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ABSTRACT

This paper adopts a hormative approach to catastrophe insurance. It addresses
the question of how innovation in the design of insurance contracts could help resolve the
capacity gap in the provision of insurance against natural catastrophes. The innovation
allows for more flexibility in risk retention for the consumer, thus improving consumer
welfare. By decomposing the influence of catastrophes on claims amounts (severity risk)
and on the probability of loss (frequency risk), we show how insurance contracts can be
designed to endogenize the degree of risk sharing between groups of insureds. In
particular, we examine how insurance can facilitate direct risk sharing between groups of

insureds who are exposed to different catastrophes.
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1. Introduction

Past decades have shown an increasing severity and frequency of losses ﬁisi ng
from natural catastrophes: earthquakes, hurricanes, floods and large-scale fires’. It is still
controversial whether an increasing frequency of hurricanes and floods may be attributed
to climate change (global warming), but it is clear that concentration of valuesin
catastrophe-prone coastal areas has brought about an increase in the amount of damages.
From 1970 to 1990, population in the Pacific and South Atlantic coastal states of the
United States increased by 51% and 45% respectively, compared to a countrywide
increase of 24% over the same period. This evolution is a source of concern for the
insuranca industry, because the wealth elasticity of insurance demand is empirically larger
than one?. Thus, rapid increasesin exposed wealth mean that insured |osses represent an
increasing proportion of total losses. For example, one of the most severe catastrophes
over the past years was the Kobe earthquake in 1995, which caused losses to an amount
of USD 82.4 hillion, but insured losses remained at a more modest 2.5 billion. Thisis
relatively small compared to the series of losses which were inflicted upon the insurance
industry since 1988. Insurers had to pay USD 12.5 billion for the Northridge earthquake
(1994) and 16 billion for Hurricane Andrew (1992), more than 40 percent of the
combined total cost for these two events, estimated at USD 65 billion.

Prior to Andrew, the industry had not anticipated such high damage values. Indeed,

the financial press was saturated with stories of astonishment following Hurricane Hugo

! Theinsurance industry defines a catastrophe as "an event which causesin excess of $5 million in
insured property damage and affects a significant number of insureds and insurers® (Cummins and Geman,
1995).

2 See Sigma (No 4, 1997): The rich countries of the world are by far the most largely insured. This
may seem in contradiction with the well-known theoretical result that property insurance is an inferior good
(Mossin, 1968). But, as noticed by Chesney and L oubergé (1986), this result is obtained on the assumption
that increases in wealth affect the non-risky portion of wealth only.
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in 1989, which cost the industry over USD 5 billion. Ever since Hugo however, insured
lossesin excess of 1 billion have become the rule rather than the exception (see exhibit 8
in Canter et al. 1996).

Catastrophic losses challenge the economic role of insurance as a private wealth
redistribution mechanism. Insurance makes possible the transfer of numerousrisks. Itisa
mechanism whereby insurers collect funds from many agents exposed to similar risks, to
pay for losses that will randomly affect some of these agents. The reinsurance mechanism
complements direct insurance by allowing aworld-wide diversification of risks. In
addition, the financial capacity of the insurance industry has been able to absorb
deviations of total losses from their expected value. However, financial capacity has been
outpaced by potential losses in the catastrophe lines. The total capital of the US property-
casualty insurance industry is estimated at USD 200 billion, of which 20 billion provided
by reinsurers (Kielholz and Durrer, 1997). The coverage capacity in the catastrophe line
of business (direct insurance and reinsurance) is estimated at USD 25 hillion. Thisisless
than the reference losses estimated by reinsurers at 50 billion for California earthquakes
and 45 billion for East Coast storms, and thisiswell below the maximum losses expected
from these two kinds of events. 100 billion for California earthquakes and 85 billion for
East Coast storms.

The problem arises because the risk of natural catastrophesis not widely
diversifiable in an insurance context where insurers supply coverage in well-defined
business lines. Natural catastrophes tend to occur in selected areas of the globe: seismic
regions and ocean coasts. M orﬁﬂver, only a subset of these regions expresses much

demand for insurance coverage®. Thus, reinsurers are not able to disseminate the risk

% Figures published in Sigma (No 4, 1997) show that North America, Western Europe and Japan
make up 90 percent of the global non-life insurance premium income.
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easily across the world, and cross-subsidization among different lines of businessis not
feasible in a competitive environment.

Two types of solutions to the insurance capacity gap have been proposed and put
into practice. Mandatory public provision of insurance is one alternative. It relies on the
financial and fiscal ability of the government to spread |osses across many citizens, as
well asintertemporally. This was imposed in France, where all insureds pay an additional
premium on their property-liability insurance contracts in exchange for ﬁoverage against
natural catastrophes, with a reinsurance guarantee provided by the State”. Risk
securitization represents the second alternative. It relies on the huge pool of financia
capacity provided by asset markets. For example, total capitalization of the US financial
market amounts to approximately USD 20 trillion, with adaily standard deviation of
around USD 130 hillion. Thus, typical daily fluctuationsin total US asset market
capitalization are able to cover the maximum probable loss from a California earthquake.
Risk securitization is accomplished by issuing specific conditional claims and selling
them directly to financial investors. Options on natural catastrophes (cat spreads) started
trading at the Chicago Boarchof Trade in 1995, and catastrophe-linked bonds (cat bonds)
have been issued since 1997°.

A third solution, which may be combined with risk securitization, is risk
mutualization. Economic theory teaches that |osses that cannot be diversified away in a
portfolio of risks or an insurance-reinsurance pool should be shared by economic agents
according to their respective risk-tolerance. Thisisthe mutuality principle due to Karl

Borch (1962). Large-scale mutualization already occurs through the financial market, via

* See Magnan (1995). See also Lewis and Murdock (1996) for a proposal of more government
intervention in the coverage of US natural catastrophes.

® The developments in catastrophe risk securitization were analyzed in Niehaus and Mann (1992),
Doherty (1997) and Jaffee and Russell (1997). Catastrophe options were priced and analyzed by Cummins
and Geman (1995). Catastrophe-linked bonds were priced and analyzed by Loubergé et al. (1999).
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widely held insurance stocks and viarisk securitization. But afirst layer of mutualization
may also be organized within the insurance market by having the insureds share in the
operational result of their insurers. As argued by Doherty and Dionne (1993), such an
arrangement is particularly appropriate when the risk is partially undiversifiable:
decomposition of the risk into idiosyncratic and nonidiosyncratic risk with separate
alocations of the components leads to some degree of mutualization (see a'so
Schlesinger, 1999). Under this scenario, risk mutualization occurs as a combination of
three processes, instead of two: first, among insureds in an insurance company, second,
among insurers using reinsurance, and third, among the wider population of economic
agents, using the financial market to diversify the residual risk.

This paper concentrates on the first process. It extends the models proposed by
Doherty and Schlesinger (1998), who allow for more flexible risk sharing between the
insurer and theinsured. We alow further flexibility by allowing risk sharing between
different pools of insureds. Although catastrophes are defined as an accumulation of
claims, catastrophic events are largely uncorrelated: hurricanes in Florida are uncorrelated
with earthquakes in California or Japan, with tropical stormsin Hawaii, and with floods
in Italy or Germany. Thisistheraison d'étre of catastrophe reinsurance. This observation
may be used to improve the financial capacity within the insurance market by allowing
the insureds to participate in the overall risk of their insurer. Thus, a Californian insured
would be able to increase her utility, if instead of only purchasing an insurance contract
priced according to Californian earthquake risk, she would be given the opportunity to
purchase a contract based on the portfolio of her insurer’ s Californian earthquake and
Floridian hurricane risks.

Our moddl is presented in the next two sections and the optimal insurance contract

isderived in section 4. The modél isinitially based on the assumption that natural
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catastrophes affect the severity of losses, but not their frequency in the insured
population. Frequency risk is then introduced in section 5. A more complete model,
combining simultaneous frequency and severity risk is developed in section 6. The last

section concludes.

2. Themode

Consider two geographic regions (or two groups of insureds), A and B, facing
independent risks of being struck by a catastrophe, e.g., a hurricanein Floridaand an
earthquakein California. Let (Q, F,u) be aprobability space and let
L:Q - R, and €;:Q - Rforj = (AB) be well-defined random variables.

Each region is populated with a continuum of individuals. We assume that these
individuals are identiﬁal in both regions: same initial wealth W> O, same preferences and
attitudes towards risk®. In the absence of catastrophe, each individual faces the prospect
of losing arandom amount L, with expected value EL. Losses L arei.i.d., and insurable at
zero transaction cost. However, in each region, the catastrophic event may result in an
"inflation" of claims, brought about by the simultaneity of losses (severity risk). In region

j ( = A,B), the random loss faced by individua i becomes L; (1+¢,), where € israndom

and is region-specific (i.e., the same for al individualsin the region). Without |oss of

generdity, we assume E(¢;) = 0. Moreover, we assume that the random catastrophic

component € isindependent of L for all individuals, and that the catastrophes occurring in

regions A and B are independent of one another: E(L;&;) =0=E(¢,¢;), forall i andj.

To avoid complications of personal bankruptcy, we assume that the distribution for the

® Theindividuals are not necessarily expected utility maximizers. Individuals are risk averse, by
which we mean they are averse to mean-preserving spreads of the wealth distribution. We will assume that
they display second-order risk aversion, in the sense of Segal and Spivak (1990).



-7-
Optimal Catastrophe Insurance

random variable L(1+¢) has a support which is bounded between zero and W. Finally, to

avoid negative loss amounts, we assume & > -1. Thus, for example, if €, =.15, all losses
inregion A are 15 percent higher, whereas £, =—.10would indicate that all losses in
region B are 10 percent lower.

We need to caution the reader that € =0does not characterize the no-catastrophe
case. Indeed, although we consider a mean value of zero for ¢, thisincludes catastrophe
years. Thus, we would expect amodal value for ¢ that is negative.

Competitive insurers provide damage insurance in the two regions. Insuranceis

assumed to be proportional, with coverage a [ [O]] chosen by the insured. Three types of

contracts are available, and the insured is free to combine the three types, with the same a

1. Fixed premium contract. In this contract, the insurer retains the catastrophic
component of the risk by charging the insured afixed premium based on the expected
value of losses. Thisrisk isthen either assumed, or reinsured, or hedged, or securitized
(or acombination of these actions is chosen) against the payment of arisk premium A, the
same for each type of catastrophe. Thus, although the catastropherisk is statistically
uncorrelated with market risk, we assume that arisk premium is required to compensate
shareholders and/or financial inVﬁtors, due to imperfections in the market, such as
agency costs or asymmetric taxes’. This risk premium is passed through to the

policyholders as aloading. The fixed premium in region j is thus:
P'=a,(1+A)E[(1+¢)L] =a; (1 +A)EL.

" See Garven & Loubergé (1996) or Eeckhoudt, Gollier & Schlesinger (1997). A risk premium may
also bejustified in the presence of parameter uncertainty (see Hogarth & Kunreuther, 1992).
O
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2. Variable premium contract. In this contract, the insurer does not assume the
catastrophic risk of its policyholders. The insured pays aninitial premium equal to the
expected value of losses. An ex post adjustment in the premium then occurs to take into
account the actual severity of losses within her group (A or B), so that the premium is

initially random. Assuming zero interest rates, the variable premium in region j is thus:
P'=a,(1+¢,)EL.

3. Participating premium contract. With this contract, the insurer acts as a mutual
insurer. The insured shares in the more or less favorable |oss experience of her insurer.
She pays initialy the expected value of her losses. An ex post adjustment in the premium

occurs eventually, depending on the overall result of the insurer. Again, the premium s

initially random and is defined as Pjp =a;(1+m)EL, where mis arandom element which

isaweighted average of €, and £, , and is defined in the next section.

We assume that the risk premium, A, is positive due to the size of the catastrophic
risk. Although the insurer can “pass off” thisrisk, it cannot do so without arisk loading
charge, since the catastrophic risk cannot be fully diversified. The variable-premium and
participating-premium contracts impose no systematic risk on the insurer, and we
(perhaps boldly) assume the risk-loading chargeis zero. Aslong astheir risk-loading
charges are lessthan A, we can modify the model to obtain similar qualitative results.

The variable and participating premiums allow the insured to share in the
catastrophe risk, either locally, or more widely. In principle, such risk sharing could also
occur Hs ng the financial markets by having the insured purchase shares of the insurer's
equity®. However, equity prices are more comprehensive and more forward-looking. This

risk sharing al'so could occur using the derivatives markets for one' s own personal

8 Thisis called "homemade mutualization" by Doherty and Dionne (1993).
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account, for instance by writing CBOT cat call spreads on the Florida index, or the
Californiaindex, or both. The insured would then pay a fixed insurance premium, with a
loading A, and would get back part of thisloading by writing options. Alternatively, the
catastrophic risk could be excluded from coverage, and the individual would be forced to
obtain the desired coverage against this risk by hedging on the derivatives market.
However, thiswould involve retention of the idiosyncratic part of the risk by the
individual. Theindividual has essentialy arandom level of the ¢ -risk and thus cannot
easily hedge the overall risk level of L(1+¢€). By offering a menu of contracts, the
insurer acts as afinancial intermediary, taking advantage of lower (or zero) information
and transaction costs, aswell as“pooling” the levels of ¢ -risk.

The combined insurance premium is P, defined as P = B°P' + B1PY + B 2PP,
with (B°, 3%, 3°)0S?, theunit smplex on 0°. Theinsured has the choice of o and

of every B'.

3. Definition of m.

The factor m affecting the participating premium is endogenous. It depends on the
share of the catastrophe risk remaining with the insurer once all insureds have decided
how to combine the three kinds of contracts.

Consider the situation in region A.

- A fraction aAB% of risk €, isassumed by the insurer and does not trigger any
recovery or allowance. It is compensated by the risk premium A.

- A fraction a , 8% of risk €, isassumed by the insureds in region A. This fraction

leads to arecovery of a ,B%e,EL .
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- Assuming the same number n of individualsin both regions, a fraction
[anB3/(a Ba+agB3)] of theremaining (£, + &) risk is assumed by theinsuredsin
region A. This fraction leads to arecovery of a 53 2mEL .

Theremaining (£, + €;) risk is e (1- B9 BL) +ageg(1-B - BE). Thus,

m = apEaL=BA— B2 +ases(l- B3~ BE)
aBatagBi
_ aaBAEA+ B 5Es
aBatagBi

Asit turns out, m represents the unit of overall risk remaining to be shared. It may
also be shown that this value of mleadsto afair amount of technical loss/profit for the
insurer, given the values of [ in each region. Assuming the same number of
policyholdersin both regions, the total loss/gain after recoveries or allowancesis
nEL{aAsA(l— BL) +ages(1- BE)—m(aBa+agB %)}. Plugging the above value of m

in this expression yields the fair loss/gain incurred by the insurer:

nEL{aAEAB At agEsf %}-

4. Optimal insurance

4.1. Optimal coinsurance

Using the canonical model of optimal insurance purchasing under a proportional
contract, the final wealth of the representative individual in region A iswritten as:
(D Ya=W-P,-(1-a,)1+e,)L

with:
P, =a,{BO+ N)EL + BL(1+&,)EL + B2(1+ m)EL
=a,ELfive, + BIA —£,) + B2(m-¢,}.

Rearranging yields:
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@ Y,=@+e)W-a,EL-(-a, ) -{eW+yEL(A -¢,) +yiEL(m-£,)}
where v = a,0% and v, = a, 5. Using these definitions, we may rewrite m as

_Yabat Vel _ .
iy (Vi Vor & &)-

Noting that y can be made independent of a by an appropriate choice of £, the

second term in brackets in equation (2) may be treated as an independent background risk
with respect to [W -a,EL-(1-a,) L] . For this latter term, the optimal a equals one for

any realized value of (1+¢&,) and for any risk-averse decision-maker. Thisfollowssince
the first term has a constant mean value for any a , plus the assumption that € and L are

independent (see Schlesinger 1997, 1999).

4.2. Optimal contracting

Assuming symmetry of regionsAand B, a, =a, =1, where an asterisk denotes an

optimal value. Moreover, assuming rational expectations among the identical individuals

yields B¢ A= =9 g and B2 N =p2 5. Thefinal wealth of the representative individual in

region A may thus be rewritten as:

= (1+e, )W - EL} ~{g,W + BREL(A ~£,) + BAEL(M~¢,,)}

3
9 W - EL)- EL{B3A + B, + B2n}
with m=52"%s
Using thisvalue of min (3), and defining t = ﬁl we obtain:
Ba+Ba
Yo =W - EL) - ELEBA + (8} + B e, + (-0 S5

(4
=(W-EL)- ELE;BXA +(1—ﬁ2)§|%(eA +eg)+ 1, —es)%
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Now, definez=¢, +&;, ande =€, —¢&;. Theterm in square bracketsin (4)

becomes % zZ+ %teg. Giventhat E(z) =0, E(e) =0, and E(ejz) = 0, z+ teisamean-

preserving spread of z as defined by Rothschild and Stiglitz (1970). Thus z dominates z +
te by second-order stochastic dominance, i.e. for every risk averter in our enlarged

definition. Asaresult, t* = 0, which isthe same as 8, = 0. Aslong as B2 #0, thisleads

to:

5) Y,=W-EL)- ELE;B};/\ r(1-po)Eatiey

2
Given that the random term [ (&, + £;) / 2] has an expectation lower than the fli]xed

term A, it followsthat B2 <1 for every risk averter, which in turn implies 82 >0.°

To sum up, theindividual insuresfully (a* = 1) to eliminate the diversifiable risk.
She then optimally shares the global catastrophe risk with the insurer, to avoid paying the
full risk premium A. In contrast with what might be expected a priori, it is suboptimal for
her to be pooled only with risks of the same class. Thisresult isin accordance with

Borch's (1962) mutuality principle.

5. Thecase of frequency risk

To introduce this case, the occurrence of a catastrophe is assumed to have no
impact on the severity of individual losses. We relax this assumption in the following
section of the paper. To ssimplify the severity component of the model, assume an all-or-

nothing loss: either L = 0 with probability 1-p, or L = M < Wwith probability p. The latter

°If the individual displays first-order risk aversion, asin Segal and Spivak (1990), it may be the
case that BE\* =1. Inthiscasetisnot well defined in the above analysis. However, the results still follow
via convergence arguments. In other words, allowing for first-order risk aversion allows the possibility of

the solution B =1, B, =B% =0.
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probability is an ex ante measure based on long-term statistical records of claims,
including claims due to catastrophes. We assume that p is the same in both regions, A and
B.

However, catastrophes are rare events, so that the current period frequency of losses
among a population of insured individualsin region j israndom. For j = (A,B), let
f, = p(1+9;) represent the random frequency, with 6,:Q - R and with
E(S,) =E(d;) =E(9,&) =0. Thesupport of discontained in [-1, (1-p)/p]. Wecan
think of p(1+9;), for arealized value of J,, asthe ex post probability of arandomly

chosen insured having aloss during the given period. In other words, p(1+9,) represents

the actual relative loss frequency for the current period whereas p represents the long-run
average loss frequency per period. Again, we caution the reader that the case where
J =0 does not represent the no-catastrophe case.

If total losses are the same, the insurer isindifferent as to whether catastrophes
provoke a general increase in the severity of losses, for a giver\ﬂequency, or whether they
yield an increase in the frequency of losses for a given severity™. If EL = pM, and the
random components € and Jd are the same, the total claims from region j are the same,

using either model: n{(L+¢,)EL}=n{(1+3,)pM}.

Using the same contract design as in section 2, we define:

P'=a,(1+2A)pM (fixed premium contract)
P'=a,(1+J,)pM (variable premium contract)
a B30, + aeBe 3,

PP =a,(1+m)pM, with m= . (participating contract)

a B, +adbs,
The final wealth of the representative individual from region A isthus:
© Y.={W-a,pM -(-a,)1 -a,pM{BA+ B33, + Bint .

10 Of course, this statement relies on the absence of transactions costs.
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This may be rewritten as:
©) Y, ={W-a,0+2)pM -(1-a,)} - pM{yL(3, —A) +y2(m-A)}, using the
same definition of yasin the preceding section.

Again, the second term in the preceding equation may be treated as an independent
background risk. However, because the first term now incorporates the loading, the
optimal iﬁwrance coverage islessthan oneif theindividual has second order risk
aversion™. It may be oneif she has first order risk aversion.

Using again the symmetry of regions A and B, and assuming rational expectations,
weobtain a, =a, andm= (5, +3;) /2. Then, from (6), and using the definitions of t, z
and e, leadsto:

©) Y,=(W-a,pM-@1-a,)} -a,pM @8% +(1—ﬁ2)§(z+te)§

Asin the preceding section, risk aversion leads to
t*=PBx =0,0< By <land By =1-B3.
The representative individual insures partially, and chooses to share in the global

catastrophe risk, to save on the loading, as previously. To get an intuition of why

insuranceis partial in this model, note that the a , factor in the second term of (6) cannot
be “undone” by appropriate choices of S, sincethe B, must sum to one. Thus,
increasing the insurance level will always increase the level of this undesirable second

term, and hence an optimal insurance level is less than one.

1 Assuming standard risk aversion, Eeckhoudt and Kimball (1992) have shown that the optimal
insurance coverage under aloaded premium and an independent background risk isless than it would be
under no background risk. However, they consider an actuarially fair background risk, whereas the
background risk defined by (6") has a positive expected value.
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6. Simultaneousfrequency risk and severity risk

In this section, we combine the basic models presented in sections 2 and 5 above.

Catastrophes affect both the frequency of losses in the population and the severity of

these losses. As before, the random frequency of lossesisgivenby f; = p(1+9;), with
E(f;) = p,andj = (A,B). For smplicity, we assume the severity of alosswould be the
constant M, adjusted only by the perfectly correlated catastrophe factor €, . If aloss
occursin region j, its magnitude isthus M (1+¢;) . Dropping subscript j, the ex ante
random loss is now defined as:

(1) L=n()MQ+e),

with n(d) aBernoulli variable taking values 1 or O with (random) probabilities p(1+ J)
and 1- p(1+9d) . Asbefore, we assumethat the ¢ aswell asthe d are identical within
each region, with E(¢)=E(d)=0.

Taking into account the fact that the random variables € and d may be positively
correlated, we find EI(_ll_) =pM [1+ Cov(d, s)] .Then, using the same contracts design as
previously, we define:

P! =a,(1+A)E(L,) =a, @+ AL+ Cov(3, .&,)|pM (fixed premium contract)

PJ-" =a;(1+9;)d+¢€;)pM (variable premium contract)

PP =a;(1+m)pM (participating contract)

ApBABp +E+05E4) +0pBE(Og +Ep +0pEp) _

with m= 5 >
aaBa+agPBs

Using these premiums and dropping the subscript for ease of exposition, we derive
the final wealth for an individual:
Y =W-(1-a)L-(1-B*-B*)A+A)aE(L) - BapM (1+ d)(L+€) - B2apM (1+ m)

12 Note that the premium loading A will not necessarily be the same as previously. In particular, a

positive correlation between € and O islikely to lead to a higher market premium for the catastrophic
risk.
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This expression may be rearranged to yield:

- Y ={w -1+ A)E(L) - @-a)}
- pm{y[a+5)a+e) - @+ A)a+C) +y @+ m) - a+1a+cj }
where y =af3 asbeforeand C =Cov(9d,¢).

Again, the second term in this expression may be treated as an independent
background risk. Looking at the first term in brackets, we obtain that the optimal
insurance coverage is less than oneif the individual has second order risk aversion, and
that it isless than or equal to oneif she hasfirst order risk aversion. Without surprise, this

is the same as under frequency risk.

Further, assuming symmetry of regions A and B, we obtain:

© Y=W-apM - (1-a)L -apM @30(/\ +C+AC)+(1- ﬁo)(z’;te)@
,Bl
where t = ——— & before. However, in this case we have:
B +p

Z=0,+tEp,+0,Ep +0g +Eg + 058

E(z) =Cov(d,,£,) + Cov(dg,£5)

=(0p+€p+0,EN) ~ (O +E5 +O0pER)

E(e) =Cov(d,,£4) —Cov(dg,£5) =0
with the symmetry assumption being used in obtaining E(e) = 0. Given that E(ejz) = O,
z+te is amean-preserving spread of z. Thus, the optimal t is again zero for every risk
averter.

These results do not differ qualitatively from what we obtain in the frequency risk
model:

a*<1, t*=pBx =0, 0<BY <1, andB; =1-6Y7.
However, any comparative-static analysis will yield ambiguous results without specifying

parameters of the model for a particular case.
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7. Conclusion

This paper extends the previous literature on catastrophe insurance by considering
the case where insureds are able to take advantage of other catastrophe risk handled by
their own insurer. Insureds are offered a menu of contracts and they are able to mix these
contracts. With two classes of catastrophes, three basic contract types are proposed: a
fixed premium contract providing partial or full coverage, a variable premium contract
offering the opportunity to the insured to share in the local catastrophe risk (as she would
do, for example, when investing on her own account in cat options on alocal index), and
a participating premium contract offering the opportunity to participate in the insurer's
portfolio of catastrophe-linked risks.

We find that the optimal mix for arisk-averse insured combines the fixed premium
contract and the participating premium contract. It isnot optimal for the individua to
include a contract share in the local catastrophe risk. In addition, the result is shown to be
robust to a generalization of the model, to take into account the simultaneous occurrence
of severity and frequency risk. Although our analysis considers only the simplest case of
uncorrelated catastrophes, the framework also could be used when correlations are not
zero. Of course, our qualitative results may no longer hold, but the greater degree of
flexibility can only benefit the insurance consumer.

In accordance with Borch's (1962) mutuality principle, our results imply that
endogenizing the participation levels of insureds would be a welfare-improving
innovation in the property-liability insurance market. They provide afurther instrument
for efficient risk sharing between insurers and insureds. The results further imply that
larger insurers, who more likely can write policies covering several catastrophic

exposures, might have an additional competitive advantage in the global marketplace.
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