influence om andM on
the performance of MT. It is obvious that the bette estimates ah andM the better the
performance of MT. Results show that the longer ghdods, the worse are estimates by
historicalm andM in comparison to those for shorter periods. Assallt, the performance of
MT gets worse the longer the periods become.

The third question asks for the average competitatio for policies MA and MT
Fortunately, these results show that it is veryidift to get close to the (analytical) worst
cases under (simulated) real-life consideratiansirhs out that the shorter the periods are the
less MT achieves in comparison to MA. The longer fleriods, the closer is the experimental
ratio to the analytical ratio. A MT trading poliayhich is applied to short periods leads to
small intervals for estimating historical andM. In this case there is a tendency to buy too
late (early) in increasing (decreasing) markets &mdell too late (early) in decreasing
(increasing) markets due to unknown overall treirdations, e.g. weekly volatility leads to
wrong selling decisions during an upward trend.

The paper leaves also some open guestions farefudsearch. One is that of better
forecasts of future upper and lower bounds of gasets to improve the performance of MT.
The suitable period length for estimatimgandM is an important factor to provide an optimal
trading signal, e.qg. if the period lengthhislays estimates for historicad andM were also be
calculated oveh days. Simulations with other period lengths fdmeatingm andM could be
of interest. Moreover, the data set of one yeaery small. Future research should consider

intervals of 5, 10, and 15 years.
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