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Abstract:

In general insurance tariffs consist of two components: First risks are classified according to a vector of
basic criteria, say Xt, which - for example in automobile insurance - depend on the type or the power of
the vehicles. Given the basic premiums, Xta, further extra charges and discounts are rated depending on
usually more individual characteristics of the risk (say Zt). All relevant tariffs can be represented by a
Generalized Rating Model that determine the net expected premium by

E(yt) = Xta.exp{Ztb}

While previous work focused either the estimation of linear (Xta) or multiplicative models (exp{Ztb}),
we will estimate the parameters of the two linear kernel functions simultaneous by Maximum-Likelihood
methods. This allows a valid selection and testing of rating criteria within the market-relevant tariff
structure without misleading evidence due to divergent modelstructures. The efficiency of the suggested
tariff can immediately be judged by ML-statistics and information criteria.

We illustrate the model and the estimation with examples from the Austrian motor liability market.
Restricted net-tariff estimations provide premium structures which are consistent with exogenous fixed
components like a Bonus-Malus scale or traditionally applied discounts.

Keywords: Insurance rating; tariff structures; model specification; Maximum Likelihood; automobile

insurance



 1 INTRODUCTION

The most noble goal of general insurance mathematics is the statistical determination of net risks

premiums, say  ÿt , (t=1,…,T), due to observed benefits yt and several criteria, Xt and Zt that characterise

that risk.

In general insurance typical tariffs consist of two parts: The base tariff consists of a sequence of risk

criteria that defines the structure of the portfolio. These characteristics usually correspond to the structure

of traditional risk statistics where groups are formed according to main criteria like the line of business in

industrial fire insurance or the motor power in motor liability. This structure might be represented by a

linear combination of dummy variables, say Xta. Beside this the premiums will depend on a system of

additional charges and discounts which usually reflect more individual criteria like the age or gender in

motor insurance. In general several risk groups of the basic tariff are rated by common discount factors.

As this structure is typical for insurance tariffs we will denote such a model as generalized rating model

(GRM). Up to now we have not found a tariff structure which can not be represented by a GRM. However

- as it will be discussed in chapter 2, GRMs can in general neither be transformed to a purely linear -,

multiplicative - or to a GLM- model. Thus any inference derived from one of those models is misleading

when a rating model should be specified.

Technical aspects of estimating GRMs are discussed in chapter 3. We suggest to apply ML-estimation.

Once the Likelihood is explicitly expressed by the expected net premium and its variance the statistical

aspects are trivial. However, to derive such a specification of the Likelihood might be challenging. As an

example, chapter 3.3.3 of this paper demonstrates the solution for the Lognormal- Likelihood.

In chapter 4 we present estimations based on Austrian motor liability data. The examples demonstrate that

the structure of the model influences the inference about relevant risk criteria. A reliable selection of

variables is only possible within the relevant rating structure model.

 2 GENERALIZED RATING MODELS

 2.1 The structure of generalized rating models (GRM)

Let us denote the net-risk premium of the tth cell by ÿt. The premium function will depend on known

exogenous rating factors, say  Xt,i and Zt,j, i=0, …, kX, j=1, …, kZ. In general the market relevant tariff

structure can be expressed by

(2.1) ÿt = (a0 + a1 Xt,1 + a2 Xt,2  + … + akx Xt,kx) .exp{ b1 Zt,1 +  b2 Zt,2 +  … + bkz Zt,kz}

say Net-Premiumt =     [ baseline tariff for subgroup t ]   * {net-excess and reduction factors}.

Applying vector notation and defining the kx+1-dimensional vector Xt = [1, Xt,1, Xt,2, …, Xt,kx] and the kz-

dimensional Zt -vector, which holds the discount and excess criteria Zt,j, the rating model for risk group t is

equivalent to

(2.2) ÿt = Xta . exp{ Ztb }



Usually the covariates are Zt,i  Dummy variables. As exp(ßi Zi) = exp(ßi)
Zi the premiums of risks indicated

by Zi = 1 will be exp(ßi)-times higher than those of risks with Zi = 0. But Z might also include quantitative

variables like in example B.

Examples:

(A) The Austrian industrial fire insurance tariff is structured according to tariff books which include on

average 30 risk groups. Given the line of business further additive premium factors are intended for

security holdings and electronic equipment. This baseline tariff might be expressed by Xt.a where X

indicates the specific sum insured and a is a vector of premium factors. For all branches of industry the

tariffs apply common increases for the construction of building, and the roofing as well as reductions for

fire-alarm and -fighting systems. Obviously these tariff components can be expressed by ½i exp(ßi Zt,i).

(B) Usually the discount factors applied for a higher fixed deductible, say mi,t, are common for several

risk-groups and thus independent of the basic rates ÿt| mi,t=0. Thus the tariff function will be

(2.3) ÿi,t = Xta.exp{ Ztb + k.mi,t}.

This is obviously a generalized rating model. However this rating function will not represent the true data

generating process because even under very simple distributional assumptions the expected burden will be

E(yi,t)= Xta.exp{ Ztb + kt.mi,t} where kt depends on the risk-distribution of class t. To illustrate this,

suppose that the claim size distribution is locally exponential declining a the reference-value m0. Then

E(yi,t) = E(y0,t).exp{- p+
0,t/E(y0,t) (mi,t-m0) } where E(y0,t) is the expected burden of a contract with

deductible m0 and p+0,t the claimfrequency for a type t - risk with deductible m0 (W. Fels, 1997).  If models

for E(y0,t| Xt, Zt) and E(p+0,t| Xt, Zt) were specified, the estimated kt parameters will follow an erratic

pattern, such that these parameters have to be smoothed in an second estimation step. Whenever for some

groups a common percentage reduction for higher deductibles is required, the average of several estimated

kt has to be calculated. But the uncontrolled accumulation of estimation- and smoothing errors leads to

inefficient estimators while estimating the required rating structure 2.3 directly by quasi-ML-methods

guarantees efficiency even if 2.3 is only an approximation of the true data generating process.

 2.2 Related rating structures and Generalized Linear Models

With the pioneer-work of Bailey and Simon (1960) the actuarian literature mentioned the problem of

estimating pure multiplicative models:

(2.4) ÿt = a0.exp{ Ztb }

In fact, the method was developed to fit a tariff structure for two-dimensional contingence tables, where Zt

classified the data according to two categorial variables. The oncomming development of this model

focused alternative loss-functions: While Jan Jung's Method of Marginal Totals (Jung J., 1968) is

appropriate for the Modified-Poisson distributed data (Mack, 1997, p. 167), D. T. Sant (1980) suggested

a Least-Square approach which fits to the normal-distribution.

For a higher dimensional classification, the additive model

(2.5) ÿt = Xta



seemed more appropriate. Applications of the linear model can be found in Johnson and Hay (1971),

F.A.Ruygt (1982), J. Lemaire (1985, Part II) and others.

More recent analyses, like Stroinski and Currie (1989) apply Generalized Linear Models (GLiM) which

are associated with the work of Nelder and Wedderburn (1972) respectively McCullarg and Nelder

(1989). These models generalise the distributional assumption of the linear model to allow efficient

estimation for distributions of the exponential family. Although the class of generalized rating model (2.2)

overlaps with models of the GLiM-class, in order to avoid confusion, generalized rating models should not

be denoted as GLiMs. In GLiMs only one linear kernel Xta is specified, which is related to the expected

burden by means of the (inverse) link-function h():

 (2.6) ÿt = h(Xta)

Due to h() GLiMs will estimate reasonable rating stuctures only in very special cases. Purely linear (2.5)

and the purely multiplicative tariffs (2.4) can be specified when h(x) = x respectively h(x)=exp(x). These

cases correspond to the canonical link functions of Normal- and Poisson-models. In all other cases the

nonlinear inverse link function h(x) will lead to dubious tariff models.

Among others A. E. Renshaw (1994) illustrated this for a motor insurance portfolio: Assuming Gamma

distributed claim sizes yc,t implies h(Xc,ta) = -1/Xc,ta. For a given claim frequency the net premiums of all

risks caracterised by a dummy, say Xc,2,  should be -100.a2/E(yc,t|Xc,2,t=1)% larger than the premiums of

risks with Xc,2=0. Thus the optimal discount for one risk criteria depends on all other risk criteria (Xc,1,t,

Xc,3,t, … ).  Lady- or regional discounts will vary for different cars. As E(yc,k-yc,t) = 1/Xc,ta -1/Xc,ka, the

same holds for absolute premium-differences. Up to now we have not seen any tariff following that

structure.

Another difference between GRM and purely linear or multiplicative models is the treatment of

multicolinearity. If V1 and V2 denote two highly correlated or dependent variables an estimation of the

models ÿ = a0+a1 V1+a2 V2 and ÿ = a0.exp(a1 V1+a2 V2) will collapse due to colinearity while the models

ÿ = (a0+a1 V1).exp(a2 V2) and (a0+a2 V2).exp(a1 V1) can still be correctly estimated.

 2.3 What is estimated

Recall that the most noble goal of rating models is the statistical estimation of the net premium ÿ.

Nevertheless a broad line of actuarial literature focuses the estimation of frequency (ft) - and claim severity

(st) - models. According to the collective model the expected premiums are calculated by

(2.7) Eind(yt) = f̂ t . ìt

We might view this as a classical structural model of the risk process. However, even if  fˆt and ìt were

estimated efficiently, �t will not be a satisfying estimator, neither statistically nor economically: On one

hand, correlations between the frequencies and the size distribution, which induce a bias of order

2 Cov(ft,st) are strictly ignored. Furthermore fˆt and ìt might be based on variables that are relevant for the

submodels but need not influence yt significantly. Consider variables indicating urban regions, with higher

claim frequencies and lower average claims. The costs of motor liability insurance might still be similar to

non-urban regions. However testing the influence of such a dummy within the final  �t - specification will

usually be omitted.



But the major drawback of the structural approach is, that the initial problem, the estimation of a workable

tariff-function ït is not even touched yet. Given Eind(yt) a tariff-function that could be applied in practical

situations will in general only be found after further approximations. In the case of purely linear f̂ t - and ìt

- specifications Eind(yt) will become a fairly improper polynomial risk model. A multiplicative tariff

structure requires the estimation of purely multiplicative submodels, but this is the only way to gain a

rating model from the individual model. And obviously, this tariff structure is not always the required one.

 2.4 Observational equivalent representations

It might be argued, that multiplicative models are wide enough to cover almost all relevant tariff structures

and that additve components could after a proper transformation of variables be as well be estimated

within a multiplicative framework. The first argument is exhausted by the empirical paractice, where

almost everywhere additive baseline-tariffs are applied. The second argument will be relativated by the

following considerations:

Suppose that two GRMs which are based on the same set of criteria lead to the same premium level for all

risk groups although they are obviously differently structured. We will denote such tariffs as observational

equivalent representations. For example, if criteria of the basic-tariff - let us denote them by Dt - were

taken into account as discount factor and the former and the latter tariff specified by the left and the right

side of the equation

 (2.8) (Xta  + Dtd).exp{Ztb} =  X ta. exp{Ztb + Dtd}

lead to the same premium level for all t, then the two tariffs are observational equivalent.

In the following we will assume that the parameters of ÿt= (Xta +Dtd).exp{Ztb} can be identified, such

that there exists no other a, d and b leading to the same premium distribution. Thus we will not consider

cases where the columns of X and D respectively those of Z are linear dependent.

Theorem: Assume that the criteria Xt, Dt and Zt are linear independent.

Given an identified rating model a displacement of criteria between the basic tariff

and the multiplicative components leads to an observational equivalent representation

if and only if the manipulation can be traced back to separate shifts of single variables

Dt following the form (2.8) where

(a) the basic tariff Xta +Dtd defines at most kX+2 different premia or

(b) Dt is a scalar dummy and either Dt.Xta or (1-Dt). Xta is constant for all t.

Proof:

Notice, that the kx+1 - dimensional vector Xt  = (1, Xt,1, …, Xt,kx) includes at least a constant term.

Given a and d, the equation system Xta+Dtd= Xta.exp{Dtd} can be explicitly solved in the kx+2

parameters a and d if it has to be fulfilled for at most kx+2 different riskgroups. This case, corresponding

to part (a) of the theorem. An analytical solution for (2.8) will also be aviable if the complete system

defines at most kx+2+kz different risk premia. However, for linear independet Zt this requires, that

condition (a) is fullfilled.

Let us turn to part (b):



For Dt=0 and arbitrary Xt  (2.8) implies a = a and b = b. Now suppose Dt=1. In this case the reduced

system (Xta+ d) = Xta. exp{d} can only be solved for d if all Xt are constant, say Xt= Xc whenever Dt=1.

In that case the solution is:

If  Dt=1 Æ Xt=Xc then a =a, b = b  and d=Xca.(exp{d}-1)  respectively  d =log 



Xca + d

 Xca
 

If Dt took another value beside 0 and 1 the parameters can no longer be identified. Thus observational

equivalent transformations have to be based on the displacement of dummy variables.

On the other hand, any structure based on a dummy Dt can as well be represented by an indicator of the

complementary group, say by D
¬
t =1-Dt. By using the notation ar =(a1, a2, …, akx)' the l.h.s. of   (2.8) can

be expressed by (a0+d+Xr,tar -d.D
¬
t ).exp{Ztb}. Similar to the arguments above, one will find the solution

for cases where Xt is constant whenever D
¬
t =1, e.g. Dt=0:

If  Dt=0 Æ Xt=Xc then b = b
and d=(Xca) [exp(d)-1], a0 = a0 exp(d) + Xca.[1-exp(d)], ar =a r exp(d),

respectively d=log





1+
d

Xca
 , a0 = 

a0 +d
 1+d/(Xca)

 ,  ar =ar exp(-d) N

Remarks:

• For practical purposes case (a) is almost irrelevant. It might occure when very few of the possible

combinations of X and D - criteria are relevant for the tariff. When Xt includes only the constant term,

e.g. kX =0, case (a) correspondents to basic tariffs a0 +Dtd which defines at most two risk groups, e.g.

Dt denotes a dummy. Thus given a pure multiplicative model any single dummy can be transformed to

become a baseline tariff criterion.

• Case (b) is relevant because rating factors are often cathegorial and ordinal criteria, which are

expressed by dummy-variables.

• Due to (b) it is obviously that given a pure multiplicative model any single cathegorial risk criteria can

be transformed to become a baseline tariff criterion.

In practice it can be easily verified whether two estimations represent equivalent models. As equivalent

representations generate the same expected values ÿt  for all t, all overall-model criteria of the two

estimations will coincide. Thus identical Likelihood-statistics indicate the existence of  observational

equivalent representations with high probability.



 3 ESTIMATION

 3.1 Distributional assumptions

To develop efficient estimators we introduce distributional assumptions for the average benefit yt.

Suppose that individual - possibly aggregated - data (yt, wt; Xt, Zt) are observed. Here wt stands for the

natural weight. Usually yt will be the average risk burden of wt independent observations that depend on

the criteria Xt  and Zt.

We will require that yt| Xt, Zt is independently distributed with mean mt and variance proportional to 1/wt:

A1: E(yt| Xt, Zt) =  mt

A2: Var(yt| Xt, Zt) � 1/wt

Notice that these assumptions have statistical and economical implications: Obviously all risks belonging

to one cell of a tariff table that is characterized by Xt and Zt should be be rated with a common premia ït.

Of course even within the same cell  E(yt) might vary according to further factors not included in the

information set {Xt, Zt}. Nevertheless the insurance will rate the risks according to the conditional

expected value mt = E(yt| Xt, Zt) although it is not the true model and can be „only“ interpreted as quasi-

ML-approach.

 3.2 A unified framework for ML-estimators

ML-estimators for GRMs can be easily constructed, when the Likelihood /t  is explicitly parameterizised

in the expected values mt and the dispersion parameter v. When ∂/t /∂mt is known, the partial derivatives

with respect to the regression parameters at ït = Xt a. exp{Ztb} can be calculated by the following

formulars:

(3.1)
∂/t

 ∂ai
 = Xt,i .exp{Ztb}.

∂/t

 ∂ mt
 i=0, …, kX

∂/t

 ∂ßj
 = Zt,j .ït.

∂/t

 ∂ mt
 j=1, …, kZ

(3.2)
∂²/t

 ∂ai ∂aj
 = Xt,i .Xt,j .exp(Zt b)² 

∂²/t

 ∂ mt²
 

∂²/t

 ∂ai ∂ßj
 = Xt,i .Zt,j .exp(Zt b) . 



∂/t

 ∂ mt
 + ït  

∂²/t

 ∂ mt²
  ,

∂²/t

 ∂ßi ∂ßj
 = Zt,i .Zt,j .ït. 



∂/t

 ∂ mt
 + ït. 

∂²/t

 ∂ mt²
  

(3.3)
∂²/t

 ∂ai ∂v
 = Xt,i .exp{Ztb} 

∂²/t

 ∂mt ∂v
 ,

∂²/t

 ∂ßj ∂v
 = Zt,j .ït. 

∂²/t

 ∂mt ∂v
 

For the most relevant distribution applied in insurance models, the partial derivatives are summarized in

table 1 to 3.



 3.3 Examples

 3.3.1 Gamma Distribution

Following Mack (1997, p. 71) a proper volume depending parametrisation of the Gamma distribution is

f(yt) = 



wt yt

v µt
  

wt/v
 . exp



-

wt yt

v µt 
   / ( )yt G(wt /v)  .

G(·) denotes the Gamma function, wt the natural weight of the tth observation. In this specification the

mean and the variance of yt is immediately  µt and v.µt²/wt respectively. Its scewness is 2.v/wt . The

special case of an exponential distribution occurs with v = wt. With increasing v the modus of yt will be

strict positive and lies above µt(wt-v)/wt. For Austrian motor liability data v was estimated in the region of

135% to 142% of E(wt) such that the modal value lies 65% to 58% below the mean (Fels, 1998).

The Likelihood function is

/t(µt, v; y
t
) =

wt

v   Ln



wt yt

v µt
  -

wt yt 

v µt 
 -Ln( )yt G(wt /v)  

The relevant derivatives can be found in table 2 (page 9).

Table 1 : ML-Estimation for the Normal- and the Modified Poisson Model

Normaldistibution Modified  Poisson

Log-Likelihood

 /t( ;yt)

-  
w  (y -  ) ²t t

2

µ
σ

t

2

- ½ Ln( )2 p s² / wt  

wt yt

v  .Ln  
w

v
t tµ



  -  

w

v
t tµ

 -

Ln( )yt.G(wt yt /v)  

Var(yt) s²/wt   = v / wt v µt /wt

Auxiliary terms

given E(yt) = ït

't = wt . (yt - ït)² zt = wt.ït / v

qt = wt . (yt -ït)/ v

∂/t /∂µt wt  (yt - ït) / v
wt 

yt-ït

 v ït
 = qt /ït

∂/t /∂v  (�'t/v -1). 
1
2v 

wt yt Ln(yt/ït)
v²   -

qt

v  - LD(wtyt/v) /v

∂²/t /∂µt² -
wt

 v -
wt yt

v ït²
 

∂²/t /∂µt ∂v -
wt (yt - ït)

 v²  
-qt /( v ït)

∂²/t /∂v²
 [½ - 't /v]. 

1
v² {¼+qt+

wt yt

v  ln



ït

yt
 }. 

2
v² + 

R(wt yt/v)
v²  

Remarks: Y denotes the Digamma-Function , LD(x) ¢ x (Ln(x)-Y(x)),

R(x) ¢- ½ + x +2 x Ln(x) - 2 x Y(x) - x² Y'(x).



 3.3.2 Inverse Gaussian Distribution

For an Inverse Gaussian distribution with mean mt = Xta .exp(Ztb) and variance v.mt³/wt the log-likelihood

/ =  - St=
T
1 

wt

 2v 



yt

 mt² 
  - 

2
 mt

  + 
1

 yt 
    - St=

T
1   ½ Ln( )2p mt³ v/wt  

=  - St=
T
1  

wt  yt

 2v  



1

mt
  - 

1
yt

 ²  - St=
T
1   ½ Ln( )2p yt³ v/wt  

has to be maximised. For each v this coincides with the minimal deviance, e.g. the minimum of

(3.4) ' = St wt  
(yt - ït)²
 ït² yt

  

Following T. Mack (1997, p. 51) given estimates ït  for E(yt) the parameter v can be initialised

respectively estimated by   ^v = St 1  wt(1/yt  -1/ït) / T.

Table 2: ML-Estimation for the Gamma- and Inverse Gaussian Model

Gamma Inverse Gaussian

Log-Likelihood

 /t( ;yt)

-  
w  y  

v 
t t

tµ  +
wt

v   Ln  
w y

v
t t

tµ








-Ln( )yt G(wt /v)  

-
wt

 2v  
y

y
t

t t tµ µ2

2 1
− +









- ½ Ln( )2p yt³ v/wt  

Var(yt) v mt² / wt v mt³ / wt

Auxiliary terms

given E(yt) = ït

qt = wt . [yt /ït -1]/v

 't = wt . [yt /ït -1]² 't = wt . (yt 
-1 - ït 

-1)

∂/t /∂µt wt

v  .
yt-ït

ït²
  =qt /ït

-�'t yt  / (v ït²)

∂/t /∂v qt

v -
wt

v² 



Ln



wt yt

v ït
  -Y(

wt

v  )  
yt 't²

2 wt v²  - 
1
2v 

∂²/t /∂µt² wt

v ït²
 .



1-2

yt

 ït 
  

yt  (2 't - wt/ït)
v  ït³

 

∂²/t /∂µt ∂v -
wt ( yt-ït)

v² ït²
  = - qt  /(ït v)

 yt 't  / (v ït)²

∂²/t /∂v²
2
v² .



¼ +

wt

v  Ln



yt

 ït
  -qt   + 

R(wt/v)
v²  

1
2 v²  - 

yt 't²
wt  v³ 



 3.3.3 Lognormal Distribution

It is well known, that when the random variable x is distributed lognormal, say x£LnN(mx,sx), then

exp(x)£N(mx,sx). This relation suggests to estimate a Gaussian model for xt ¢ exp(yt) whenever the risk

burden yt is Lognormal. Although such estimations have often been applied in practical situations, they are

quite misleading. Because in this case the moments of yt would become

(3.5) E(y) = emx+ ½sx² Var(y) = e2mx+ sx²(esx²-1)

Table 3: Lognormal Distributions with 2 and 3 parameters

yt £ LnN( Ln(mt) - ½ Ln(1+ ms-2.v/wt),  Ln(1+ms-2.v/wt)
 ½   )

3-parametric case 2-parametric (s=2)

Log-Likelihood

 /t( ;yt)
 

- {½ zt +  Ln(y / }² 

2 z
t t

t

µ
   - ½Ln[2 p yt² zt ]

with zt = Ln[1+v ms-2/wt] zt = Ln[1+v/wt]

Var(yt) v µt
s /wt v µt² /wt

Auxiliary terms

given E(yt) = ït
qt = ¼ + 

1
zt

  - 



Ln(yt /ït)

zt
  

²
;    ht = 

v mt
s-2 

wt  + v mt
s-2 qt =¼ +

1
zt

  -



Ln(yt /ït)

zt
  

∂/t /∂µt 1
2 ït

   



2 Ln(yt /ït)

zt
  +1 -(s-2) ht qt  

½ +Ln(yt /ït)/zt

 ït
 

∂/t /∂v - ½ ht qt  / v - ½ qt  /(v+ wt)

∂/t /∂s - ½ Ln(ït) ht qt

∂²/t /∂µt² -
1

 ït²
   



 ½ +

Ln(yt /ït)+1
zt

  

+ 
s-2

2 ït²
  ht



-qt (s-3)+(s-2) ht  

2+zt

zt
  [qt -1/(2 zt)] - 4

Ln(yt/ït)
zt²

  

-
1

 ït²
 





½ +

Ln(yt /ït)+1
zt

  

∂²/t /∂v²
 
ht²

2 v²   



qt + 

1
zt²

 -
2 Ln(yt /ït)²

zt³
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Estimating the mean of yt by exp E(Log(y)) = exp(mx)  will underestimate E(y) systematically e½sx² - times.

Furthermore this approach will neither allow to specify E(yt) independent of the variance components  sx

and wt nor lead to an uniformly in wt decreasing variance. To fullfill the fundamental moment assumptions

A1 and A2 the lognormal distribution has to be specified by

(3.6) yt £ LnN(Ln(mt) - ½ Ln(1+vms-2 wtØ), Ln(1+vms-2 wtØ)
½ )
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This lognormal specification, which was developed by Fels (1999 a) yields

(3.7) E(yt) = mt, Var(yt) = v mt
s /wt

For given m the variance depends on two parameters, v and s. Although the simultaneous estimation of all

parameters is possible, the estimation becomes more complex and especially with bad initial values quite

unpleasant.

Usually apriori knowledge of the relation between mt and Var(yt) is available. In this case it is sufficient to

estimate the model for fixed s. For example, if a quadratic mean-variance relation similar to the Gamma

model is considered, e.g. Var(yt) = v mt²/wt, we can set s=2 and estimate only v and mt. This will reduce the

complexity of the estimation and lead to stable estimators even in the case when the basic assumption A2

is violated. The latter problem was discussed by Fels (1999, b).

 3.3.4 Further distributions

Maximum-likelihood estimators for general rating models under the assumption of normal and the

modified Poisson distributed data are developed and discussed in W. Fels (1999, a). These results are

summarised in table 1.

It should be noted that the structure of general rating models can also be applied for discrete claim

frequency specifications. Fels (1999, a) presented also the estimators for the negative binomial and the

Lagrange-Poisson distribution.



 3.4 The ML-estimator

This approach is purely based on Maximum-Likelihood (ML) estimation, a method, that is sufficiently

discussed in literature. We have no new contribution on ML. The remaining chapter serves only to

summarize the most relevant aspects for the implementation of the estimators.

 3.4.1 The Newton-Raphson algorithm

Let us denote the relevant parameter vector of the GRM (2.2) by

q ¢ (a’, b’, v)’ = (a0 , a1 , a2 , ..., akx, b1, b2, ..., bkz , v)’

The dimension of this rowvector is equivalent to the number of repressors (1+kx+kz) and kv, the dimension

of the dispersion parameter v, which is usually scalar. Let us denote the number of parameters by kq.

The Newton-Raphson algorithm for the ML-estimator requires a sequential updating of the parameters.

Given consistent initial values  q0, then estimation might be updating the parameters in the nth step due to

(3.8) qn = qn-1 + H . 
∂/
 ∂q |qn-1  with H is FØ  and  F¢  -St

∂²/t

 ∂q ∂q´ .

Notice that H and the Fisher information matrix F are of dimension kq�kq.

Given  ¾T - consistent initial values q0 the Newton-Raphson iteration ensures the existence of an efficient

estimator for regular models (see L. Le Cam, 1990). Unfortunately  ¾T-consistent starting values for a

can  be estimated by linear regression only under the condition that b=0. As in general no consistent initial

values for the whole parameter vector can be found, iterations might lead to irregular  F-estimators. In the

context of rating models where the Likelihood is defined only for ÿt�0 this will typically be associated with

observations where Xt â � 0, s.t. E(yt) becomes nonpositive. In this case one might specify other starting

values or switch to the Bernd-Hall-Hall-Hausmann algorithm where in  (3.8) the matrix H is replaced by -

J
-1
 with

(3.9)  J = St 
∂/t

∂q  ’ 
∂/t

∂q  .

 3.4.2 Estimation for exponential distributions

It is well known that for exponential distributions the derivatives of the Likelihood with respect to the

location parameters mt  can be factored in ∂/t /∂µt = L't /' respectively ∂²/t /∂µt² = L"t /' where L't and

L"t are independent of the scale parameter '.

To estimate the concentrated parameter vector qc = (a0 , a1 , a2 , ..., akx, b1, b2, ..., bkz) the Newton-

Raphson-algorithm (3.8) can be applied for the lower dimensional system without knowledge of the

dispersion parameter v. Taking L instead of /�only the derivatives (3.1) and  (3.2) have to be applied. The



required expression for L’t and L"t  result immediately from ∂/t /∂µt and ∂²/t/∂µt² reported in table 1 and 2

when s² and v are set to one for the Gaussian- respectively the Gamma and the Wald-distibution.

 3.4.3 Inference

Within the ML-framework the basic-criteria for GRMs is the Likelihood statistic /(q) = St /t(q;yt).

For example, the test statistic for the hypothesis that d variables within a k-dimension model have no

effect, results from a comparing the Likelihood of the k -dimension model, say /(qk), with that of the

reduced estimation /(qk-d). If the eliminated variables have no effect, the Likelihood-ratio statistic

(3.10) LR(k, k-d) = 2( /(qk) - /(qk-d) )

will be asymptotically c²(d)-distributed.

Another approach for testing the validity of parameter restrictions results from the fact, that the

asymptotic distribution of the ML estimate 
^
q  is unbiased normal with  Var( 

^
q) = H| 

^
q.  Here HØ can either

be the Fisher matrix F defined in 3.8 or J (see 3.9). Based on this normal approximation a 100 a%

confidence ellipsoid is given by

(3.11) c²(kq) � ( 
^
q -q). H.(q -  

^
q)'   

where c²(kq) is the a% fractile of the chi-square distribution with kq degrees of freedom.

Taking into account the possibility of misspecified distributional assumptions, Halbert White's (1982)

Quasi-ML covariance estimator with E( 
^
q -q).(q -  

^
q)' =  [F J

-1 
F]

-1

 /T should be applied.

Generalized Linear Models are often judged according to the scaled deviance, which can be interpreted as

LR-Statistic that compares the Likelihood of the current model /(qk) with that of a full model /f(qT),

where the /f,t is evaluated at ït = yt  (kq) with v= 
^
vk:

(3.12) S(qk) = 2( / f(qT) -�/(qk) ) = 2  St /f,t(qT; ït) -�/t(qk; yt)

Information criteria are usually applied to evaluate the parsimonity of a model. The widely applied

Schwarz-Bayes information criteria (Schwarz, 1978) judges a tariff structure with kq-parameters by BIC

=/(qk) - ½ kq ln(T). Tariff stuctures with higher BIC statistics should be favoured.



 4 MODEL CHARACTERISTICS

 4.1 Database

The following analysis are based on Austrian motor liability data. The Austrian Association of Insurance

Companies collects all relevant information on an individual base, accumulates the data according to

several quite general multivariate combinations of risk criteria and returns it to its members on a CD-

ROM.

Table 4: Variable List

Code Criteria Variable Description

Yt

Benefits VLTOTL
Average total benefits of an annual liability contract,
including total payment, direct regulation costs and reserves

wt Nat. Weight JE Years insured

kW Motor Power kWC8 Ordinal indicator of the kilowatt-power

 2 = up to 26 kW,
 3 = up to 30 kW, 4 = up to 40 kW,  5= up to 55 kW,
 6 = up to 67 kW, 7 = up to 89 kW,  8 = up to 111 kW,
 9 = more than 111 kW

kWC82 Variable defined by KWC8²
For example: KWC82=25 indicates cars with 40 to 55 kW power

kW67b89
kW89b111

kWgt111

Dummy variable for cars with 67kw to  89 kW power
Dummy variable for cars with 89kw to 111 kW power
Dummy variable for cars with more than 111  kW power

Age Age of the
policy holder

b24J
J25b29

Dummy indicating young policy holders up to 24years
Dummy indicating policy holders between 25 and 29 years

Fem Gender Fem Dummy indicating female policy holders

YouM Gender/Age YouM Dummy for young male policy holders up to 24 years

BM Bonus /Malus BMRaba Applied bonus - malus rating factor. For example: risks of
bonus class 04 are rated with a 30% discount s.t. BMRABA = 0.7.

For 1996 information from about 1.6 million privately used passenger cars is available. It covers a volume

of 1.2 millions of years insured. Taking into account only data from cars for less than 5 passengers where

the gender and the age of the policy holder is reported there are still left about 1.2 millions contracts that

represent about 900,000 years insured. The adequate dataset that includes all relevant cross-classifications

of the mentioned criteria condensed the primary data to 6195 cells1. The relevant variables and tariff

criteria are summarized in table 4.

Other risk criteria will not be analyzed within this paper, although it has been shown that some available

variables like the age of the car have a relevant discriminating power (Fels, 1998). It is also well known,

                                                  

1 ) The original dataset including also missing values is the file K_6_214.CSV published by the Austrian
Association of Insurance Companies (see VVO, 1998).



that the fit of motor rating models can be dramatically be increased, when more differenced scales for

young drivers were applied. However, rating young men between 18 and 20 years separately required a

technical extra charge of about 150% for this subgroup. As insurance companies would not accept such

extreme increases, we prefer to rate the youngest risks together with those up to 24 years with a common

average extra charge.

 4.2 Insurance Benefits

Let us first analyze criteria that influence the total insurance benefits. Before discussing the final results

two remarks are necessary:

First, it is not necessary to specify seven dummies for the eight kW-classes. As the risk burden increases

almost linear with the motorpower indicator KWC8, a regression on that variable could explain the

majority of the variance between the power classes. However cars between 40 and 55 kW have almost the

same requirements as cars with 55 to 67 kW and the progression for the strongest cars is degressive. To

map these derivatives form linearity it is sufficient to specify the progression with the five kW-variables

listed in table 4, e.g. the counting number kWC8, its square and three dummies for strong cars.

We will estimate the models under the Gamma-distribution assumption. Once it can be shown that the

squared residuals of simple estimations are proportional to E(yt)
1.9 which indicates an almost gamma-like

relation. In comparison several rating specifications with the Lognormal-, the Modified Poisson- and the

Wald-Distribution the Gamma specification yields the highest Likelihood. These estimations will not be

discussed in the following.

Models for insurance benefits

Mod.
Base Tariff

(X-Variables)
Extra Charge
(Z-Variables)

Likelihood t(Fem)
Lik exkl. 

Fem
LRStat

M51 kW, Age, Fem -55420.86 -0.55 -55421.00 0.298
M52 kW Age, Fem -55403.41 -2.20 -55405.78 4.745
M53 Age, Fem kW -55402.97 -0.10 -55402.97 0.011
M54 Age kW, Fem -55400.72 -2.14 -55402.97 4.495
M54 kW, Age, Fem -55400.72 -2.14 -55402.97 4.495
M55 Age, YouM kW, Fem -55369.82 0.44 -55369.92 0.190
M55 kW, Age, Fem, YouM -55369.82 0.44 -55369.92 0.190
M56 Age, Fem, YouM kW -55369.50 0.90 -55369.92 0.843

Table 5 Remarks:

t(Fem) t-statistic for the hypothesis that the coefficient of the
gender dummy Fem is zero. Within these specifications this statistic is
not exact t-distributed. But the critical values -1,6 and -2,3 might still
serve as approximate limits for a 95% respectively 99% significance test.

LRStat : Likelihood Ratio comparing the models with and without Fem.
Under the null hypothesis LRStat is asymptotically c²(1) distributed.
Thus for LRStat <3.8 and <6.6 an overall gender effect can be rejected
at the 95% respectively 99% level of significance.

Let us take a look at the linear model M51. Taking into account the motor power and the age of the policy

holder, the benefits of women are estimated to be 24 ATS, e.g. about 2 ¶ less than these of men. The



Likelihood Ratio test that compares this specification to one without the variable FEM rejects gender-

effects very clearly (LRStat=0,3).

On the other hand, the purely linear model M51 has a relative poor Likelihood compared with the

following specifications of  table 5. Model M54, where based on the two age groups extra charges for the

car power and the gender are multiplicativly added will perform much better. In this specification women

are about 4,5% better then men (ßFEM = -0.04037). In models M52 and M54 multiplicative gender effects

are evident at the 95% but not at the 99% level of significance. Nevertheless model M53 demonstrates that

gender has no effect if a base tariff beside an age classification.

However the data could still be fitted better when a specific gender-discrimination for younger risks were

specified. Adding the variable YouM to Model M54 yields Model M55 with an 30.1 increase of the

Likelihood. The c²(1) - distributed LR-statistic of H0: YouM=0 equals 61,8 and is highly significant. On

the other hand testing the influence of FEM within Model M55 and M56 suggests that a gender

discrimination for people older than 24 is not justified. With other words: The higher benefits of men result

from gender effects of younger policy holders. Men and women older than 24 years have a similar loss-

pattern.

This examples illustrate, that inference about the influence of a risk criterion depends as well on other

criteria mentioned as on the suggested model structure. Inference from a purely linear or purely

multiplicative model can be misleading if a GRM will be applied in practice.

Notice that Model M54 and M55 are reported in two observational equivalent representations. Within a

purely multiplicative structure a dichotomised criterion can also be specified as base-tariff criteria without

changing the net rates of any tariff cell. However, moving a second criterion to the base tariff will in

general change the model specification. For example M55 and M56 are not equivalent.

 4.3 Tariff Specification

The typical Austrian car liability tariff falls under the following structure:

(4.1) Premium = [a0 + Si=3 ai-3 I(kWC8t =i)] .exp{b1 Femt + … }.  BMRabat

The basic rating level depends only on the power of the car. Usually a about 10% discounts for women is

reckoned up, e.g. b1 = -0.105. Further criteria, for example a rough classification according to the

occupation, are always rated by additional discounts.

Although since 1994 insurance companies are free to develop individual bonus-malus systems, still almost

all companies apply the traditional ordered scheme from 1977 with small variations. Even when new

tariffs are developed the bonus-malus scale is apriori fixed. This implies that in the estimation of the rating

scheme

(4.2) VLTOTLt = [a0 + Si=3 ai-3 I(kWC8t =i)] .exp{b1 FEMt + …+ ln(BMRabat)}

no free parameter for ln(BMRaba) can be specified, respectively the parameter of ln(BMRaba) is

intrinsically aliased to be one.

Apart from this last exogenous term the tariff estimation will be similar to those of the loss-models

discussed in chapter 4.2. Nevertheless the results are quiet different:



The rows in table 6 are ordered according to the Likelihood of the different specifications. Model M64

follows the typical structure of the Austrian rating schemes. It performs much better than a purely linear

specification but is inferior to the multiplicative specification M66.

9-variables Gamma-Rating-Models (without gender-effect for young risks)

Mod.
Base Tariff

(X-Variables)
Extra Charge
(Z-Variables)

Likelihood t(Fem)
Lik exkl. 

Fem
LRStat

M61 kW, Fem, Age -54357.33 -4.72 -54368.21 21.762
M62 kW, Age Fem -54352.53 -5.64 -54368.21 31.362
M63 Fem, Age kW -54345.73 -3.02 -54354.60 17.741
M64 kW  Fem, Age -54344.08 -5.43 -54358.61 29.068
M65 kW, Fem Age -54342.23 -5.80 -54358.61 32.768
M66 Fem kW, Age -54340.35
M66 Age kW, Fem -54340.35 -5.37 -54354.60 28.501
M66 kW, Fem, Age -54340.35

Table 6

Notice that in all these specifications a gender discrimination can be accepted at the 99% level of

significance.

Especially young male drivers are worse risks than young women. Adding an interaction term for men

younger than 24 years to the original specifications reported in table 6 will increase the Likelihood in all

cases significantly (table 7). The gender discrimination for young risks is not only statistical but also

economical relevant: According to model M77 men up to 24 years should be rated with an 89% extra

charge compared to men older than 30 years. Young women require only an 28% extra charge while

women older than 30 years could be rated with an 4.7% lady bonus compared to similar men.

10-Variables Gamma-Rating Models (with gender-effect for young risks)

Mod.
Base Tariff

(X-Variables)
Extra Charge
(Z-Variables)

Likelihood t(Fem)
Lik exkl. 

Fem
LRStat

M71 kW, Age, YouMJ  Fem -54317.93 -2.67 -54321.46 7.069
M72 kW, Fem, Age, YouM -54317.50 -2.84 -54321.46 7.929
M73 kW, Age  Fem, YouM -54316.96 -2.70 -54320.57 7.228
M74 kW  Fem, Age, YouM -54315.79 -2.79 -54319.65 7.727
M75 kW, Fem Age, YouM -54314.93 -3.10 -54319.65 9.447
M76 Fem, Age, YouM kW -54312.26 -2.23 -54315.63 6.738
M77 Age, YouM kW, Fem -54311.94
M77 Fem, YouM kW, Age -54311.94
M77 Age kW, Fem, YouM -54311.94
M77 kW, Fem, Age, YouM -54311.94 -2.73 -54315.63 7.377

Table 7

Even after young men and women are rated at different levels, a gender discrimination of older risks

remains significant for all rating models. Since it had already been shown in chapter 4.2 that older men and

women create similar costs this result seems curious. The solution of the puzzle lies in the construction of

the bonus-system. It could be demonstrated by an Lagrange-Poisson GRM-estimation for claim numbers

that women and men older than 24 years have a similar claim frequency patterns. But women receive less



bonus due to shorter observation periods in the system. Thus a lady bonus of about 4,7% is justified to

compensate the bonus favor that men receive due to longer continuous driving - and insurance - periods.
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