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Abstract:

In general insurance tariffs consist of two components: First risks are classified according to a vector of
basic criteria, say X;, which - for example in automobile insurance - depend on the type or the power of
the vehicles. Given the basic premiums, X, further extra charges and discounts are rated depending on
usually more individual characteristics of the risk (say Z;). All rdevant tariffs can be represented by a
Generalized Rating Model that determine the net expected premium by

E(yy) = Xio..exp{ Z}

While previous work focused either the estimation of linear (X.or) or multiplicative modds (exp{Z3}),
we will estimate the parameters of the two linear kernd functions simultaneous by Maximum-Likelihood
methods. This allows a valid sdection and testing of rating criteria within the market-relevant tariff
structure without misleading evidence due to divergent modelstructures. The efficiency of the suggested
tariff can immediately be judged by ML-statistics and information criteria.

We illustrate the modd and the estimation with examples from the Austrian motor liability market.
Restricted net-tariff estimations provide premium structures which are consistent with exogenous fixed
components like a Bonus-Malus scale or traditionally applied discounts.

Keywords: Insurance rating; tariff structures; model specification; Maximum Likelihood; automobile
insurance




1 INTRODUCTION

The most noble goal of general insurance mathematics is the statistical determination of net risks
premiums, say .y (t=1,...,T), due to observed benefitsapd several criteria, and Z that characterise
that risk.

In general insurance typical tariffs consist of two parts: The base tariff consists of a sequence of risk
criteria that defines the structure of the portfolio. These characteristics usually correspond to the structure
of traditional risk statistics where groups are formed according to main criteria like the line of business in
industrial fire insurance or the motor power in motor liability. This structure might be represented by a
linear combination of dummy variables, sayXBeside this the premiums will depend on a system of
additional charges and discounts which usually reflect more individual criteria like the age or gender in
motor insurance. In general several risk groups of the basic tariff are rated by common discount factors.

As this structure is typical for insurance tariffs we will denote such a model as generalized rating model
(GRM). Up to now we have not found a tariff structure which can not be represented by a GRM. However
- as it will be discussed in chapter 2, GRMs can in general neither be transformed to a purely linear -,
multiplicative - or to a GLM- model. Thus any inference derived from one of those models is misleading

when a rating model should be specified.

Technical aspects of estimating GRMs are discussed in chapter 3. We suggest to apply ML-estimation.
Once the Likelihood is explicitly expressed by the expected net premium and its variance the statistical
aspects are trivial. However, to derive such a specification of the Likelihood might be challenging. As an

example, chapter 3.3.3 of this paper demonstrates the solution for the Lognormal- Likelihood.

In chapter 4 we present estimations based on Austrian motor liability data. The examples demonstrate that
the structure of the model influences the inference about relevant risk criteria. A reliable selection of
variables is only possible within the relevant rating structure model.

2 GENERALIZED RATING MODELS

2.1 The structure of generalized rating models (GRM)

Let us denote the net-risk premium of thecell by {. The premium function will depend on known
exogenous rating factors, say;; &nd Z;, i=0, ..., k, J=1, ..., k. In general the market relevant tariff
structure can be expressed by

(2.1) Y= (0o + 0 Xer + 02 X2 oo F Oux Xi) -XP{B1Ze1 + BoZio + ... + P Ziwe}

say Net-Premiupr= [ baseline tariff for subgroup t] * {net-excess and reduction factors}.

Applying vector notation and defining thet-dimensional vector )& [1, X1, Xi2, ..., X and the k
dimensional Z-vector, which holds the discount and excess critgyjeh® rating model for risk group t is
equivalent to

(2.2) % = X . exp{ Zf }



Usually the covariates are Z,; Dummy variables. As exp(B) = exp(R” the premiums of risks indicated
by Z = 1 will be exp(}-times higher than those of risks with=20. But Z might also include quantitative
variables like in example B.

Examples:

(A) The Austrian industridiir e insurance tariff is structured according to tariff books which include on
average 30 risk groups. Given the line of business further additive premium factors are intended for
security holdings and electronic equipment. This baseline tariff might be expressedybyh&re X
indicates the specific sum insured ands a vector of premium factors. For all branches of industry the
tariffs apply common increases for the construction of building, and the roofing as well as reductions for
fire-alarm and -fighting systems. Obviously these tariff components can be exprEksggd(BY:)).

(B) Usually the discount factors applied for a higher figieductible, say my, are common for several
risk-groups and thus independent of the basic rhteg. Thus the tariff function will be

(2.3) Vi = Xo.exp{ Zp + k.m,}.

This is obviously a generalized rating model. However this rating function will not represent the true data
generating process because even under very simple distributional assumptions the expected burden will be
E(y.)= Xwo.exp{ Zp + k.m,} where k depends on the risk-distribution of class t. To illustrate this,
suppose that the claim size distribution is locally exponential declining a the reference-yalteem

E(yi) = E(w.).exp{- po/E(yo) (Mms-my) } where E(y,) is the expected burden of a contract with
deductible mand g, the claimfrequency for a type t - risk with deductible(W. Fels, 1997). If models

for E(yosl X Z) and E(po| X, Z) were specified, the estimated garameters will follow an erratic

pattern, such that these parameters have to be smoothed in an second estimation step. Whenever for some
groups a common percentage reduction for higher deductibles is required, the average of several estimated
k. has to be calculated. But the uncontrolled accumulation of estimation- and smoothing errors leads to
inefficient estimators while estimating the required rating structure 2.3 directly by quasi-ML-methods
guarantees efficiency eve2.i8 is only an approximation of the true data generating process.

2.2 Related rating structures and Generalized Linear Models

With the pioneer-work of Bailey and Simon (1960) the actuarian literature mentioned the problem of
estimating pure multiplicative models:

(2.4) % = oo.exp{ Zp }

In fact, the method was developed to fit a tariff structure for two-dimensional contingence tables,, where Z
classified the data according to two categorial variables. The oncomming development of this model
focused alternative loss-functions: While Jan Jung's Method of Marginal Totals (Jub§68), is
appropriate for the Modified-Poisson distributed data (Mack, 1997, p. 167), D. T. Sant (1980) suggested
a Least-Square approach which fits to the normal-distribution.

For a higher dimensional classification, the additive model

(2.5) i = X



seemed more appropriate. Applications of the linear mode can be found in Johnson and Hay (1971),
F.A.Ruygt (1982), J. Lemaire (1985, Part I1) and others.

More recent analyses, like Stroinski and Currie (1989) apply Generalized Linear Modes (GLiM) which
are associated with the work of Nelder and Wedderburn (1972) respectivdly McCullarg and Nelder
(1989). These modes generalise the distributional assumption of the linear modd to allow efficient
estimation for distributions of the exponential family. Although the class of generalized rating mode (2.2)
overlaps with models of the GLiM-class, in order to avoid confusion, generalized rating models should not
be denoted as GLiMs. In GLiMs only one linear kernd X:o, is specified, which is related to the expected
burden by means of the (inverse) link-function h():

(2.6) Vi = h(Xo)

Due to h() GLiMs will estimate reasonable rating stuctures only in very special cases. Purely linear (2.5)
and the purely multiplicative tariffs (2.4) can be specified when h(x) = x respectively h(x)=exp(x). These
cases correspond to the canonical link functions of Normal- and Poisson-models. In all other cases the
nonlinear inverse link function h(x) will lead to dubious tariff models.

Among others A. E. Renshaw994)illustrated this for a motor insurance portfolio: Assuming Gamma
distributed claim sizes yimplies h(x.a) = -1/X;.a. For a given claim frequency the net premiums of all
risks caracterised by a dummy, say,Xshould be -100,/E(y.:|X..:=1)% larger than the premiums of
risks with X;,=0. Thus the optimal discount for one risk criteria depends on all other risk criteria (X
Xean --- ). Lady- or regional discounts will vary for different cars. AscEfy:) = 1/X. 0 -1/X. 0, the

same holds for absolute premium-differences. Up to now we have not seen any tariff following that
structure.

Another difference between GRM and purely linear or multiplicative models is the treatment of
multicolinearity. If \i and \4 denote two highly correlated or dependent variables an estimation of the
models Y =00ty Vito, Vo and § =op.expln Vito, V,) will collapse due to colinearity while the models

y = (coton Vi).expee Vo) and (oto, Vo).expey Vi) can still be correctly estimated.

2.3 What is estimated

Recall that the most noble goal of rating models is the statistical estimation of the net premium V.
Nevertheless a broad line of actuarial literature focuses the estimation of freqyeragdfclaim severity
(s) - models. According to tloellective model the expected premiums are calculated by

(2.7) Eina(Yt) = 1E\t &

We might view this as a classical structural model of the risk process. However, eveani §fwere
estimated efficientlyy, will not be a satisfying estimator, neither statistically nor economically: On one
hand, correlations between the frequencies and the size distribution, which induce a bias of order
2 Cov(f,s) are strictly ignored. Furthermorednds, might be based on variables that are relevant for the
submodels but need not influengesignificantly. Consider variables indicating urban regions, with higher
claim frequencies and lower average claims. The costs of motor liability insurance might still be similar to
non-urban regions. However testing the influence of such a dummy within the/finapecification will

usually be omitted.



But the mgjor drawback of the structural approach is, that theinitial problem, the estimation of a workable
tariff-function v, is not even touched yet. Given E;4(y;) a tariff-function that could be applied in practical
situations will in general only be found after further approximations. In the case of purdy linear f, - ands

- specificationskE;4(y;) will become a fairly improper polynomial risk model. A multiplicative tariff
structure requires the estimation of purely multiplicative submodels, but this is the only way to gain a
rating model from the individual model. And obviously, this tariff structure is not always the required one.

2.4 Observational equivalent representations

It might be argued, that multiplicative models are wide enough to cover almost all relevant tariff structures
and that additve components could after a proper transformation of variables be as well be estimated
within a multiplicative framework. The first argument is exhausted by the empirical paractice, where
almost everywhere additive baseline-tariffs are applied. The second argument will be relativated by the
following considerations:

Suppose that two GRMs which are based on the same set of criteria lead to the same premium level for all
risk groups although they are obviously differently structured. We will denote such tariffs as observational
equivalent representations. For example, if criteria of the basic-tariff - let us denote them werD

taken into account as discount factor and the former and the latter tariff specified by the left and the right
side of the equation

(2.8) (Xo. + Do).exp{Zp} = X.o. exp{Zp + Do}
lead to the same premium level for all t, then the two tariffs are observational equivalent.

In the following we will assume that the parameters of (X0« +D:d).exp{Z:f} can be identified, such
that there exists no other, 6 andp leading to the same premium distribution. Thus we will not consider
cases where the columns of X and D respectively those of Z are linear dependent.

Theorem: Assume that the criteria X0, and Z are linear independent.

Given an identified rating model a displacemkatteria between the basic tariff

and the multiplicative components leads tobservational equivalent representation

if and only if the manipulation can be traced back to separate shifts of single variables

D following the form @.8) where

(a) the basic tariff ¥t +D.6 defines at mostk2 different premia or

(b) Dy is a scalar dummy and eitherRQa. or (1-D). X:o. is constant for all t.
Proof:
Notice, that the l¢1 - dimensional vector)& (1, X1, ..., Xik) includes at least a constant term.
Given oo and o, the equation system0&D:0= X.o..exp{D,0} can be explicitly solved in the,k2
parameters. ands if it has to be fulfilled for at mostk2 different riskgroups. This case, corresponding
to part (a) of the theorem. An analytical solution for (2.8) will also be aviable if the complete system

defines at most ,k2+k, different risk premia. However, for linear independettlds requires, that
condition (a) is fullfilled.

Let us turn to part (b):



For D=0 and arbitrary X; (2.8) implies o = oo and = 3. Now suppose Di=1. In this case the reduced
system (X.o+ 0) = X0 exp{ 6} can only be solved for ¢ if all X, are constant, say X;= X. whenever D;=1.
In that case the solution is:

o+d
If D=1= X=Xcthen o =a,B=p and 5=X.o..(exp{8}-1) respectively 3 =log % X ; %

If D, took another value beside 0 and 1 the parameters can no longer be identified. Thus observational
equivalent transformations have to be based on thedisplacement of dummy variables.

On the other hand, any structure based on a dummy D, can as well be represented by an indicator of the
complementary group, say by D ; =1-D.. By using the notation ¢, =(0t1, 0, ..., Oi)' the l.h.s. of (2.8) can
be expressed by+6+X, 0. -6.D7).exp{ ZB}. Similar to the arguments above, one will find the solution
for cases where X is constant wheneverD ; =1, e.g. D=0:

If D=0= X=X then B=
and  6=(X.0) [exp(6)-1], 0o = 0oeXP(d) + Xcor.[1-exp(d)], o =ct. exp(d),

. _ ) _ Oo +0 _
respectively 8—Iog§+xca§, %= /X0 o =0, exp(-0) W

Remarks:

» For practical purposes case (a) is amost irrdevant. It might occure when very few of the possible
combinations of X and D - criteria are relevant for the tariff. When X, includes only the constant term,
e.g. kx =0, case (a) correspondents to basic tariffs o, +D6 which defines at most two risk groups, e.g.
D; denotes a dummy. Thus given a pure multiplicative model any single dummy can be transformed to
become a baseline tariff criterion.

» Case (b) is rdevant because rating factors are often cathegorial and ordinal criteria, which are
expressed by dummy-variables.

» Dueto (b) it is obvioudly that given a pure multiplicative mode any single cathegorial risk criteria can
be transformed to become a baseline tariff criterion.

In practice it can be easily verified whether two estimations represent equivalent models. As equivalent
representations generate the same expected valuderyall t, all overall-model criteria of the two
estimations will coincide. Thus identical Likelihood-statistics indicate the existence of observational
equivalent representations with high probability.



3 ESTIMATION

3.1 Distributional assumptions
To develop efficient estimators we introduce distributional assumptions for the average benefit.y

Suppose that individual - possibly aggregated - data (y:, Wy, X;, Z;) are observed. Here w; stands for the
natural weight. Usually y; will be the average risk burden of w; independent observations that depend on
the criteria X; and Z,.

We will require that y| X;, Z; isindependently distributed with meany, and variance proportional to 1/w:
Al E(y| Xy, Z) = W
A2 Val’(ytl Xt1 Zt) (o8 1/Wt

Notice that these assumptions have statistical and economical implications: Obviously all risks belonging
to one cdl of atariff table that is characterized by X; and Z; should be be rated with a common premia ..
Of course even within the same cdl E(y;) might vary according to further factors not included in the
information set {X;, Z}. Nevertheless the insurance will rate the risks according to the conditional

expected value i, = E(yi| Xi, Z;) although it is not the true model and can be ,only* interpreted as quasi-

ML-approach.

3.2 A unified framework for ML-estimators

ML-estimators for GRMs can be easily constructed, when the Likelildpas explicitly parameterizised

in the expected valugs and the dispersion parameter v. Wiagfa/dy, is known, the partial derivatives

with respect to the regression parametersiat X, o.. exp{Zp} can be calculated by the following

formulars:
0,4 a"4t
(3.1) Fre Xi; .exp{Zp}. P i=0, ..., k
04, 04 )
6_& = Z 'Yt'a_pt Lk
3.2 e , 34
( . ) aal aaj = A\t A\ eXp(Z B) a th
0% % 7 gﬁt o 024, 0% . Eﬁt o 024,
do, a& = At Lt exp(Z B) . L, Yt opz R, a& =Z;. tj - Yt e Yt o u2
33 024 X 024, 0% 0%
(3.3) a0 oy i -exp{aBt 5 50 Rov % Ve au oy

]

For the most relevant distribution applied in insurance models, the partial derivatives are summarized in

table 1 to 3.



Table 1 : ML-Estimation for the Normal- and the Modified Poisson Model

‘_‘ Normaldistibution ‘ M odified Poisson ‘

Wt (yt B /'It) 2 Wt Vi DNt /'It |:| Wt /Jt
Log-Likelihood| ~ 20° v I H v H- v
£ -%Ln(2 7 0%/ w) Ln(y.T(Wy: /v))
Var(y) c2w, = v/ w V e I
Auxiliary terms| 2, =w; . (Y; - ¥1)2 Z=W.yi/ Vv
given E(y) = ¥ G =W . (Y- v
a‘lt/ap.t Wt (yt - Yt) /V M _ q /yt
04, 1 Ln(y/
tov (DV-1).57 Wtytv—z(yt“) 2 L pawyiv) v
024 /gp2 Wi We Yt
Tv Vg2
0% /gp, ov W (Y: - ) -G /(V $7)
V2
1 ngt yt/v)
02432 pe-oh s ({rart St E}
Remarks: ¥ denotes the Digamma-Function , L D(x) = x (Ln(x)-¥(x)),

R(X) =- %2 + x +2 x Ln(X) - 2 X¥(X) - x2 ¥'(x).
3.3 Examples

3.3.1 Gamma Distribution
Following Mack (1997, p. 71) a proper volume depending parametrisation othe Gamma distribution is

t t t/ t Yt
f(y) = DW ' ey ol (e Tn)) -

I'(-) denotes the Gamma functlon, wt the natural weight ofthabservation. In this specification the

mean and the variance of ig immediately pand v.j&/w; respectively. Its scewness iS\/ﬂ/_Wt . The
special case of an exponential distribution occurs with v. 3\ith increasing v the modus of will be
strict positive and lies above(yw.-v)/w,. For Austrian motor liability data v was estimated in the region of
135% to 142% of E(Yvsuch that the modal value lies 65% to 58% below the mean (Fels, 1998).

The Likelihood function is

L Wi Vi [ Wt i
D/p OV W

The relevant derivatives can be found in t2lffeage 9).

lt(uty v; y‘) Ln(yt F(Wt /V))



Table 2: ML-Estimation for the Gamma- and Inverse Gaussian Model

C T Game ineecwse

W yt Wt tyt ﬂ |]yt 2
e W gt g 0% -2+ —D
Log-Likelihood VU v oun vy, O 2V F2 gy, 0
Ly,
o -Ln(y: [(W:v)) - Y2 Ln(2m ¥ viw)
Var(yy) Vel w Ve w
Auxiliary termsg G = W . [Vi /5 -1]Iv
given E(Y) = ¥ Do=W . [y /¥ -1 De=we. (v - Y
a‘ét/aut W Yebr - DYl (VYP)
A Ytz ~a /yt
0L /gy G W L Ve W@ 1
v Ve @”% i @"P( % 2w ve 2y
azﬂlt /autz ﬂ t yt (2 pt = VVt/yt)
A% Q-% % v ye
022 /311, Wi (Ye$i) Y2 (v )2
Ht oV _tvz;t __q/(er) t Tt t
2 %/ U QLE % R(wW/v) 1 w2
024 [\ v2© v V2 2Vv2 T w, V8

3.3.2 Inverse Gaussian Distribution

For an Inverse Gaussian distribution with meany, =

L =

has to be maximised. For each v this coincides with the minimal deviance, e.g. the minimum of

(3.4)

Following T. Mack (1997, p. 51) given estimatgs for E(y) the parameter v can be initialised
respectively estimated by=Zu w(1/y;

D= T W

W,
T t
ZtlZV

2 1
%L £ +_
He

X0, .exp(ZP) and variance v.u3/w, the log-likelihood

-5 -Id % Ln2rud viw)

DR t% yﬁ S2 ve Ln(2n y@ viwg)

(i - )2
Vi Wi

1K) I T.




Table 3: Lognormal Distributions with 2 and 3 parameters

Log-Likelihood

yi =~ LNN(Ln@) - % Ln(1+p*.viwy), Ln(1+u"%viw)”*)

| s Zpwanaiesd

'{1/2 zt + Ln(yt /:Ut }2

-Y%Lln2ny? z ]

Ly 22
with z, = Ln[1+v 17wy z, = Ln[1+viw]
Var(y,) YATRIA AV
Auxiliary terms 1 %n(yt 157) v 1 %n(yt I57)
=1 — - . - = =Y+ -
glven E(» = Yt qt /4 +Zt Zt g’ h Wt + VMtS—2 qt /4 +Zt Zt %
0L op, 1 @2Ln(w/s) Yo +Ln(y/9)/z
2 gT *1+(s-2) hq[% St
0L /gy -Yhaglv - q /(v wy)
a-lt/as - Y% Ln(yt) h[ qt
0°4 lop? 1 Ln(y: /99+1 1
) Vi %/2 " Z % ) Vi
Y Ln(y: /5)+1
7 W (53462 b2 [0 12 3] - 4= op e I =
h2 1 2Lnw/5)? _ 1
024 /3,2 2 \2 %‘ T727 23 % 2 (v+w)?
2 Ln(y /37)?
% G- z3 %
FLlos 1L, neza h(hed) - 1/%Ln(yt) h g g Ln(y /) _1%
2Ln)? g h (h-1) 2 : 2
024,] h Ln@/y) s2.h - Ln(y: /34)
Opi0v T Yoy (6h (22 [a-123)]) 2 9 (vrw)
4igpos | hg hln() 22 Ln(w /yt) t(s-2)h | (s2) (1/2 29 h
2a R0 (s2) a(h-1)
0%i/ovos | hln(s) @- (d-h) | %n(yt )2 1 %%
Y 2

3.3.3 Lognormal Distribution
It is wel known, that when the random variable x is distributed lognormal, say X=LnN(L,0y), then

exp(X)=N(u,0yx). This rdation suggests to estimate a Gaussian modd for x;

exp(y;) whenever the risk

burden y; is Lognormal. Although such estimations have often been applied in practical situations, they are
guite misleading. Because in this case the moments of ywould become

(3.5)

E(y) — eu><+ Yaox? \V} ar(y) - e2p><+ OXZ(eOXZ_ l)



Estimating the mean of y by exp E(Log(y)) = exp(,) will underestimate E(y) systematicallye™ - times.

Furthermore this approach will neither allow to specify E(y;) independent of the variance components o,
and w, nor lead to an uniformly in w; decreasing variance. To fullfill the fundamental moment assumptions
A1 and A2 the lognormal distribution has to be specified by

(3.6) yi = LnN(Ln(w) - % Ln(1+w”?wY), Ln(1+w™>w)”*)
Expl H(Ln? + 10n(1+ 7)) /un(ne
S AL CaiT M+
st. Prob(y; =y) = =
y\/ 277Ln(1+ %)
Thislognormal specification, which was developed by Fels (1999 a) yields
(3.7) E(y) = W, Var(y) = v pe i

For given p the variance depends on two parameters, v and s. Although the simultaneous estimation of all
parameters is possible, the estimation becomes more complex and especially with bad initial values quite
unpleasant.

Usually apriori knowledge of the relation between 1, and Var(y,) is available. In this caseit is sufficient to

estimate the modd for fixed s. For example, if a quadratic mean-variance relation similar to the Gamma

moded is considered, e.g. Var(y, = v u@/w;, we can set s=2 and estimate only v pnd his will reduce the
complexity of the estimation and lead to stable estimators even in the case when the basic assumption A2
is violated. The latter problem was discussed by Fels (1999, b).

3.3.4 Further distributions

Maximum-likelihood estimators for general rating models under the assumption of normal and the
modified Poisson distributed data are developed and discussed in W. Fels (1999, a). These results are
summarised in table 1.

It should be noted that the structure of general rating models can also be applied for discrete claim
frequency specifications. Fels (1999, a) presented also the estimators for the negative binomial and the
Lagrange-Poisson distribution.



3.4 The ML-estimator

This approach is purely based on Maximum-Likelihood (ML) estimation, a method, that is sufficiently
discussed in literature. We have no new contribution on ML. The remaining chapter serves only to
summarize the most rel evant aspects for the implementation of the estimators.

3.4.1 The Newton-Raphson algorithm
L et us denote the relevant parameter vector of the GRM 2.2) by

0= (Oﬂ’,B’, V), = 060 y Oy, Ol y veey Olixs Bl, Bz, . BkZ , V)’

The dimension of this rowvector is equivalent to the number of repressors (1+k,+k,) and k,, the dimension
of the dispersion parameter v, which isusually scalar. Let us denote the number of parameters by k

The Newton-Raphson algorithm for the ML-estimator requires a sequential updating of the parameters.
Given consistent initial values®,, then estimation might be updating the parameters in the fi step due to

024,
190 96"

0L _ o
(3.8) 60 = 6nt H. 35 ko withH isF' and F= -X

Notice thatH and the Fisher information matfxare of dimensionkk,.

Given VT - consistent initial valued, the Newton-Raphson iteration ensures the existence of an efficient
estimator for regular models (see L. Le Cam, 1990). Unfortunat@hconsistent starting values for

can be estimated by linear regression only under the conditiop=tBafs in general no consistent initial
values for the whole parameter vector can be found, iterations might lead to irrBgggéimators. In the
context of rating models where the Likelihood is defined only #0 this will typically be associated with
observations where X, < 0, s.t. E(y) becomes nonpositive. In this case one might specify other starting
valllues or switch to the Bernd-Hall-Hall-Hausmann algorithm where in (3.8) the idaigixeplaced by -

J with

04, 04,

(3.9 t% 3 -

3.4.2 Estimation for exponential distributions

It is well known that for exponential distributions the derivatives of the Likelihood with respect to the
location parameterg; can be factored a4, /0y, = L' /2 respectivelyo24, /op? = L" /2 where L and

L", are independent of the scale paranaeter

To estimate the concentrated parameter veter (0o , 0 , 02 4 -.vy Okws P1, B2s -, Px) the Newton-
Raphson-algorithm (3.8) can be applied for the lower dimensional system without knowledge of the
dispersion parameter v. Taking L instead/abnly the derivatives (3.1) and (3.2) have to be applied. The



required expression for L', and L"; result immediately from 0.4, /o, andd24,/ou2 reported in table 1 and 2
whenc? and v are set to one for the Gaussian- respectively the Gamma and the Wald-distibution

3.4.3 Inference

Within the ML-framework the basic-criteria for GRMs is the Likelihood sta#i§jc %, .4(0;y;).

For example, the test statistic for the hypothesis that d variables within a k-dimension model have no
effect, results from a comparing the Likelihood of the k -dimension modelZ@gy with that of the
reduced estimatia#(6y.4). If the eliminated variables have no effect, the Likelihood-ratio statistic

(3.10) LR(k, k-d) = 2 £(8) - £(61q) )
will be asymptotically?(d)-distributed.

Another approach for testing the validity of parameter restrictions results from the fact, that the
asymptotic distribution of the ML estimateis unbiased normal with VaéX =Hp. HereH" can either

be the Fisher matri¥ defined in 3.8 oJ (see 3.9). Based on this normal approximation a ¢%0
confidence ellipsoid is given by

(3.11) v2(k;) = (6 ). H.(0 - 6)
wherey?(k,) is thea% fractile of the chi-square distribution witldegrees of freedom.

Taking into account the possibility of misspecified distributional assumptions, Halbert Whi82) (
N N -1 -1
Quasi-ML covariance estimator withd{).(6 - 6)' = [FJ F] /T should be applied

Generalized Linear Models are often judged according to the scaled deviance, which can be interpreted as
LR-Statistic that compares the Likelihood of the current maf@l) with that of a full models(6-),
where thes, is evaluated at, = y; (k,) with v=vi:

(3.12) SO) = A £i(Br) - £060) ) = 2 Zi £i(6r; 1) - 46 Yo)

Information criteria are usually applied to evaluate the parsimonity of a model. The widely applied
Schwarz-Bayes information criteria (Schwarz, 1978) judges a tariff structure wdrdmeters by BIC
=40y - Y2 k In(T). Tariff stuctures with higher BIC statistics should be favoured.



4 MODEL CHARACTERISTICS

4.1 Database

The following analysis are based on Austrian motor liability data. The Austrian Association of Insurance
Companies collects all relevant information on an individual base, accumulates the data according to
several quite general multivariate combinations of risk criteria and returns it to its members on a CD-

ROM.

Table4: Variable List

Average total benefits of an annual liability contract,
Benefits VLTOTL including total payment, direct regulation costs and reserves

W, Nat. Weight JE Yearsinsured

kW  Motor Power kWC8 Ordina indicator of the kilowatt-power
2 =upto 26 kW,
3=upto30 kW, 4 =upto40 kW, 5=upto55kW,
6=upto67 kW, 7=upto89 kW, 8=upto 111 kW,
9 = morethan 111 kW

kWCB82 Variable defined by KWC82
For example: KWC82=25 indicates cars with 40 to 55 kW power

kW67b89 Dummy variable for cars with 67kw to 89 kW power
kW89b111 Dummy variable for cars with 89kw to 111 kW power
kWgtl111l Dummy variable for cars with more than 111 kW power

Age Age of the b24J Dummy indicating young policy holders up to 24years
policy holder  J25b29Dummy indicating policy holders between 25 and 29 yedrs
[ Fem Gender ~ Fem Dummy indicating female policy holders
[YouM  Gender/Age  YouM Dummy for young male policy holders up to 24 years

BM Bonus/Malus BMRaba Applied bonus - malus rating faétwrexample: risks of
bonus class 04 are rated with a 30% discount s.t. BMRABA =0.7.

For 1996 information from about 1.Gllon privately used passenger cars is available. It covers a volume

of 1.2 millions of years insured. Taking into account only data from cars for less than 5 passengers where
the gender and the age of the policy holder is reported there are still left about 1.2 millions contracts that
represent about 900,000 years insured. The adequate dataset that includes all relevant cross-classifications
of the mentioned criteria condensed the primary datél1fib cell$. The relevant variables and tariff

criteria are summarized in table4.

Other risk criteria will not be analyzed within this paper, although it has been shown that some available
variables like the age of the car have a relevant discriminating power (Fels, 1998). It is aksowue|l

1)  The original dataset including also missing values is the file K_6_214.CSV published by the Austrian

Association of Insurance Companies (see VV O, 1998).



that the fit of motor rating modds can be dramatically be increased, when more differenced scales for
young drivers were applied. However, rating young men between 18 and 20 years separately required a
technical extra charge of about 150% for this subgroup. As insurance companies would not accept such
extreme increases, we prefer to rate the youngest risks together with those up to 24 years with a common
average extra charge.

4.2 Insurance Benefits

Let us first analyze criteria that influence the total insurance benefits. Before discussing the final results
two remarks are necessary:

First, it is not necessary to specify seven dummies for the eight kW-classes. As the risk burden increases
amost linear with the motorpower indicator KWCS8, a regression on that variable could explain the
majority of the variance between the power classes. However cars between 40 and 55 kW have almost the
same requirements as cars with 55 to 67 kW and the progression for the strongest cars is degressive. To
map these derivatives form linearity it is sufficient to specify the progression with the five kW-variables
listed in table4, e.g. the counting number kWCS, its square and three dummies for strong cars.

We will estimate the models under the Gamma-distribution assumption. Once it can be shown that the
squared residuals of simple estimations are proportional to E(y,)"® which indicates an almost gamma-like
relation. In comparison several rating specifications with the Lognormal-, the Modified Poisson- and the
Wald-Distribution the Gamma specification yields the highest Likelihood. These estimations will not be
discussed in the following.

Modelsfor insurance benefits

Base Tariff Extra Charge - Lik exkl.

Mod. OXVerictied) 2V fs) Likelihood  t(Fem) S LRS@

M51 kW, Age, Fem -55420.86 -0.55 -55421.00 0.298
M52 kW Age, Fem -55403.41 -2.20 -55405.78 4.745
M53 Age, Fem kW -55402.97 -0.10 -55402.97 0.011
M54 Age kW, Fem -55400.72 -2.14 -55402.97 4.495
M54 kW, Age, Fem -55400.72 -2.14 -55402.97 4.495
M55 Age, YouM kW, Fem -55369.82 0.44 -55369.92 0.190
M55 kW, Age, Fem, Y ouM -55369.82 0.44 -55369.92 0.190
M56 Age, Fem, YouM kW -55369.50 0.90 -55369.92 0.843

Table5 Remarks:

t(Fem) t-statistic for the hypothesis that the coefficient of the

gender dummy Fem is zero. Within these specifications this statistic is

not exact t-distributed. But the critical values-1,6 and -2,3 might still

serve as approximate limits for a 95% respectively 99% significance test.
LRStat : Likelihood Ratio comparing the models with and without Fem.

Under the null hypothesis LRStat is asymptotically y2(1) distributed.

Thus for LRStat <3.8 and <6.6 an overall gender effect can be rejected

at the 95% respectively 99% level of significance.

Let ustakealook at the linear model M51. Taking into account the motor power and the age of the policy
holder, the benefits of women are estimated to be 24 ATS, eg. about 2 & less than these of men. The



Likelihood Ratio test that compares this specification to one without the variable FEM reects gender-
effects very clearly (LRStat=0,3).

On the other hand, the purdy linear modd M51 has a relative poor Likelihood compared with the

following specifications of table 5. Mode M54, where based on the two age groups extra charges for the

car power and the gender are multiplicativly added will perform much better. In this specification women

are about 4,5% better then mep(f3= -0.04037). In models M52 and M54 multiplicative gender effects

are evident at the 95% but not at the 99% level of significance. Nevertheless model M53 demonstrates that
gender has no effect if a base tariff beside an age classification.

However the data could still be fitted better when a specific gender-discrimination for younger risks were
specified. Adding the variable YouM to Model M54 yields Model M55 with an 30.1 increase of the
Likelihood. They?(1) - distributed LR-statistic of HO: YouM=0 equals 61,8 and is highly significant. On
the other hand testing the influence of FEM within Model M55 and M56 suggests that a gender
discrimination for people older than 24 is not justified. With other words: The higher benefits of men result
from gender effects of younger policy holders. Men and women older than 24 years have a similar loss-
pattern.

This examples illustrate, that inference about the influence of a risk criterion depends as well on other
criteria mentioned as on the suggested model structure. Inference from a purely linear or purely
multiplicative model can be misleading if a GRM will be applied in practice.

Notice that Model M54 and M55 are reported in two observational equivalent representations. Within a
purely multiplicative structure a dichotomised criterion can also be specified as base-tariff criteria without
changing the net rates of any tariff cell. However, moving a second criterion to the base tariff will in
general change the model specification. For exaniileaM M56 are not equivalent.

4.3 Tariff Specification

The typical Austrian car liability tariff falls under the following structure:

(4.1) Premium =do+ Ziz3 o3 I(KWC8, =i)] .exp{B. Fem + ... }. BMRaba

The basic rating level depends only on the power of the car. Usually a about 10% discounts for women is
reckoned up, e.gB; = -0.105. Further criteria, for example a rough classification according to the
occupation, are always rated by additional discounts.

Although since 1994 insurance companies are free to develop individual bonus-malus sybtamssst

all companies apply the traditional ordered scheme from 1977 with small variations. Even when new
tariffs are developed the bonus-malus scale is apriori fixed. This implies that in the estimation of the rating
scheme

(4.2) VLTOTL, = [0to+ Zics 043 [(KWCS, =i)] .exp{B. FEM+ ...+ In(BMRaba)}

no free parameter for In(BMRaba) can be specified, respectively the parameter of In(BMRaba) is
intrinsically aliased to be one.

Apart from this last exogenous term the tariff estimation will be similar to those of the loss-models
discussed in chapter4.2. Nevertheless the results are quiet different:



The rows in table 6 are ordered according to the Likdihood of the different specifications. Modd M64
follows the typical structure of the Austrian rating schemes. It performs much better than a purely linear
specification but isinferior to the multiplicative specification N66.

9-variables Gamma-Rating-M odels (without gender-effect for young risks)
Base Tariff Extra Charge - Lik exkl.

Mod. X Verictied) 2V SS) Likelihood  t(Fem) S LRS@
M61 kW, Fem, Age -54357.33 -4.72 -54368.21 21.762
M62 kW, Age Fem -54352.53 -5.64| -54368.21  31.362
M63 Fem, Age kw -54345.73 -3.02 -54354.60 17.741
M64 kwW Fem, Age -54344.08 -5.43| -54358.61 29.068
M65 kW, Fem Age -54342.23 -5.80, -54358.61 32.768
M66 Fem kW, Age -54340.35
M66 Age kW, Fem -54340.35 -5.37| -54354.60 28.501
M66 kW, Fem, Age -54340.35

Table 6

Notice that in all these specifications a gender discrimination can be accepted at the 99% leve of
significance.

Especially young male drivers are worse risks than young women. Adding an interaction term for men
younger than 24 years to the original specifications reported in table 6 will increase the Likeihood in all
cases significantly (table 7). The gender discrimination for young risks is not only statistical but also
economical relevant: According to modd M77 men up to 24 years should be rated with an 89% extra
charge compared to men older than 30 years. Young women require only an 28% extra charge while
women older than 30 years could be rated with an 4.7% lady bonus compared to similar men.

10-Variables Gamma-Rating M odels (with gender-effect for young risks)
Base Tariff Extra Charge - Lik exkl.
Mod. OXVericties) 2V 35) Likelihood  t(Fem) S LRS@
M71 kW, Age, YouMJ Fem -54317.93 -2.67 -54321.46 7.069
M72 kW, Fem, Age, YouM -54317.50 -2.84 -54321.46 7.929
M73 kW, Age Fem, Y ouM -54316.96 -2.70 -54320.57 7.228
M74 kwW Fem, Age, YouM -54315.79 -2.79 -54319.65 7.727
M75 kW, Fem Age, YouM -54314.93 -3.10| -54319.65 9.447
M76 Fem, Age, YouM kw -54312.26 -2.23 -54315.63 6.738
M77 Age, YouM kW, Fem -54311.94
M77 Fem, Y ouM kW, Age -54311.94
M77 Age kW, Fem, Y ouM -54311.94
M77 kW, Fem, Age, YouM -54311.94 -2.73 -54315.63 7.377
Table7

Even after young men and women are rated at different levels, a gender discrimination of older risks
remains significant for all rating models. Since it had already been shown in chapter 4.2 that older men and
women create similar costs this result seems curious. The solution of the puzzle lies in the construction of
the bonus-system. It could be demonstrated by an Lagrange-Poisson GRM-estimation for claim numbers
that women and men older than 24 years have a similar claim frequency patterns. But women receive less



bonus due to shorter observation periods in the system. Thus a lady bonus of about 4,7% is justified to
compensate the bonus favor that men receive due to longer continuous driving - and insurance - periods.
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