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Abstract

The Value-at-Risk (VAR) measurements are widely applied to estimate exposure

to market risks. The traditional approaches to VAR computations - the variance-

covariance method, historical simulation, Monte Carlo simulation, and stress-testing

- do not provide satisfactory evaluation of possible losses. In this paper we analyze

the use of stable Paretian distributions in VAR modeling.
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1 Introduction

One of the most important tasks of �nancial institutions is evaluating the
exposure to market risks, which arise from variations in prices of equities,
commodities, exchange rates, and interest rates. The dependence on market
risks can be measured by changes in the portfolio value, or pro�ts and losses.
A commonly used methodology for estimation of market risks is the Value
at Risk (VAR).

A VAR measure is the highest possible loss over a certain period of
time at a given con�dence level. For example, if the daily VAR for a given
portfolio of assets is reported to be $2 million at the 95 percent con�dence
level, it means that, without abrupt changes in the market conditions, one-
day losses will exceed $2 million 5 percent of the time.

Formally, a VAR = VARt;� is de�ned as the upper bound of the one-sided
con�dence interval:

Pr[�P (�) < �VAR] = 1� c; (1)

where c is the con�dence level and �P (�) = �Pt(�) is the relative change

(return) in the portfolio value over the time horizon � .

�Pt(�) = P (t+ �)� P (t);

where P (t) = log S(t); S(t) is the portfolio value at t, the time period is
[t; T ], with T � t = � , and t is the current time.

The time horizon, or the holding period, should be determined from the
liquidity of the assets and the trading activity. The con�dence level should
be chosen to provide a comfortable level of downside risk 1.

The essence of the VAR computations is estimation of low quantiles in
the portfolio return distributions. The VAR techniques suggest di�erent
ways of constructing the portfolio return distributions. The common meth-
ods are the delta method, historical simulation, Monte Carlo simulation, and
stress-testing. The delta methods are based on the normal assumption for
the distribution of �nancial returns. However, �nancial data often violate
the normality assumption. The empirical observations exhibit \fat" tails
and excess kurtosis. The historical method does not impose distributional
assumptions but it is not reliable in estimating low quantiles of �P with a

1In practice, the time horizon varies from one day to two weeks (10 trading days) and
the con�dence level - from 95% to 99%. The regulators recommend to calculate VAR at
the 10-day holding period and the 99% con�dence level.

2



small number of observations in the tails. The performance of the Monte
Carlo method depends on the quality of distributional assumptions on the
underlying risk factors.

The existing methods do not provide satisfactory evaluation of VAR. The
main drawback is the lack of a convincing uni�ed model for VAR capturing
the following phenomena generally observed in �nancial data, such as asset
returns, interest rates, exchange rates, equities:

� heavy tails of the marginal distributions of the process of �nancial
returns,

� time-varying volatility,

� short- and long-range dependence.

In this article we propose using stable distributions for constructing mod-
els that encompass these empirical features and develop more precise VAR-
estimation techniques. Adequate approximation of distributional forms of
portfolio returns is a key condition for accurate VAR derivation. Given
the leptokurtic nature (thick tails and excess kurtosis) of empirical �nan-
cial data, the stable Paretian distributions seem to be the most appropri-
ate distributional models2. The conditional heteroskedastic models based
on the �-stable hypothesis can be applied to describe both thick tails and
time-varying volatility. The fractional-stable GARCH models can explain
all observed phenomena: heavy-tails, time-varying volatility, and temporal
dependence.

The remainder of the paper is organized as follows. In Section 2 we
discuss traditional approaches to VAR computations. Section 3 provides a
�nance-oriented description of stable distributions. In Section 4 we estimate
the VAR measurements for �nancial returns following a stable law 3. Section
5 states conclusions and outlines future research on VAR modeling with
stable processes.

2Cheng and Rachev (1995); Chobanov, Mateev, Mittnik, and Rachev (1996); Fama
(1965); Gamrowski and Rachev (1994, 1995a, and 1995b); Mandelbrot (1962, 1963a,
1963b, and 1967); McCulloch (1996); Mittnik and Rachev (1991,1993a and 1993b); Mit-
tnik, Rachev, and Chenyao (1996); Mittnik, Rachev, and Paolella (1998).

3See also Gamrowski and Rachev (1996).
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2 Computation of VAR

From the de�nition of VAR = VARt;� in equation (1), the VAR values are
obtained from the probability distribution of portfolio value returns:

1� c = F�P (�VAR) =

Z �VAR

�1
f�P (x)dx;

where F�P (x) = Pr(�P � x) is the cumulative distribution function (cdf)
of portfolio returns in one period, and f�P (x) is the probability density
function (pdf) of �P 4. The VAR methodologies mainly di�er in the way
of constructing f�P (x).

The traditional techniques of approximating the distribution of �P are:

� the parametric method (analytic or models-based),

� historical simulation (nonparametric or empirical-based),

� Monte Carlo simulation (stochastic simulation), and

� the stress-testing (scenario analysis). 5

2.1 Parametric Method

If the changes in the portfolio value are characterized by a parametric dis-
tribution, VAR can be computed using the distribution parameters. In this
section we briey review: VAR for a single asset, portfolio VAR, a paramet-
ric method based on the normal distribution, and linear approximation to
price movements.

2.1.1 VAR for a Single Asset

Assume that a portfolio consists of a single asset, which depends only on
one risk factor. Traditionally, in this setting, the distribution of asset re-
turns is assumed to be the univariate normal distribution, identi�ed by two
parameters: the mean �, and the standard deviation, �. The problem of
calculating VAR is then reduced to �nding the (1 � c)th percentile of the
standard normal distribution z1�c :

4If f�P (x) does not exist, then VAR can be obtained from (cdf) F�P .
5Dave and Stahl (1997); Du�e and Pan (1997); Fallon (1996); Gamrowski and Rachev

(1996); Hopper (1996/1997); Jorion (1996); JP Morgan (1995); Linsmeier and Pearson
(1996); Mahoney (1996); Phelan (1995); Pritsker (1996/1997); Simons (1996).
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1� c =

Z X�

�1
g(x)dx =

Z z1�c

�1
�(z)dz = N(z1�c); with X� = z1�c� + �;

where �(z) is the standard normal density function, N(z) is the cumulative
normal distribution function, X is the portfolio return, g(x) is the normal
distribution function for returns with mean � and standard deviation �, and
X* is the lowest return at a given con�dence level c.

In many applications investors assume that the expected return � equals
0. This assumption is based on the conjecture that the magnitude of � is
substantially smaller than the magnitude of the standard deviation � and,
therefore, can be ignored. Then we have

X� = z1�c � :

and, therefore,
VAR = �Y0X

� = �Y0z1�c � :

where Y0 is the initial portfolio value.

2.1.2 Portfolio VAR

If a portfolio consists of many assets, the computation of VAR is performed
in several steps. Portfolio assets are decomposed into \building blocks",
which depend on a �nite number of risk factors. Exposures of the portfolio
securities are combined into risk categories. Then, the total portfolio risk is
obtained by aggregating risk factors and their correlations. We denote:

� Xp is the portfolio return in one period,

� N is the number of assets in the portfolio,

� Xi is the i-th asset return in one period (� = 1);Xi = �P (1) =
Pi(1) � Pi(0), where Pi is the log-spot price of asset i; i = 1; : : : ; N .
More generally, Xi can be the risk factor that enters linearly6 in the
portfolio return.

� wi is the i-th asset's weight in the portfolio, i = 1; : : : ; N .

6If the risk factor does not enter linearly (as in a case of an option), then a linear
approximation is used.
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The portfolio return is

XP =
NX
i=1

wiXi :

In matrix notation,
XP = wTX ;

where w = (w1; w2; : : : ; wN )
T , X = (X1;X2; : : : ;XN )

T .
Then the portfolio variance is

V (XP ) = wT�w =
NX
i=1

w2
i �ii +

NX
i=1

NX
j=1
i6=j

wiwj�ij�i�j ;

where �ii is the variance of returns on the i-th asset, �i is the standard de-
viation of returns on the i-th asset, �ij is the correlation between the returns
on the i-th and the j-th assets, � is the covariance matrix, � = [�ij ]; 1 �
i � N; 1 � j � N:

If all portfolio returns are jointly normally distributed , the portfolio
return, as a linear combination of normal variables, is also normally dis-

tributed . The portfolio VAR based on the normal distribution assumption
is

VAR = �Y0z1�c �(XP ) ;

where �(XP ) is the portfolio standard deviation (the portfolio volatility),

�(XP ) =
q
V (XP ) :

Thus, risk can be represented by a combination of linear exposures to
normally distributed factors.

In this class of parametric models, to estimate risk, it is su�cient to
evaluate the covariance matrix of portfolio risk factors (in the simplest case,
individual asset returns).

The estimation of the covariance matrix is based on the historical data
or on implied data from securities pricing models.

If portfolios contain zero-coupon bonds, stocks, commodities, and cur-
rencies, VAR can be computed from correlations of these basic risk factors
and the asset weights. If portfolios include more complex securities, then
the securities are decomposed into building blocks.
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The portfolio returns are often assumed to be normally distributed7.
One of methods employing the normality assumption for returns is the delta
method (the delta-normal or the variance-covariance method).

2.1.3 Delta Method

The delta method estimates changes in prices of securities using their \deltas"
with respect to basic risk factors. The method involves a linear (also named
as delta or local) approximation to (log) price movements:

P (X + U) � P (X) + P 0(X)U ;

or
�P (X) = P (X + U)� P (X) � P 0(X)U ;

whereX is the level of the basic risk factor (i.e., an equity, an exchange rate),
U is the change in X; P (X+U) = P (t+�;X+U); P (X) = P (t;X)8, P (X)
is the (log) price of the asset at the X level of the underlying risk factor,
P 0(X) = @P=@X is the �rst derivative of P (X), it is commonly called the
delta (� = �(X)) of the asset.

Thus, the price movements of the securities are approximately

�P (X) � P 0(X)U = �U :

The delta-normal (the variance-covariance) method computes the portfolio
VAR as

VAR = �Y0z1�c

q
dT�d ;

where d = d(X) = (�1(X);�2(X); : : : ;�n(X))T is a vector of the delta-
positions, �j(X) is the security's delta with respect to the j-th risk factor,
�j = @P=@Xj .

2.2 Historical Simulation

The historical simulation approach constructs the distribution of the port-
folio value changes �P from historical data without imposing distribution
assumptions and estimating parameters. Hence, sometimes the historical
simulation method is called a nonparametric method. The method assumes

7JP Morgan (1995); Phelan (1995).
8Because the time horizon (�) is �xed and t is the present time, we shall omit the time

argument and shall write P (X + U) instead of underlying P (t + �; X + U) and P (X)
instead of P (t; X). We shall consider the dependency of P on the risk factor X only.
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that trends of past price changes will continue in the future. Hypothet-
ical future prices for time t + s are obtained by applying historical price
movements to the current (log) prices:

P �i;t+s = P �i;t+s�1 +�Pi;t+s�� ;

where t is the current time, s = 1; 2; : : : ; �; � is the horizon length of going
back in time, P �i;t+s is the hypothetical (log) price of the i-th asset at time
t+s, P �i;t = Pi;t; �Pi;t+s�� = Pi;t+s���Pi;t+s�1�� ; Pi;t is the historical (log)
price of the i-th asset at time t. Here we assumed that the time horizon
� = 1.

A portfolio value P �p;t+s is computed using the hypothetical (log) prices
P �i;t+s and the current portfolio composition. The portfolio return at time
t+ s is de�ned as

R�p;t+s = P �p;t+s � Pp;t;

where Pp;t is the current portfolio (log) price.
The portfolio VAR is obtained from the density function of the computed

hypothetical returns. Formally, VAR = VARt;� is estimated by the negative
of the (1 � c)th quantile, VAR�; namely, F�;�P (�VAR) = F�;�P (VAR

�) =
1 � c, where F�;�P (x) is the empirical cumulative distribution function

F�;�P (x) =
1
�

P�
s=1 1

n
R�p;t+s � x

o
; x 2 R:

2.3 Monte Carlo Simulation

The Monte Carlo approach requires speci�cation of statistical models for
the basic risk factors and the underlying assets. The method simulates the
behavior of risk factors and asset prices by generating random price paths.
Monte Carlo simulations provide possible portfolio values on a given date T
after the present time t; T > t. The VAR(VART ) value can be determined
from the distribution of simulated portfolio values. The Monte Carlo method
is performed according to the following algorithm:

1. Specify stochastic processes and process parameters for �nancial vari-
ables and correlations.

2. Simulate the hypothetical price trajectories for all variables of interest.
Hypothetical price changes are obtained by random draws from the
speci�ed distribution.
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3. Obtain asset prices at time T; Pi;T , from the simulated price trajecto-
ries. Compute the portfolio value Pp;T =

P
wi;TPi;T .

4. Repeat steps 2 and 3 many times to form the distribution of the port-
folio value Pp;T .

5. Measure V ART as the negative of the (1� c)th percentile of the sim-
ulated distribution for Pp;T .

2.4 Stress testing

The parametric, historical simulation, and Monte Carlo methods estimate
the VAR (expected losses) depending on risk factors. The stress testing

method examines the e�ects of large movements in key �nancial variables
on the portfolio value. The price movements are simulated in line with the
certain scenarios9. Portfolio assets are reevaluated under each scenario. The
portfolio return is derived as

Rp;s =
X

wi;sRi;s;

where Ri;s (wi;s) is the hypothetical return (weight) on the i-th security
under the new scenario s. Estimating a probability for each scenario s

allows to construct a distribution of portfolio returns, from which VAR can
be derived.

2.5 Weaknesses of Traditional VAR Methods

The traditional VAR methods do not provide accurate estimation of VAR.
The delta methods are based on the normal assumption for the distribution of
�nancial returns. However, �nancial data violate the normality assumption.
The empirical observations exhibit \fat" tails and excess kurtosis. Thus,
the delta-normal technique does not �t well data with heavy tails. The
historical simulation does not impose distributional assumptions. Models
based on historical data assume that the past trends will continue in the
future. However, the future might encounter extreme events. The historical
simulation technique is limited in forecasting the range of portfolio value
changes and is not reliable in estimating low quantiles with a small number
of observations in the tails. One weakness of stress-testing is that it is

9Scenarios include possible movements of the yield curve, changes in exchange rates,
etc. together with estimates of the underlying probabilities.
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subjective. The performance of the Monte Carlo method depends on the
quality of distributional assumptions on the underlying risk factors.

We propose the use of stable processes in VAR modeling. In the next
section we �rst provide a �nance-oriented description of stable laws. Then,
we describe modeling VAR with stable distributions and compare the stable
VAR approach with the existing methodologies.

3 A Finance-oriented Description of Stable Distri-

butions

In this part we describe parameters and some �nance-oriented properties of
stable distributions. We also examine methods of estimating parameters of
stable laws.

3.1 Parameters and Properties of Stable Distributions

A random variable R is said to be stable10 if for any a > 0 and b > 0 there
exist constants c > 0 and d 2 R such that

aR1 + aR2
d
= cR+ d

where R1 and R2 are independent copies of R and
d
= denotes the equality

in distribution.
In general, the stable distributions do not have closed form expressions

for density and distribution functions. Stable random variables (R) are
commonly described by their characterestic functions:

�R(�) = E(exp(iR�))

= exp

�
���j�j�

�
1� i� sign(�) tan

��

2

�
+ i��

�
; if � 6= 1;

�R(�) = E(exp (iR�))

= exp

�
��j�j

�
1 + i�

2

�
sign(�) ln �

�
+ i��

�
; if � = 1;

where � is the index of stability, 0 < � � 2, � is the skewness parameter ,
�1 � � � 1, � is the scale parameter , � � 0, and � is the location parameter ,

10Often R is called �-stable or Pareto stable or Pareto-L�evy-stable (for � < 2).
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� 2 R. To indicate the dependence of a stable random variable R on its
parameters, we write R � S�(�; �; �). If the index of stability � = 2, then
the stable distribution reduces to the Gaussian distribution. In empirical
studies the modeling of �nancial return data is done typically with stable
distributions having 1 < � < 2.11 Stable distributions are unimodal and the
smaller � is, the stronger the leptokurtic feature of the distribution (the peak
of the density becomes higher and the tails are heavier). Thus, the index
of stability can be interpreted as a measure of kurtosis. When � > 1, the
location parameter � measures the mean of the distribution. If the skewness
parameter � = 0, the distribution of R is symmetric and the characteristic
function is

�R(�) = E(exp (iR�)) = exp f���j�j� + i��g :

If � > 0, the distribution is skewed to the right. If � < 0, the distribution
is skewed to the left. Larger magnitudes of � indicate stronger skewness. If
� = 0 and � = 0, then the stable random variable R is called symmetric

�-stable (s�s). The scale parameter (the volatility) � allows any stable
random variable R to be expressed as R = �Ro, where Ro has a unit scale
parameter, and the same index of stability � and skewness parameter � as
R. The scale parameter generalizes the de�nition of standard deviation.
The stable analog of variance is the variation: �� = ��.

In VAR estimations we are interested in investigating the behavior of the
distributions in the tails. The tails of the stable (non-Gaussian) distributions
have a power decay and are characterized by the following properties:

lim
�!+1

��P (R > �) = k�
1 + �

2
��

and

lim
�!+1

��P (R < ��) = k�
1� �

2
�� ;

where

k� =
1� �

�(2� �) cos(��2 )
; if � 6= 1; k� =

2

�
; if � = 112 :

11The �nancial returns modeled with �-stable laws exhibit �nite means but in�nite
variances.
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The p-th absolute moment, EjRjp =
R1
0 P (jRjp > x)dx; is

� �nite if p < � or � = 2, and

� in�nite otherwise.

Thus, the second moment of any non-Gaussian stable distribution is
in�nite.

Stable distributions possess the additivity property: a linear combination
of independent stable random variables with stability index � is again a
stable random variable with the same �.13

Example: If R1; R2; : : : ; Rn are independent stable random variables
with stability index �;Ri � S�(�i; �i; �i), then R =

Pn
i=1 wiRi is a sta-

ble random variable with the same � and parameters:

(a) if � 6= 1,

� = ((jw1j�1)
� + � � �+ (jwnj�n)

�)
1

� ;

� =
sign(w1)�1(jw1j�1)

� + � � � + sign(wn)�n(jwnj�n)
�

(jw1j�1)� + � � �+ (jwnj�n)�
;

� = w1�1 + � � � + wn�n ;

(b) if � = 1,

� = jw1j�1 + � � �+ jwnj�n ;

� =
sign(w1)�1jw1j�1 + � � � + sign(wn)�njwnj�n

jw1j�1 + � � �+ jwnj�n
;

� = w1�1 + � � �+ wn�n �
2

�
(w1 ln jw1j�1�1 + � � �+ wn ln jwnj�n�n):

Since the Pareto-stable distributions have in�nite variances, one cannot
estimate risk by variance and dependence by correlations. We shall introduce

12Note that, in contrast to the normal case, the tails of the non-Gaussian (Pareto) stable
distributions are much fatter, which will be an important issue in estimating VAR.

13This property is shared only by normal and stable laws, and is the main advantage of
the use of stable laws for portfolio returns.
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variance- and covariance-similar notions for stable laws. These notions are
based on the multivariate assumptions of stable distributions.

A random vector R of dimension d is stable if for any a > 0 and b > 0
there exist c > 0 and a d-dimensional vector D such that

aR1 + bR2
d
= cR +D;

where R1 and R2 are independent copies of R.
If a random vector is stable with � > 1, then it means that all compo-

nents of the vector are stable with the same index of stability and any linear
combination (for example, portfolio returns) is again stable14 .

The characteristic function of a d-dimensional vector is given by:

(a) if � 6= 1,

�R(�) = �R(�1; �2; : : : ; �d)

= E exp(i�TR) = exp

�
�

Z
Sd

j�T sj

�
1� isign(�T s) tan

��

2

�
�(ds) + i�T�

�
;

(b) if � = 1;

�R(�) = exp

�
�

Z
Sd

j�T sj

�
1 + i

2

�
sign (�T s) ln j�T sj

�
�(ds) + i�T�

�
;

where � is a bounded nonnegative measure on the unit sphere Sd; s is the
integrand unit vector (s 2 Sd) and � is the shift vector. The measure � is
named a spectral measure. Let H be the distribution function of �. Then,
the characteristic function in polar coordinates is as follows
(a) if � 6= 1,

�R(�) = exp

�
���

Z 2�

0

Z �

0
� � �

Z �

0
j cos(�;  )j�(1� isign (cos(�;  ))

tan
��

2
)dH( ) + i�T�

�
;

(b) if � = 1,

�R(�) = exp

�
��

Z 2�

0

Z �

0
� � �

Z �

0
j cos(�;  )j(1 + isign (cos(�;  ))

2

�
ln(�j cos(�;  )j))dH( ) + i�T�

�
;

14We shall model the dependence structure of the vector of returns (R1; : : : ; Rd) of a
portfolio by assuming that (R1; : : : ; Rd) is an �-stable vector.
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where � = (� cos�1; � sin�1 cos�2; : : : ; � sin�1; : : : ; sin�n�2 cos�n�1; � sin�1;
: : : ; sin�n�1)

T ; � = j�j;  = ( 1; : : : ;  n�1)
T ; and

cos(�;  ) =

 
d�1Y
i=1

sin�i sin i

!

+

 
d�2Y
i=1

sin�i sin i

!
cos�d�1 cos d�1 + : : :+ cos�1 cos 1:

If a > 1, then � is the mean vector, � = ER. The scale parameter of
a linear combination of the components of a stable vector R satis�es the
relation:

��(wTR) = ��(w1R1 + � � �+ wdRd) =

Z
Sd

jwT sj��(ds):

Viewing R = (R1; : : : ; Rd) as the vector of individual returns in a portfo-
lio with weights w1; : : : ; wd; �

�(wTR) will be the portfolio risk-measure. As
we de�ned above, �� = �� is the variation, the stable equivalent of variance.
Similarly to the traditional interpretation of covariance as an indicator of
dependence, one can use the covariation to estimate the dependence between
two s�s distributions:

[R1;R2]� =
1

�

@��(w1R1 + w2R2)

@w1

����
w1=0;w2=1

=

Z
Sd

s1s
<��1>
2 �(ds);

where (R1; R2) is a s�s vector (1 < � < 2) and x<k> = jxjksign(x) (signed
power). The matrix of covariations [Ri;Rj ]�; 1 � i � d; 1 � j � d, deter-
mines the dependence structure among the individual returns in the portfo-
lio.
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3.2 Estimation of Parameters of Stable Distributions15

We shall examine the methods of estimating the stable parameters and their
applicability in VAR computations, where the primary concern is the tail
behavior of distributions. It has been proposed that it is more useful to
evaluate directly the tail index (the index of stability) instead of �tting the
whole distribution. The latter method is claimed to negatively a�ect the
estimation of the tail behavior by its use of \center" observations. We shall
describe both approaches: tail estimation and entire-distribution modeling.
We suggest a method, which combines the two techniques: it is designed for
�tting the overall distribution with greater emphasis on the tails.

3.2.1 Tail Estimation

Tail estimators for the index of stability � are based on the asymptotic
Pareto tail behavior of stable distributions16. We shall consider the follow-
ing estimators of tail thickness: the Hill, the Pickands, and the modi�ed
unconditional Pickands17. The Hill estimator18 is described by

�̂Hill =
1

1
k

Pk
j=1 ln(Xn+1�j:n)� lnXn�k:n

;

where Xj:n denotes the j-th order statistic of sample X1; : : : ;Xn
19; the in-

teger k points where the tail area \starts". The selection of k is complicated
by a tradeo�: it must be adequately small so that Xn�k:n is in the tail of the
distribution; but if it is too small, the estimator is not accurate. The disad-
vantage of the estimator is the condition to explicitly determine the order
statistic Xn�k:n. It is proved that, for stable Paretian distributions, the Hill

15For additional references on estimation of four parameters of stable univariate laws, see
Chobanov, Mateev, Mittnik, and Rachev (1996), Gamrowski and Rachev (1994, 1995a,
and 1995b), Klebanov, Melamed, and Rachev (1994), Kozubowski and Rachev (1994),
McCulloch (1996), Mittnik and Rachev (1991), Rachev and SenGupta (1993). For the
multivariate case estimation of: the spectral measure, the index of stability, the covariation
and tests for dependence of stable distributed returns, see Cheng and Rachev (1995),
Gamrowski and Rachev (1994, 1995a, 1995b, and 1996), Heathcote, Cheng, and Rachev
(1995), Mittnik and Rachev (1993b), Rachev and Xin (1993).

16See section 3.1.
17For details on the Hill, Pickands, and the modi�ed unconditional Pickands estimators,

see Mittnik, Paolella, Rachev (1998c) and references therein.
18Hill (1975).
19Given a sample of observations X1; : : : ; Xn, we rearrange the sample in increasing

order X1:n � � � � � Xn:n, then the j-th order statistic is equal to Xj:n.
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Figure 1: Hill estimator for 10,000 standard stable observations with index
alpha=1.9

estimator is consistent and asymptotically normal. Mittnik, Paolella, and
Rachev (1998c) found that, the small sample performance of �̂Hill does not
resemble its asymptotic behavior, even for n > 10; 000 (see Figure 120).

It is necessary to have enormous data series in order to obtain unbiased
estimates of �, for example, with � = 1:9, reasonable estimates are produced
only for n > 100; 000 (see Figure 221). Alternatives to the Hill estimator

20In Figure 1, the true value of � is 1.9, the sample size is n=10,000; the x-axis shows
values of k from 1 to n=2 = 5000. Notice that the estimator for �̂ = �̂(k(n); n) is unbiased
when limn!1(k(n)=n)! 0. So, unbiasedness of the estimator requires very small values
of k. However, for a small value of k, the variance of the estimator is large. A close look
at the estimator �̂(k; n) suggests a value of �̂ around 2.2, whereas �=1.9.

21In Figure 2, the true � is again 1.9, the sample size is n = 500; 000, k = 1; : : : ; n=2 =
250; 000. One can see that, for very small values of k, � � 1:9.
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Figure 2: Hill estimator for 500,000 standard stable observations with index
alpha=1.9

are the Pickands and the modi�ed unconditional Pickands estimators. The
\original" Pickands estimator22 takes the form

�̂Pick =
ln2

ln(Xn�k+1:n �Xn�2k+1:n)� ln(Xn�2k+1:n �Xn�4k+1:n)
; 4k < n :

The Pickands estimator requires choice of the optimal k, which depends
on the true unknown �. Mittnik and Rachev (1996) proposed a new tail
estimator named \the modi�ed unconditional Pickands (MUP) estimator",
�̂MUP . An estimate of � is obtained by applying the nonlinear least squares
method to the following system:

22Pickands (1975).
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k2 � X2X
�1
1 k1 + ";

where

X1 =

"
X��
n�k+1:n X�2�

n�k+1:n

X��
n�2k+1:n X�2�

n�2k+1:n

#
;X2 =

"
X��
n�3k+1:n X�2�

n�3k+1:n

X��
n�4k+1:n X�2�

n�4k+1:n

#
;

k1 =

"
k � 1
2k � 1

#
; and k2 =

"
3k � 1
4k � 1

#
:

Mittnik, Paolella, and Rachev (1998c) found that the optimal k for �̂MUP

is far less dependent on � than in the case of either the Hill or Pickands
estimators. Studies demonstrated that �̂MUP is approximately unbiased for
� 2 [1:00; 1:95) and nearly normally distributed for large sample sizes. The
MUP estimator appears to be useful in empirical analysis.

3.2.2 Entire-Distribution Modeling

We shall describe the following methods of estimating stable parameters
with �tting the entire distribution: quantile approaches, characteristic func-
tion (CF) techniques, and maximum likelihood (ML) methods.
Fama and Roll (1971) suggested the �rst quantile approach based on ob-
served properties of stable quantiles. Their method was designed for eval-
uating parameters of symmetric stable distributions with index of stabil-
ity � > 1. The estimators exhibited a small asymptotic bias. McCul-
loch (1986) o�ered a modi�ed quantile technique, which provided consis-
tent and asymptotically normal estimators of all four stable parameters, for
� 2 [0:6; 2:0] and � 2 [�1; 1]. The estimators are derived using functions of
�ve sample quantiles: the 5%, 25%, 50%, 75%, and 95% quantiles. Since the
estimators do not consider observations in the tails (below the 5% quantile
and above the 95% quantile), the McCulloch method does not appear to be
suitable for estimating parameters in VAR modeling.

Characteristic function techniques are built on �tting the sample CF to
the theoretical CF. Press (1972a and 1972b) proposed several CF methods:
the minimum distance, the minimum r-th mean distance, and the method
of moments. Koutrouvelis (1980, 1981) developed the iterative regression
procedure. Kogon and Williams (1998) modi�ed the Koutrouvelis method
by eliminating iterations and limiting the estimation to a common frequency

18



interval23. CF estimators are consistent and under certain conditions are
asymptotically normal24.

Maximum likelihood methods for estimating stable parameters di�er in
a way of computing the stable density. DuMouchel (1971) evaluated the
density by grouping data and applying the fast Fourier transform to \cen-
ter" values and asymptotic expansions - in the tails. Mittnik, Rachev, and
Paolella (1998) calculated the density at equally spaced grid points via an
fast Fourier transform of the characteristic function and at intermediate
points - by linear interpolation. Nolan (1998a) computed the density using
numerical approximation of integrals in the Zolotarev integral formulas for
the stable density25. DuMouchel (1973) proved that the ML estimator is
consistent and asymptotically normal. In Section 4 we analyze applicability
of the ML method in VAR estimations.

3.2.3 Tail Estimation: Fast Fourier Transform Method

Tail estimation using the Fourier Transform (FT) method is based on �tting
the characteristic function in a neighborhood of the origin t=0. Here we use
the classical tail estimate:

P (X � �
1

a
) � P (jXj �

1

a
) �

K

a

Z a

0
(1� fx(t))dt

26; for alla > 0 ;

where fx(t) is the characteristic function of a random variable X. Precise
estimation of the characteristic function guarantees accurate tail estimation,
which leads to an adequate evaluation of VAR.

Suppose that the distribution of returns r is symmetric-�-stable27 , that
is: the characteristic function of r is given by fr(t) = Eeirt = eit��jctj

�
: If

� > 128, then, given observations r1; : : : ; rn, we estimate � by the sample
mean �� = �r = 1

n

Pn
i=1 ri: For large values of n , the characteristic function of

observations Ri = ri � �r approaches fR(t) = e�jctj
�
. Consider the empirical

characteristic function of the centered observations: f̂R;n(t) =
1
n

Pn
i=1 e

iRkt:

23For additional references, see Arad (1980); Feuerverger and McDunnough (1981);
Mittnik, Rachev, and Paolella (1998); Paulson, Holcomb, and Leitch (1975).

24Heathcote, Cheng, and Rachev (1995).
25For additional references, see Mittnik, Rachev, Dogagnoglu, and Chenyao (1997).
26The last inequality is by Lemma 3 on p.321 in Shiryayev, 1984.
27Empirical evidence suggests that � does not play a signi�cant role for VAR estimation.
28As we have already observed, in all �nancial return data, �tting an �-stable model

results in � > 1, which implies existence of the �rst moment.
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Because the theoretical characteristic function, fR(t), is real and positive,

we have that f̂R;n(t) = Re
�
1
n

Pn
i=1 e

iRkt
�
= 1

n

Pn
i=1 cos(Rkt):

Now the problem of estimating � and c is reduced to determining �̂
and ĉ such that

RM
0 j 1n

Pn
k=1 cos(Rkt) � e�(ĉt)

�̂
jdt is minimal, where M is a

su�ciently large value.
The realization of the FT method is performed in the following steps:

Step 1. Given the asset returns r1; : : : ; rn, compute the centered returns
Ri = ri � �r; i = 1; : : : ; n, where �r = 1

n

Pn
k=1 ri:

Step 2. Construct the sample characteristic function

f̂(tj) =
1

n

nX
k=1

cos(Rktj);

where tj = j ��� ; j = 1; : : : ; �; �� is the maximal value of t, � is the number
of grid points on (0, ��]29.

Step 3. Do the search for best �̂ and ĉ such that
P�

j=1

��� 1nPn
k=1 cos(Rktj)

�e�(ĉtj)
�̂
��� is minimal.

4 VAR estimates for Stable Distributed Financial

Returns

In this section we consider a stable VAR model, which assumes that the
portfolio return distribution follows a stable law. We derive \stable" VAR
estimates and analyze their properties applying in-sample and forecast eval-
uations. We use \normal" VAR measurements as benchmarks for investi-
gating characteristics of \stable" VAR measurements. We conduct analysis
for various �nancial data sets:

� the Yen/British Pound (BP) exchange rate,

� the BP/US$ exchange rate,

� the Deutsche Mark (DM)/BP exchange rate,

� the S&P 500 index,

29For computation purposes, we have chosen � = 20 and � = 10000. In the realization
of the FT method we selected the following grid steps ht: if 0 � t � 1, ht = 20�=50000;
if t > 1, ht = 20�=1000. In order to emphasize the tail behavior, we re�ned the mesh
near t = 0 and named that approach FT-Tail (FTT): if 0 � t � 0:1; ht = 20�=100000;
if 0:1 � t � 1:0; ht = 20�=10000; if t > 1; ht = 20�=1000. The numerical results are
reported in section 4.
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� the DAX30 index,

� the CAC40 index,

� the Nikkei 225 index,

� the Dow Jones Commodities Price Index (DJCPI).

A short description of the data is given in Table 1.

Table 1: Financial data series

Series Source
Number of
observations

Time period Frequency

Yen/BP Datastream 6285 1.02.74-1.30.98 Daily (D)
BP/US$ D. Hindanov 6157 1.03.74-1.30.98 D
DM/BP Datastream 6285 1.02.74-1.30.98 D
S&P 500 Datastream 7327 1.01.70-1.30.98 D
DAX30 Datastream 8630 1.04.65-1.30.98 D
CAC40 Datastream 2756 7.10.87-1.30.98 D
Nikkei 225 Datastream 4718 1.02.80-1.30.98 D
DJCPI Datastream 5761 1.02.76-1.30.98 D

4.1 In-sample evaluation of VAR estimates

In this part we evaluate stable and normal VAR models by examining dis-
tances between the VAR estimates and the empirical VAR measures.

By a formal de�nition of VAR in equation (1), VAR estimates, V ARt;� ,
are such that

Pr
h
�Pt(�) < �V ARt;�

i
� 1� c; (2)

where c is the con�dence level, �Pt(�) is the relative change in the portfolio
value over the time horizon � , i.e., �Pt(�) = Rt;� , is the portfolio return at
moment t over the time horizon � , and t is the current time.

For the purpose of testing VAR models �nancial regulators advise to
choose a time horizon of one day, so we take � = 1. In the text below, if
the time horizon is not stated explicitly, it is assumed to equal one day. At
each time t, an estimate VARt is obtained using lw recent observations of
portfolio returns Rt�1; Rt�2; : : : ; Rt�lw:

VARt = VAR(Rt�1; Rt�2; : : : ; Rt�lw): (3)
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The lw parameter is called the window length. In this subsection, VAR is
estimated employing the entire sample of observations, i.e., lw = N , where
N is the sample size. Hence, we do not point out the present time t.

We obtain \stable" (\normal") VAR measurements at the con�dence
level c in two steps:

(i) �tting empirical data by a stable (normal) distribution,

(ii) calculating a VAR as the negative of the (1-c)th quantile of a �tted
stable (normal) distribution.

\Stable" �tting is implemented using three methods: maximum likeli-
hood (ML), Fourier Transform (FT), and Fourier Transform-Tail (FTT)30.
Estimated parameters of densities and corresponding con�dence intervals
are presented in Table 2. In the FT and FTT �tting we assume that dis-
tributions of returns are symmetric, i.e., the skewness parameter � is equal
to zero. Since the index of stability � > 1 for our data series, the location
parameter � is approximated by the sample mean. The ML estimates were
computed applying the STABLE program by J.P. Nolan31. The con�dence
intervals (CI) for the FT and FTT parameter estimates were derived using a
bootstrap method with 1000 replications32. Empirical analysis showed that
a set of 1000 replications is: (i) satisfactory for constructing 95% CI; (ii)
insu�cient for obtaining reliable 99% CI. In our experiments, sets of 1000
replications generated: (i) 95% CI for � and � whose bounds coincided up to
two decimal points; 95% CI for � with slightly varying bounds; (ii) varying
99% CI, with insigni�cant variation of left limits.

30Evaluation of parameters of stable distributions is provided in Section 3.2
31The STABLE program is described in Nolan (1997).
32For references on bootstrapping, see Heathcote, Cheng, and Rachev (1995); for dis-

cussion on CI based on ML parameter estimates, see Nolan (1998a).
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Table 2: Parameters of stable and normal densities�

Series Normal Stable

Mean
Standard
deviation

Me-
thod

� � � �

Yen/BP -0.012 0.649 ML 1.647 -0.170 -0.023 0.361
FT 1.61 -0.018 0.34

[1.57, 1.66] [-0.095, 0.015] [0.33, 0.36]
[1.55, 1.68] [-0.178, 0.025] [0.33, 0.37]

FTT 1.50 -0.018 0.32
[1.46, 1.55] [-0.131, 0.034] [0.31, 0.34]
[1.44, 1.64] [-0.261, 0.070] [0.31, 0.39]

BP/US 0.006 0.658 ML 1.582 0.038 0.007 0.349
FT 1.57 0.006 0.33

[1.53, 1.65] [-0.096, 0.045] [0.32, 0.36]
[1.51,1.75] [-0.393, 0.065] [0.32, 0.47]

FTT 1.45 0.006 0.31
[1.41, 1.51] [-0.134, 0.070] [0.30, 0.33]
[1.40, 1.62] [-0.388, 0.097] [0.30, 0.47]

DM/BP -0.012 0.489 ML 1.590 -0.195 0.018 0.256
FT 1.60 -0.012 0.24

[1.54, 1.75] [-0.064, 0.013] [0.23, 0.26]
[1.53, 1.75] [-0.165, 0.022] [0.23, 0.27]

FTT 1.45 -0.012 0.23
[1.41, 1.55] [-0.114, 0.038] [0.22, 0.26]
[1.40, 1.77] [-0.402, 0.061] [0.22, 0.40]

S&P 500 0.032 0.930 ML 1.708 0.004 0.036 0.512
FT 1.82 0.032 0.54

[1.78, 1.84] [-0.013, 0.057] [0.53, 0.54]
[1.77, 1.84] [-0.062, 0.067] [0.53, 0.55]

FTT 1.60 0.032 0.48
[1.56, 1.65] [-0.066, 0.078] [0.47, 0.49]
[1.54, 1.66] [-0.120, 0.095] [0.46, 0.50]
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Series Normal Stable

Mean
Standard
deviation

Me-
thod

� � � �

DAX30 0.026 1.002 ML 1.823 -0.084 0.027 0.592
FT 1.84 0.026 0.60

[1.81, 1.88] [-0.015, 0.050] [0.59, 0.60]
[1.80, 1.89] [-0.050, 0.057] [0.58, 0.62]

FTT 1.73 0.026 0.57
[1.69, 1.77] [-0.031, 0.061] [0.56, 0.58]
[1.68, 1.79] [-0.124, 0.073] [0.56, 0.59]

CAC40 0.028 1.198 ML 1.784 -0.153 0.027 0.698
FT 1.79 0.028 0.70

[1.73, 1.85] [-0.050, 0.088] [0.68, 0.73]
[1.71, 1.87] [-0.174, 0.103] [0.67, 0.74]

FTT 1.76 0.028 0.69
[1.71, 1.84] [-0.053, 0.091] [0.67, 0.72]
[1.69, 1.87] [-0.394, 0.101] [0.66, 0.77]

Nikkei 0.020 1.185 ML 1.444 -0.093 -0.002 0.524
225 FT 1.58 0.02 0.59

[1.53, 1.64] [-0.127, 0.102] [0.57, 0.62]
[1.52, 1.67] [-0.421, 0.130] [0.57, 0.69]

FTT 1.30 0.02 0.49
[1.26, 1.47] [-0.451, 0.316] [0.47, 0.69]
[1.05, 1.67] [-1.448, 0.860] [0.47, 1.10]

DJCPI 0.006 0.778 ML 1.569 -0.060 0.003 0.355
FT 1.58 0.006 0.35

[1.53, 1.66] [-0.026, 0.100] [0.34, 0.37]
[1.52, 1.67] [-0.140, 0.120] [0.33, 0.39]

FTT 1.49 0.006 0.33
[1.44, 1.55] [-0.160, 0.062] [0.32, 0.36]
[1.44, 1.69] [-0.396, 0.100] [0.32, 0.46]

�The CIs right below the estimates are the 95% CIs, the next CIs are the 99% CIs.

VAR measurements were calculated at con�dence levels c = 99% and
c = 95%. The 99% (95%) VAR was determined as the negative of the 1%
(5%) quantile. For calculating stable quantiles we used our program, built
on the Zolotarev integral representation form of the cumulative distribution
function. The 99% and 95% VAR estimates are reported in Tables 3 and 4,
respectively. Biases of stable and normal VAR measurements are provided
in Table 533.

33Biases are computed by subtracting the empirical VAR from the model VAR estimates.
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Table 3: Empirical, Normal, and Stable 99% VAR estimates�

99% VAR
Series Empirical Normal Stable

ML FT FTT

Yen/BP 1.979 1.528 2.247 2.212 2.494
[1.968, 2.252] [2.276, 2.736]
[1.919, 2.415] [2.230, 2.836]

BP/US$ 1.774 1.526 2.221 2.200 2.668
[2.014, 2.412] [2.436, 2.925]
[1.956, 2.593] [2.358, 3.029]

DM/BP 1.489 1.149 1.819 1.520 1.996
[1.190, 1.712] [1.792, 2.211]
[1.179, 1.742] [1.700, 2.329]

S&P 500 2.293 2.131 2.559 2.200 2.984
[2.117, 2.258] [2.757, 3.243]
[2.106, 2.470] [2.700, 3.336]

DAX 30 2.564 2.306 2.464 2.375 2.746
[2.260, 2.502] [2.557, 2.949]
[2.240, 2.569] [2.523, 2.997]

CAC 40 3.068 2.760 3.195 3.019 3.144
[2.753, 3.364] [2.788, 3.504]
[2.682, 3.520] [2.700, 3.841]

Nikkei 225 3.428 2.737 4.836 3.842 6.013
[3.477, 4.254] [5.190, 6.701]
[3.367, 4.453] [4.658, 19.950]

DJCPI 2.053 1.804 2.446 2.285 2.603
[1.955, 2.423] [2.382, 2.870]
[1.916, 2.474] [2.288, 3.035]

�The CIs right below the estimates are the 95% CIs, the next CIs are the 99% CIs.
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Table 4: Empirical, Normal, and Stable 95% VAR estimates�

95% VAR
Series Empirical Normal Stable

ML FT FTT

Yen/BP 1.103 1.086 1.033 0.968 0.995
[0.926, 1.047] [0.937, 1.132]
[0.911, 1.186] [0.911, 1.329]

BP/US$ 1.038 1.077 0.981 0.944 0.986
[0.898, 1.072] [0.917, 1.158]
[0.876, 1.599] [0.895, 1.588]

DM/BP 0.806 0.816 0.772 0.687 0.748
[0.652, 0.749] [0.695, 0.894]
[0.641, 0.894] [0.678, 1.418]

S&P 500 1.384 1.497 1.309 1.308 1.319
[1.275, 1.361] [1.265, 1.423]
[1.265, 1.411] [1.246, 1.503]

DAX 30 1.508 1.623 1.449 1.451 1.452
[1.415, 1.500] [1.405, 1.521]
[1.402, 1.533] [1.395, 1.650]

CAC 40 1.819 1.943 1.756 1.734 1.734
[1.653, 1.837] [1.647, 1.845]
[1.621, 1.944] [1.616, 2.288]

Nikkei 225 1.856 1.929 1.731 1.666 1.840
[1.570, 1.839] [1.582, 2.512]
[1.558, 2.280] [1.500, 5.022]

DJCPI 1.066 1.274 1.031 0.994 1.011
[0.888, 1.047] [0.944, 1.188]
[0.870, 1.200] [0.915, 1.615]

�The CIs right below the estimates are the 95% CIs, the next CIs are the 99% CIs.

We accompany our computations with plots of:

� daily price levels,

� daily returns,

� �tted empirical, normal, and stable densities with the ML, FT, and
FTT estimated parameters,
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� daily empirical, normal, and stable VAR* estimates at the 99% and
95% con�dence levels34.

Combined plots of price levels, returns, densities, and VAR estimation
are displayed in Figures 3-10. In order to illustrate that con�dence inter-
vals for the FT parameter estimates are su�ciently narrow, we show stable
densities and VAR measures at boundary values of con�dence intervals for
�̂Y en;FT and �̂Y en;FT in Figures 11-14.

As Figures 3-10 demonstrate, the VAR estimates obtained at con�dence
level c=95% seem to belong to the area between the \tail" and the \center".
The VAR at level c=99% is really in the tail area. Hence, we compare
performance of stable and normal models separately for the cases c = 95%
and c = 99%.

In general, the stable modeling (ML, FT, and FTT) provided evaluations
of the 99% VAR greater than the empirical 99% VAR (see Figures 3-10,
Tables 3 and 5). It underestimated the sample 99% VAR in the applications
of two methods: FT - for the CAC40, S&P 500, and DAX30 indices, and
ML - for the DAX30 index. Biased downwards stable VAR estimates were
closer to the true VAR than the normal estimates (see Table 5). Among the
methods of stable approximation, the FT method provided more accurate
VAR estimates for 7 data sets (see Table 5). For all analyzed data sets, the
normal modeling underestimated the empirical 99% VAR. Stable modeling
provided more accurate 99% VAR estimates: mean absolute bias 35 under
the stable (FT) method is 42% smaller than under the normal method.

At 95% con�dence level, the stable VAR estimates were lower than the
empirical VAR for all data sets. The normal VAR measurements exceeded
the true VAR, except the Yen/BP exchange rate series (see Table 6). For the
exchange rate series (Yen/BP, BP/US$, and DM/BP), the normal method
resulted in more exact VAR estimates. For the S&P 500, DAX30, CAC40,
and DJCPI indices, stable methods underestimated VAR, though the esti-
mates were closer to the true VAR than the normal estimates. Mean absolute
biases under stable and normal modeling are of comparable magnitudes.

34The VAR� numbers are the negative values of the VAR estimates, VAR� = -VAR.
35Let bm;s be a bias of a VAR estimate: bm;s = VARm;s � VAREmpirical;s. The mean

absolute bias equals MABm = (
P

8

s=1
jbm;sj)=8, where m denotes normal, stable-ML,

stable-FT, and stable-FTT methods, and s� a series.
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Figure 3. VAR estimation for the DM/BP exchange rate.
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Figure 4. VAR estimation for the Yen/BP exchange rate.
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Figure 5. VAR estimation for the BP/US$ exchange rate.
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Figure 6. VAR estimation for the CAC40 index.
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Figure 7. VAR estimation for the Nikkei 225 index.
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Figure 8. VAR estimation for the S&P 500 index.
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Figure 9. VAR estimation for the DAX30 index.
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Figure 10. VAR estimation for the DJCPI index
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Figure 11. Stable fitting at limiting values of a confidence interval for alpha
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Figure 12. VAR estimation at limiting values of a confidence interval for alpha
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Figure 14. VAR estimation at limiting values of a confidence interval for sigma
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Table 5: Biases of Normal and Stable 99% VAR estimates

99% VARm-99% VAR�Emprirical

Stable
Series Normal ML FT FTT

Yen/BP -0.451 0.268 0.133 0.515

BP/US$ -0.248 0.447 0.426 0.894

DM/BP -0.340 0.330 0.031 0.507

S&P 500 -0.162 0.266 -0.093 0.691

DAX30 -0.258 -0.100 -0.189 0.182

CAC40 -0.308 0.127 -0.049 0.076

Nikkei 225 -0.691 1.408 0.414 2.585

DJCPI -0.249 0.393 0.232 0.550

Mean absolute bias 0.338 0.416 0.196 0.750
�m denotes normal, stable-ML, stable-FT, and stable-FTT methods.

Table 6: Biases of Normal and Stable 95% VAR estimates

95% VARm-95% VAR�Emprirical

Stable
Series Normal ML FT FTT

Yen/BP -0.017 -0.070 -0.135 -0.108

BP/US 0.039 -0.057 -0.094 -0.052

DM/BP 0.010 -0.034 -0.119 -0.058

S&P 500 0.113 -0.075 -0.076 -0.065

DAX30 0.115 -0.059 -0.057 -0.056

CAC40 0.124 -0.063 -0.085 -0.085

Nikkei 225 0.073 -0.125 -0.190 -0.016

DJCPI 0.208 -0.035 -0.072 -0.055

Mean absolute bias 0.087 0.065 0.104 0.070
�m denotes normal, stable-ML, stable-FT, and stable-FTT methods.
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In-sample examination of VAR models showed:

� the stable modeling generally results in conservative and accurate 99%
VAR estimates, which is preferred by �nancial institutions and regu-
lators36,

� the normal approach leads to overly optimistic forecasts of losses in
the 99% VAR estimation,

� from a conservative point of view, the normal modeling is acceptable
for the 95% VAR estimation,

� the stable models underestimate the 95% VAR. In fact, the stable 95%
VAR measurements are closer to the empirical VAR than the normal
95% VAR measurements.

The next step in evaluating VAR models is analysis of their forecasting
characteristics.

4.2 Forecast-evaluation of VAR estimates

In this section we investigate the forecasting properties of stable and normal
VAR modeling by comparing predicted VAR with observed returns.

We test the null hypothesis that equation (1) for a time horizon of 1 day
(�=1) holds at any time t:

Pr[�Pt < �VARt] = 1� c; (4)

where �Pt is the relative change (return) in the portfolio value, i.e. �Pt =
Rt is the portfolio return at moment t, VARt is the VAR measure at time t,
c is the VAR con�dence level, t is the current time, t 2 [1; T ], and T is the
length of the testing interval. The test is performed by checking whether
Pr[Rt < �VARt] is reasonably close to 1 - c, where VARt is the estimate of
VARt. Recall that VARt is computed using the last lw observations37.

Let bt be the indicator function 1fRt < �VARtg; 1 � t � T . If the
equation (4) holds, then

bt = 1fRt < �VARtg =

(
1; probability = 1� c
0; probaility = c:

36In the 99% VAR estimation for data series from Table 1, mean absolute bias under
the stable modeling was 42% smaller than under the normal modeling.

37See equation 3
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Let us denote by E the number of exceedings (Rt < �VARt)
38 over the

testing interval [1; T ]. If equation (4) is valid, then the variable E =
PT

t=1 bt
has a binomial distribution. We can formulate a testing rule: reject the null
hypothesis at level of signi�cance x if

EX
t=0

 
T

t

!
(1� c)tcT�t �

x

2
or

EX
t=0

 
T

t

!
(1� c)tcT�t � 1�

x

2
:

For large T and su�ciently high VAR con�dence levels, the binomial
distribution can be approximated by the normal distribution. Hence, the
testing rule for large T is: reject the null hypothesis at level of signi�cance
x if

E < T (1� c)� z1�x=2

q
T (1� c)c or E > T (1� c) + z1�x=2

q
T (1� c)c;

where zp is the p% standard normal quantile. The bounds of admissible
VAR exceedings E and exceedings frequencies, E

T , for testing at level of
sigi�cance 5% and 1% are provided in Table 7.

Table 7: Admissible VAR exceedings and exceeding frequencies

VAR
con�-
dence
level,
c

Length
of a

testing
interval,

T

Admissible
VAR

exceedings,
E

Admissible
VAR

frequencies,
E=T

Signi�cance level, x Signi�cance level, x
5% 1% 5% 1%

95% 500 [17,33] [14,36] [3.40%, 6.60%] [2.80%, 7.20%]
1500 [61,89] [56,94] [4.07%, 5.93%] [3.73%, 6.27%]

99% 500 [2,8] [0,10] [0.40%, 1.60%] [0.00%, 2.00%]
1500 [9,21] [6,23] [0.60%, 1.40%] [0.40%, 1.53%]

We examined forecasting properties of stable and VAR models for data
series described in Table 1. In testing procedures we considered the following
parameters:

38In nominal levels, an exceeding implies a case when actual losses exceeded the pre-
dicted losses.
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� window lengths lw = 260 observations (data over 1year) and lw = 1560
observations (data over 6 years),

� lengths of testing intervals T= 500 days and T=1500 days.

Evaluation results are reported in Tables 8 and 9. We indicate by the
bold font the numbers, which are outside of acceptable ranges.

Table 8: 99% VAR exceedings

Length
of a

99% VAR exceedings

testing Window length = 260 obs. Window length = 1560 obs.

Series interval, Normal FT Normal FT
T E E=T E E=T E E=T E E=T

Yen/BP 500 15 3.00% 13 2.60% 10 2.00% 2 0.40%
1500 40 1.67 34 2.27 45 3.00 21 1.40

BP/US$ 500 10 2.00 5 1.00 1 0.20 0 0.00
1.500 26 1.73 13 0.86 17 1.33 5 0.33

DM/BP 500 18 3.60 14 2.80 17 3.40 8 1.60
1500 45 3.00 33 2.20 50 3.33 19 1.27

S&P 500 17 3.40 13 2.60 25 5.00 13 2.60

500 1500 35 2.33 27 1.80 28 1.87 14 0.93
DAX30 500 21 4.20 14 2.80 19 3.80 18 3.60

1500 41 2.73 29 1.93 25 1.67 20 1.33
CAC40 500 16 3.20 14 2.80 14 2.80 13 2.60

1500 34 2.27 29 1.93 17 1.63 19 1.27
Nikkei 500 15 3.00 14 2.80 13 2.60 7 1.40
225 1500 31 2.07 23 1.53 26 1.73 10 0.67

DJCPI 500 12 2.40 7 1.40 15 3.00 10 2.00
1500 29 1.93 15 1.00 28 1.87 17 1.13

From Table 8 we can see that normal models for the 99% VAR com-
putations commonly produce numbers of exceedings above the acceptable
range, which implies that normal modeling signi�cantly underestimates VAR
(losses). At window length of 260 observations, stable modeling is not satis-
factory. It provided permissible number of exceptions only for the BP/US$
and DJCPI series. At sample size of 1560 and testing interval of 500 obser-
vations, exceedings by the stable-FT method are outside of the admissible
interval for the S&P 500, DAX30, and CAC40 indices. Testing on the longer
interval with T=1500 showed that numbers of \stable" exceptions are within
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Table 9: 95% VAR exceedings

Length
of a

95% VAR exceedings

testing Window length = 260 obs. Window length = 1560 obs.

Series interval, Normal FT Normal FT
T E E=T E E=T E E=T E E=T

Yen/BP 500 35 7.00% 38 7.60% 27 5.40% 31 6.2%
1500 94 6.27 104 6.93 109 7.27 122 8.13

BP/US$ 500 33 6.60 45 9.00 10 2.00 17 3.40
1.500 73 4.87 96 6.40 46 3.07 57 3.80

DM/BP 500 32 6.40 38 7.60 29 5.80 37 7.40

1500 89 5.93 114 7.60 105 7.00 139 9.27

S&P 500 34 6.80 39 7.80 43 8.60 47 9.40

500 1500 79 5.27 98 6.53 62 4.13 69 4.60
DAX30 500 47 9.40 50 10 42 8.40 45 9.00

1500 98 6.53 109 7.27 62 4.13 79 5.27
CAC40 500 32 6.40 34 6.80 31 6.20 32 6.40

1500 81 5.40 87 5.80 51 4.90 82 5.47
Nikkei 500 37 7.40 40 8.00 28 5.60 33 6.60
225 1500 85 5.67 90 6.00 68 5.43 87 5.80

DJCPI 500 29 5.80 35 7.00 37 7.40 46 9.20

1500 70 4.67 93 6.20 77 5.13 108 7.20

permissible range. Table 8 demonstrates that increasing the window length
from 260 observations to 1560 observations reduces the number of stable-
FT exceedings. In contrast, extending the window length for normal models
does not decrease E, in some cases, even elevates it. Results illustrate that
stable modeling outperforms normal modeling in the 99% VAR estimations.

The 95% VAR normal estimates (except the DAX30 series), obtained
using 260 observations, are within the permissible range. Increasing the win-
dow length generally worsens the normal VAR measurements. The stable-
FT method provided su�cient 95% VAR estimates for the Yen/BP and
BP/US$ exchange rates and the CAC40 and Nikkei 225 indices. A study of
the predictive power of VAR models suggests that:

� the normal modeling signi�cantly underestimates 99% VAR,

� the stable method results in reasonable 99% VAR estimates,
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� 95% normal measurements are in the admissible range for the window
length of 260 observations. Increasing lw to 1560 observations might
deteriorate the precision of the estimates.

5 Conclusions

The Value-at-Risk (VAR) measurements are widely applied to estimate the
exposure to market risks. The traditional approaches to VAR computa-
tions - the delta method, historical simulation, Monte Carlo simulation, and
stress-testing - do not provide satisfactory evaluation of possible losses. The
delta-normal methods do not describe well �nancial data with heavy tails.
Hence, they underestimate VAR measurements in the tails. The historical
simulation does not produce robust VAR estimates since it is not reliable
in approximating low quantiles with a small number of observations in the
tails. The stress-testing VAR estimates are subjective. The Monte Carlo
VAR numbers might be a�ected by model misspeci�cation.

We suggest to apply stable processes in VAR estimation. The in-sample-
and forecast-evaluation shows that stable VAR modeling outperforms the
normal modeling for high values of the VAR con�dence level:

� the stable modeling generally produces conservative and accurate 99%
VAR estimates, which is preferred by �nancial institutions and regu-
lators,

� the normal method leads to overly optimistic forecasts of losses in the
99% VAR estimation,

� the normal modeling is acceptable for the 95% VAR estimation.

The stable Paretian model, while sharing the main properties of the nor-
mal distribution leading to the CLT (Central Limit Theorem), provides at
the same time superior �t in modeling VAR. However, additional research is
needed. Future work is this direction will be construction of models that cap-
ture the features of �nancial empirical data such as heavy tails, time-varying
volatility, and short and long range dependence39. In order to describe thick
tails, one can employ the conditional homoskedastic models based on the sta-
ble hypothesis40. ARMA-stable-GARCH models can incorporate both heavy

39For some preliminary results see Liu and Brorsen (1995), Mittnik, Rachev, and
Paolella (1998), Mittnik, Paolella, and Rachev (1997, 1998a, and 1998b), Panorska, Mit-
tnik, and Rachev (1995).

40These models are named as ARMA-�-stable models.
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tails and time-varying volatility41. The fractional-stable GARCH model can
capture all observed phenomena in �nancial data: heavy tails, time-varying
volatility, and short- and long-range dependence. An analysis of VAR esti-
mation with ARMA-�-stable, ARMA-stable-GARCH, and fractional-stable
GARCH models will be provided in a subsequent paper.
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