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Abstract: Stock price movements are characterized by occasional extreme vibrations (rare
events), resulting in dramatic losses during stock market crises. This can be demonstrated
by the October crises in 1987 and 1989 as well as the Southeast Asia, Russia and Brazil cri-
ses in 1998/99.
Despite its obvious importance, literature has neglected jumps in the context of optimum
portfolio strategies. For that reason, the objective of our paper is the integration of price
jumps into portfolio selection. To that end, we are looking to find in a first step a well-
founded model of the jump/diffusion process: Reasonable representations of jumps distin-
guish between firm-specific, cluster-specific and market jumps (scope of jumps) as well as
crashes and explosions (direction of jumps). In addition, jump probabilities and amplitudes
have to be bounded from both above and below. Only now, with this economically founded
jump model can we be ready to establish portfolio selection in a next step: Through the cal-
culation of optimum portfolio weights, we are able to prove the second best nature of the
following portfolio strategy: One ignores jumps completely due to their rare occurrence or
one simply adjusts stocks' means and variances/covariances to jumps and uses these new
stock characteristics as input of the old diffusion based portfolio rules. Instead, price jumps
demand a totally unique portfolio strategy: Optimum portfolio weights are a linear combi-
nation of the µ-σ-efficient portfolio of the diffusion component and jump-induced correc-
tion terms. Moreover, both parts of the optimum portfolio can be combined to an extended
Tobin separation.

Keywords: dynamic optimization, jump/diffusion processes, portfolio selection, rare events,
stock market crises
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1 Preliminaries

1.1 Introduction to the problem

Stock price movements are characterized by occasional extreme vibrations (rare events), re-
sulting in dramatic losses during stock market crises. This can be demonstrated by the Oc-
tober crises in 1987 and 1989 as well as the Southeast Asia, Russia and Brazil crises in
1998/991. The problem is gaining additional importance because the standard strategy of
protecting a minimum portfolio wealth ("floor"), the Portfolio Insurance, can only handle
small price movements, but no price jumps2. Therefore, we intend to raise the question of
how crashes could be neutralized by improved portfolio planning.
Specifying the last point, we will discover the following underlying theoretical problem: The
exact form of portfolio strategies critically depends on the stock price process and conse-
quently the return distribution assumed. For that reason, careful selection of the stock price
process is of decisive importance: The model has to deal with empirical observations on the
one hand and special information of the decision maker on the other hand. This last point
also includes identification of significant loss potential, e.g. stock market crashes.
The first method pursued in literature to integrate the above requirement into a stock price
process models not only the stock price itself, but in addition mean and variance/covariance
matrices as diffusion processes. This results in stochastically varying means and vari-
ance/covariance matrices (stochastic opportunity set3) and thus a better fit to empirical data.
Yet, diffusion processes only encompass "normal" - mathematically speaking still smooth -
price movements and fail to recognize an additional source of short term price movements:
price jumps. Hence, diffusion processes do have difficulties in portraying the decision mak-
ers' information except for the fact that small4 variations are unable to represent a significant
loss potential.
Due to their technical features, combined jump/diffusion processes are a natural choice to
depict price jumps and to further improve stock price models. Moreover, empirical results
also support the jump/diffusion theory: Merton's5 review of the empirical work on stock
price distributions in the 60s and 70s documents that combined jump/diffusions processes
really fit to empirically observable return characteristics. In addition, more recent data un-
derpins the theory of the jump/diffusion process: Ball/Torous (1985) observe jumps in daily
                                                       
1 The following percentages of indexes' declines stress the importance of losses: Dow Jones: on

19/10/1987 -20.39% (largest percentage decline in US history, see Schwert (1990): 80), on 10/27/1987 -
7.2% (at the same time largest point loss in the history of this index); DAX: on 10/19/1987 -9.86% (see
Grünewald/Trautmann (1997): 44), on 10/28/1987 -8%, on 08/19/1991 -9.87%, on 10/16/1996 -13.71%,
on 10/01/1998 -7.59%, on 01/13/199 -5.16% and on 03/15/2000 –2.72%.

2 See Geman (1992): 186.
3 See Merton (1973a) and Breeden (1979).
4 We use the word "small" to characterize price movements caused by pure diffusion processes.
5 See Merton (1976): 127, fn. 4 and Merton (1982): 21-22.
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US stock returns and Jorion (1988) confirms their findings even in the case of the hetero-
scedasticity of the diffusion process (stochastic opportunity set). Both studies only differ
with regard to the time span of their observations: Ball/Torous are unable to identify jumps
in weekly or monthly stock returns, whereas Jorion finds his perceptions to be true in both
cases (weekly: significant, monthly: weak). For German stocks, Trautmann/Beinert (1995)
and Beinert (1997) find statistically significant jump components of daily and weekly DAX-
returns. Additional evidence of jumps - though without statistical tests - can be found in
Schwert (1990), Stehle/Hartmond (1991) and Turner/Weigel (1992).
Besides these empirical facts, jumps do coincide with the notion of special information of
the decision maker: Jumps denote an explicit description of short-run vibrations caused by
extraordinary events. Thus, jumps can take into consideration information not integrable
into (pure) diffusion processes. For example, information about a large order and a resulting
profit jump of the company. Moreover, it is possible to model extreme losses, Spremann
(1997)6 calls them stress case of portfolio planning, directly via stock price jumps.
To sum up, combined jump/diffusion processes are a founded stock price model, as Merton
(1975)7 stated

"...since virtually any reasonable stochastic process arising in an economics
context can be adequately approximated by some mixture of these two types
(author's comment: combined jump and diffusion processes), I would expect
any serious disagreement with the stochastic process assumption would be on
the use of a special form of the processes, rather than with the processes them-
selves".

Hence, the first objective of our work is the development of an economically motivated
stock price process, an important task according to Merton (1975) and nevertheless ne-
glected in literature. To that end, we characterize jumps in a first step by distinguishing
between firm-specific, cluster-specific and market jumps depending on their scope and be-
tween crashes and explosions with respect to their direction. In a second step, we use this
information to adequately model jump probabilities and amplitudes.
Interestingly, many authors have described crashes8 and tried to explain their existence9. On
the other hand, jump processes are common in option pricing theory10, but their integration
into portfolio selection has been overlooked.
Alone Aase (1984) as well as, with some restrictions, Eastham/Hastings (1988), Hastings
(1992) and Spremann (1997) have attempted such a model. However, the first three authors

                                                       
6 See Spremann (1997): 867.
7 Merton (1975): 661.
8 See for example descriptions of the 1987 Crash in Gammill/Marsh (1988), Grossman (1988b), Lock-

wood/Linn (1990) and Kleidon/Whaley (1992).
9 See for example Black (1988), Grossman (1988a), Leland/Rubinstein (1988), Fama (1989), Roll (1989),

Gennotte/Leland (1990) and Malliaris/Urrutia (1992).
10 See for example Cox/Ross (1976) and Merton (1976) or, more recently, the survey article Chang (1995).
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focus on mere technical aspects of jump/diffusion processes. They neither describe the jump
component economically nor do they compute optimum portfolio strategies. Spremann
(1997), to an extent, constitutes the counterpole to them. He exclusively uses non-
quantitative arguments in a static framework and illustrates by means of examples his main
thesis: "Classical" portfolio considerations and the Tobin separation fail in a jump environ-
ment. But, he is also unable to establish a complete portfolio theory under price jumps.
For that reason, the second objective of our article is the integration of price jumps into
portfolio selection. By calculating optimum portfolio weights, we can prove the second best
nature of the following portfolio strategy: One ignores jumps completely due to their rare
occurrence or one simply adjusts stocks' means and variances/covariances to jumps and uses
these new stock characteristics as input of the old diffusion-based portfolio rules. Instead,
price jumps demand a totally unique portfolio strategy: The optimum portfolio weights are a
linear combination of the µ-σ-efficient portfolio of the diffusion component and jump-
induced correction terms. So far, we can confirm Spremann's conjecture11 that jumps call
for a new portfolio theory. On the other hand, we refute his statement12 with respect to the
collapse of the Tobin separation because it is possible to decompose the correction terms
into parts depending on investors' preferences and others that do not. These parts, however,
can be combined to an extended Tobin separation.

The twofold objective of our paper - to develop an economically founded characterization
of stock price jumps (rare events) and to establish a portfolio selection on that basis - de-
mands the following structure of our article: In chapter 2 we repeat important results of the
diffusion based portfolio selection to attain a reference model. Next, we offer a first intro-
duction to jump/diffusion portfolio selection by means of a naive modeling of jumps (chap-
ter 3). However, this naive jump model leaves economically important questions unan-
swered and calls for a more thorough modeling of jumps (chapter 4). Based on the now es-
tablished economically motivated jumps, we develop a whole portfolio theory under jumps
(chapter 5). A summary of the most important results ends the paper (chapter 6).

1.2 Description of the decision problem

To be able to illustrate the effects of jumps, we will use the simplest possible notion of an
economic environment. Therefore, we assume a perfect capital market, a special initial en-
dowment of the individual investor and certain preferences. To be more precise, we rely on
the framework developed by Merton (1969) and Merton (1971):

−  Markets are free of arbitrage, frictionless and investors act as price takers.

                                                       
11 See Spremann (1997): 880.
12 See Spremann (1997): 866.
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−  All revenues from short sales can be used for investment purposes and there are no addi-
tional restrictions on investment policies.

−  All investors have free and equal access to information important to pricing.
−  There is no exogenous income i.e. solely stock transactions and consumption cause

wealth changes.

The investor seeks to maximize his expected utility from consumption and bequest13 by
continuously optimizing his consumption and portfolio decisions (choice between a riskless
asset and n stocks characterized by an invertible variance/covariance matrix). The utility
functions are

−  additively separable (consumption utility only), continuous, strictly monotone increasing
and strictly concave referring to their arguments consumption as well as end of period
wealth. Additionally, we must take into account the time dependency of each utility
function.

Introducing a constant time preference rate as special model of this time dependency,

(1) [ ] [ ]U C t t e U C tt( ), ( )= − ρ

or rather,

(2) [ ] [ ]B W T T e B W TT( ), ( )= − ρ

U[C(t),t] consumption utility function in t
C(t) consumption per unit time in t ("instantaneous consumption"); con-

sumption can only be measured as a flow (we get C t d t( )  between t
and t d t+  14).

B[W(T),T] bequest utility function in T
W(t) wealth in t
ρ investor's time preference rate

we can formalize the investor's decision problem as follows:

(3) [ ] [ ]
C

s
T

TMax E e U C s d s e B W T
,

( ) ( )
w

0
0

− −∫ +
















ρ ρ

consumption utility bequest utility
1 24 4 34 4 1 244 34 4

w(t) n × 1 vector of portfolio weights
Et{} expectation conditional on information in t
T planning horizon

                                                       
13 The existence of a bequest function implies a planning horizon smaller than infinity. This does not con-

stitute any problem because we argue with individuals not corporations.
14 See Ingersoll (1987): 271 or Cox/Huang (1991): 468.
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2 The basis of dynamic portfolio selection: optimization under diffusion
processes15

Every continuous time model needs a further assumption specifying the price process, i.e.
the return distribution. In general, literature uses price processes without jumps (diffusion
processes) to model "normal" price movements "due to temporary imbalance between sup-
ply and demand, changes in capitalization rates, changes in the economic outlook, or other
information, that causes marginal changes in the stock's value" etc.16

The first approach, the basis model, uses the geometric Brownian motion to capture "nor-
mal" price movements. Therefore, the following additional assumption results:

−  Stock prices are governed by a geometric Brownian motion.

Hence, the price process of stock j reads

(4) d P t P t d t P t d z tj j j j j j( ) ( ) ( ) ( )= +α σ

αj constant instantaneous mean ex dividend return of stock j
d Pj(t) change of the ex dividend price of stock j between t and t + d t
d t infinitesimal change of time
σj constant instantaneous standard deviation of the ex dividend return

of stock j
d zj(t) increment of stock j's Wiener process

Price changes are composed of a drift, i.e. expected (1st term on the right side of equation
(4)), and a superimposed stochastic, i.e. unexpected, component (2nd term). Such a model
of stock prices coincides with economic intuition: Stock prices following a geometric
Brownian motion have a logarithmic normal distribution. Thus, they are restricted to
nonnegative values, a fact reflecting the nature of assets with limited liability (returns are
normally distributed).
The price of the riskless asset moves according to the following diffusion process17:

(5) d P t r P t d t0 0( ) ( )=

r riskless instantaneous return

Transactions in those assets characterized by (4) and (5) as well as the instantaneous con-
sumption determine the wealth change:18

                                                       
15 See Merton (1969), Merton (1971) and Merton (1973b).
16 Merton (1976): 127.
17 In an economy without free lunches, all riskless assets must have the same instantaneous return. There-

fore, it suffices to examine only one riskless asset.
18 For a proof, see Merton (1971): 379.
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(6) d W(t) = ( ) ( )T Tt r W t d t r W t C t d t W t t d tw ( ) 1 ( ) ( ) ( ) ( )w ( ) z( )α σ− + − +
T

transposition of a vector or matrix
α n × 1 vector of constant instantaneous mean ex dividend returns
σ n × n diagonal matrix of constant instantaneous standard deviations

of the ex dividend returns
1 n × 1 vector that solely has the number one as components
d z(t) n × 1 vector of the increments of correlated Wiener processes hold-

ing:
d z d z d ti j ij= η  (ηij

: correlation coefficient of stock i's and j's price

changes)

In order to prepare for calculation of optimum consumption and portfolio programs, we de-
fine a function J[Y,t] denoting the expected utility of the optimum strategy from t to the
planning horizon T if the investor has initial wealth Y in t:

(7) [ ] [ ] [ ]J Y t Max E e U C s d s e B W T
C

t
s

t

T
T, ( ) ( )

,
≡ ∫ +


− −

w

ρ ρ

We can characterize optimum consumption portfolio decisions by means of J[.] in two re-
spects: Firstly, further portfolio modification cannot increase expected utility, the change of
J[.] with respect to a marginal change of consumption or portfolio weights is zero. If the
expected utility could still be increased, we would - by definition - not have reached the op-
timum strategy. Secondly, the expected utility of the optimum strategy must equal the be-
quest utility in the planning horizon. The so-called Hamilton/Jacobi/Bellman equation inclu-
sive of boundary condition gives us a formal treatment of this problem as follows19:

(8) 0 = [ ]
C

t
t WMax e U C t J J r W t C t

,
( ) ( ( ) ( ))

w

− + + −



ρ

+ − + W
T

WW
TJ W t t r J W t t t( ) ( )( ) ( ) ( ) ( )w 1 w wα Ω1

2
2

with boundary condition: J[W(T),T] = [ ]− ρTe B W T( )

Ω n × n matrix of constant instantaneous variances/covariances of the
ex dividend returns (instantaneous variance/covariance matrix)

To find the solely interesting optimum portfolio weights, we differentiate and solve the
Hamilton/Jacobi/Bellman equation (8) with respect to w(t)20

(9) w 1( )
( )

( )t J
J W t

rW

WW

= − −−Ω α1

                                                       
19 The derivation of this formula is well-documented in literature, e.g. Kamien/Schwartz (1981): 246 p.

Moreover, for the ease of exposition, we evaluate the theoretically exact formulation J[Y,t] at Y = W(t)
and use J[W(t),t] in every future calculation.

20 The sufficient conditions for a maximum will be met if JWW is negative (see Merton (1971): 382).
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From (9) we conclude that two elements determine the optimum portfolio weights: The
structural component Ω α− −1( )1r  (which suggests how the resources intended for risky in-

vestment should be divided between stocks) is independent of investors' preferences, is ex-
clusively governed by the trade-off between excess return and risk and therefore represents

a µ-σ-efficient portfolio21. The weight − W

WW

J
J W t( )

, i.e. the relative risk tolerance based on

the derived utility function J[.], depends on investors' preferences and determines the vol-
ume of funds desired at all for risky investment.
Normalizing the portfolio weights (9) by using 1 1T rΩ α− −1( ) , we can achieve a more de-

tailed interpretation:

(10) w T( ) ( )tant w tg=

T ≡ 1
1

1

1 1
1Τ Ω α

Ω α−
−

−
⋅ −

( )
( )

r
r efficient portfolio of risky assets if there is also a

riskless asset (tangency portfolio)

w ttang ( )  ≡ − −−W

WW

J
J W t

r
( )

( )1 1ΤΩ α1 weight invested in the tangency portfolio

Pursuant to equation (10), a decision maker is indifferent between holding optimum portfo-
lio weights w(t) according to (9) or investing the weight w ttang ( )  in the tangency portfolio

T. Therefore, investors' needs to allocate risk will be satisfied if they buy the fund T. Since
the composition of T is, in addition, independent of the indirect utility function J[.] and thus
investors' preferences, this statement does not only hold for one specific, but all decision
makers (Tobin separation)22.
This fundamental statement of "classical" continuous-time portfolio selection, the construc-
tion of portfolio weights (9) and the Tobin separation (10), must be analyzed in a jump en-
vironment, indeed for that reason, because Spremann (1997)23 postulates a collapse of both
statements under jumps.

3 A first introduction to price jumps - the case of two stocks

3.1 General characteristics of price jumps (rare events)

Chapter 2 is based on diffusion processes with small changes and for that reason, continu-
ous, although not differentiable sample paths. This chapter's price jumps differ significantly.
On the one hand, they do not vary permanently, but only at certain times. On the other

                                                       
21 For an exact proof, see Ingersoll (1987): 283.
22 To be precise, investors have to have homogeneous expectations, that is identical opinions with respect

to α and Ω .
23 See Spremann (1997): 866, 880.
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hand, their movement is to a large extent24. Hence, discontinuous sample paths characterize
jump/diffusion processes25.

Apart from this formal representation of jump, we are, of course, interested in their eco-
nomic description: The diffusion process portrays "normal" movements. Therefore, jumps
denote an explicit description of "short-run" vibrations caused by extraordinary events and
can take into consideration forecasts and hence information not integrable into diffusion
processes.

3.2 Mathematical modeling of large variations

Compression of the last section's jump information (variation to a large extent and occur-
rence at only finite points in time) to a stock price model yields the following result: At
every time t the stock price follows the geometric Brownian motion26 (4). At time τi a stock
price jump occurs in addition. This large price change is firstly independent of the "normal"
risk to deal with the extraordinary nature of jumps. Secondly, we capture it by a random
variable, the so-called jump amplitude, expressing the jump as percentage of the current
stock price27. Formally, we get a price change of

stock 1:

(11a) d P t1( ) = α α1 1 1 1 1P t d t P t d z t( ) ( ) ( )+ [ )t i i∈ − 1τ τ,
P i1( )τ = ( )1 1 1+ −~ ( ) ( )ϕ τ τi iP t i= τ
~ ( )ϕ τ1 i random variable specifying the jump amplitude of stock j in τi

τi τ τ τ τ0 1 20= ≤ ≤ ≤ ≤... ...i  time at which jumps occur

i
−τ time immediately prior to the jump time τi; to be more precise, we

have to formulate: P P sj i s i
j( ) lim ( )τ

τ

−

→
=  (s < τi; see Neftci (1996): 214)

                                                       
24 "Large" means subject to extraordinary price vibrations and should be understood as counter concept of

"small" changes caused by pure diffusion processes.
25 See Merton (1982): 43.
26 Basically, it would be no problem to use a more general model of the diffusion component. However, the

actually interesting jump component would not be affected by this change (see Nietert (1996): 118 pp.)
so that we continue to utilize the simplest diffusion model.

27 The use of a percentage )t(~ϕ  for the jump size ensures W(t) to be positive for all t. Hence, there is no
free lunch even in a continuous time environment (see Dybvig/Huang (1988): 390, theorem 2). For, free
lunches exclude a solution to the portfolio problem from the outset.
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or rather,

stock 2:

(11b) d P t2( ) = α α2 2 2 2 2P t d t P t d z t( ) ( ) ( )+ for all t

Based on the previous price model, we can formalize the wealth change in a jump diffusion
environment - every single stock enters wealth only with its portfolio weight - as28:

(12) d W(t) = ( ) ( )[ ] ( )w t r w t r W t d t r W t C t d t1 1 2 2( ) ( ) ( ) ( ) ( )α α− + − + −

[ ]+ +w t d z t w t d z t W t1 1 2 2( ) ( ) ( ) ( ) ( )

for [ )t i i∈ − 1τ τ,  (see (6) adapted to the case of two stocks)

W W w Wi i i i i( ) ( ) ( ) ~ ( ) ( )τ τ τ ϕ τ τ− =− − −
1 1

for t i= τ

Of course, ex ante we do not know at which time τi a jump occurs. Therefore, the equation
(12) corresponds more to the illustration of jump effects than their realistic modeling. We
can, however, capture the occurrence at just finite points of times by means of so-called
jump probabilities. For stock 1, based on jump probabilities calculated from Poisson proc-
esses29, we can write:

(13) probability{one jump occurs in the time interval (t,t + dt)}
= 1λd t

probability{more than one jump occurs in the time interval (t,t + dt)}
= o(dt)

probability{no jumps occur in the time interval (t,t + dt)}
= 1 - 1λd t

1λ intensity, that is average number of jumps per unit time, of the Pois-
son process of stock 1

o(d t) function of greater order than one; such terms will be negligible if dt
is infinitesimal small

Therefore, the second characteristic of jumps, occurrence at a solely finite number of times,
can be handled by means of a simple switch: "one jump occurs/no jumps occur". Conse-
quently, we specify the wealth change as:

                                                       
28 Since consumption is measured over a time period, there can be no consumption at time τi. Conse-

quently, the wealth's jump component in (12) does not contain consumption.
29 For a derivation of these probabilities, see e.g. Nietert (1996): 253 p.
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(14) d W(t) = ( ) ( )[ ] ( )w t r w t r W t d t r W t C t d t1 1 2 2( ) ( ) ( ) ( ) ( )α α− + − + −

[ ]+ +w t d z t w t d z t W t1 1 2 2( ) ( ) ( ) ( ) ( )

with probability 1 1− λd t (diffusion case)

∆SW t( ) = ( ) ( )[ ] ( )w t r w t r W t d t r W t C t d t1 1 2 2( ) ( ) ( ) ( ) ( )α α− + − + −

)t(W)t(~)t(w 11 ϕ+

with probability λ1d t (jump case)30

∆WS wealth change due to jumps of stock 1

To sum up, we can conclude from equation (12) in connection with equation (14) that both
parameters, jump amplitude and jump probability, completely describe the jump risk.

3.3 Optimization in the case of two stocks

From chapter 2, we know that a portfolio strategy will be optimum if the investor cannot
increase his expected utility by further portfolio adjustments ( []d J . = 0 ). We formalize this

notion by means of the jump-adjusted Hamilton/Jacobi/Bellman equation31 inclusive of
boundary condition. Differentiating and solving the Hamilton/Jacobi/Bellman equation with
respect to the portfolio weights, yields the following optimum portfolio strategy32:

(15a) w1(t) =
( ) ( )

( )−
− − −

−
J

J W t
r rW

WW ( )
σ α σ σ η α

σ σ σ σ η
2
2

1 1 2 12 2

1
2

2
2

1 2 12

2

1st term
1 24 4 4 4 4 4 4 34 4 4 4 4 4 4

[ ]{ }
( )−

+

−
⋅

E J w t t W t t

J W t

nd term

t

WW

1 1 1 2
2

1
2

2
2

1 2 12

2 1

1

2

~ ( ( )~ ( )) ( ),

( )

ϕ ϕ σ
σ σ σ σ η

λ
1 24 4 4 4 4 4 4 4 4 44 34 4 4 4 4 4 4 4 4 4 4

and

                                                       
30 To keep our symbols readable, we do not distinguish - in accordance with literature - between W(t) and

W t( )−  from now own.

31 The derivation of this equation can be found in appendix 1.
32 The sufficient conditions will be fulfilled if JWW < 0 holds (see Nietert (1996): 262).
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(15b) w2(t) =
( ) ( )

( )−
− − −

−
J

J W t
r rW

WW ( )
σ α σ σ η α

σ σ σ σ η
1
2

2 1 2 12 1

1
2

2
2

1 2 12

2

1st term
1 24 4 4 4 4 4 4 34 4 4 4 4 4 4

[ ]{ }
( )−

+ −
−

⋅
E J w t t W t t

J W t
t

WW

1 1 1 1 2 12

1
2

2
2

1 2 12

2 1

1~ ( ( )~ ( )) ( ),

( )

ϕ ϕ σ σ η
σ σ σ σ η

λ

2nd term
1 24 4 4 4 4 4 4 4 4 44 34 4 4 4 4 4 4 4 4 4 4

The optimum portfolio weights consist of two basic parts: the well-known µ-σ-efficient
portfolio of "normal" price movements (1st term) and a correction term (2nd term) taking
stock 1's jumps into consideration. In analogy to the interpretation of the 1st term (see the
statement following equation (9)), we can identify two components of the correction term: a

structural component ( )
σ

σ σ σ σ η
λ2

2

1
2

2
2

1 2 12

2 1
−

⋅  or rather ( )
−
−

⋅σ σ η
σ σ σ σ η

λ1 2 12

1
2

2
2

1 2 12

2 1 , which is in-

dependent of investors' preferences and weights the average number of jumps per unit of
time against the risk from "normal" price movements. Moreover, we have a volume factor

[ ]{ }− ⋅
+J

J W t

E J w t W t t

J
W

WW

t

W( )

~ ( ( ) ~ ) ( ),1 1 11ϕ ϕ , which is dependent on investors' preferences and

judges the importance of jumps by means risk tolerance and expected utility comparisons

before and after jumps. These different volume factors [ ]{ }−
+E J w t W t t

J W t
t

WW

1 1 11~ ( ( )~ ) ( ),

( )

ϕ ϕ
 and

− J
J W t

W

WW ( )
 ensure furthermore that it is not possible to combine the µ-σ-efficient portfolio

and the correction term to one single term. Therefore, (15a) and (15b) call for a totally new
portfolio strategy under price jumps.
Our thesis up to now illustrates the tight connection between the jump model chosen and
the optimum portfolio weight under jumps. Of course, the naive jump model of equation
(11a) and (11b) does not represent an economically founded jump model because it leaves
unanswered the following important questions:

• Is it economically permissible to make only one stock jump, or rather, what jump model
are we thereby implying?

• What will happen if there are more stocks subject to jumps? How does wealth change
under these circumstances?

• What values can the jump amplitude reach without violating arbitrage or institutional
conditions?

Generalizing the above arguments, we have to scrutinize the proliferation of jump models
existing in literature with respect to their economic foundation: Eastham/ Hastings (1988)33

                                                       
33 See Eastham/Hastings (1988): 589, formula (1.1).
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and Aase (1993)34 postulate a simultaneous jump of all stocks and a wealth change as fol-
lows: "wealth jumps/wealth does not jump". Hastings (1992)35 studies only one risky asset
and reaches similar results. On the contrary, Aase (1984)36 allows every stock to jump with
its own probability and in this way creates a more sophisticated wealth path.
Since, as just seen, the jump description exerts an enormous influence on the model's re-
sults, we have to analyze the economic characterization of jumps before we can use them.
For, without such reasoning, equations (15a) and (15b) as well as the deduced demand for a
new portfolio strategy under jumps would only be conjectures.

4 More precise inspection of price jumps

4.1 Economic modeling

In chapter 3 we stated that jumps were the explicit description of short-term price move-
ments due to extraordinary events. We also developed a naive jump model for the case of
two stocks. Now we have to lay the basis of an economically founded portfolio theory un-
der price jumps by using a reasonably motivated jump model.
To that end, we narrow down in the first step the scope of jumps through the analysis of the
causes of jumps: Literature cites new fundamental information about a company, industry or
the market37. In addition, literature offers non-fundamental explanations for market jumps38.
Hence, we can identify:

−  firm-specific jumps: These affect solely the stocks of one company and leave all other
stocks untouched. A good example is the BMW stock, whose price rose by 11% on
03/15/2000 due to rumors that they will restructure their Rover investment.

−  cluster-specific jumps: These affect every stock of a cluster (e.g. industry) and cause the
jump sizes of the stocks to move together whilst leaving the stocks of other clusters un-
touched. A typical case would be the price rise of bank stocks in Germany on
03/07/2000 after the annoucement of the Deutsche Bank/Dresdner Bank merger.

−  market jumps: These affect every stock of the market and cause the jump sizes of all
stocks to move together. The price decrease of the DAX by 2.72% on 03/15/2000 due
to interest rate fears.

                                                       
34 See Aase (1993): 75, formula (3.6).
35 See Hastings (1992): 61, formula (2.2).
36 See Aase (1984): 82, formula (1).
37 See Merton (1976): 127 for firm- and industry-specific jumps respectively. For market jumps, see Black

(1988), Roll (1989) and Fama (1989).
38 For instance, overreaction of the market (French (1988)) or information asymmetries in connection with

Portfolio Insurance (Gennotte/Leland (1990) and Jacklin/Kleidon/Pfleiderer (1992)).
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In a second step, we specify the range of possible jump outcomes. Stock price movements
will only be regarded as jumps if they exceed that minimum price change a, that is no longer
"normal". Two factors influence a: Firstly, the trading span. Daily transactions demand
higher "normal" vibrations than hourly portfolio revisions. Secondly, the market conditions.
Highly volatile environments (e.g. in the third quarter of 1999 DAX-movements by 1.5 % a
day occurred often) need other boundaries than low volatility phases. However, every in-
vestor has a different notion of "normality" - we can call the lower boundary a subjective
boundary on that account39. - A similar reasoning yields an upper boundary b for jumps: Let
us call the downward jump "crash" and the upward one "explosion". Due to arbitrage ar-
guments, there must be an upper boundary for crashes. A stock is an asset with limited li-
ability, does not require any payment beyond its purchasing price and therefore offers a cash
flow of zero at worst. Thus, the crash amplitude must be ≤ 100%. In addition, upper limits
can be motivated from an institutional point of view. In the case of explicit price limits40 the
upper boundary is obvious. In Germany however, there are no such limits. The Börsenge-
setz (German stock market law) requires merely orderly price formation41. So far, according
to § 43 I BörsG, there are only implicit price limits within the scope of a trading stop. Un-
fortunately, § 43 I BörsG stresses that a trading stop needs circumstances resting on the be-
havior of the issuing company or third party action. It explicitly excludes circumstances
owing to technical market situations, such as significant supply or demand surplus. Conse-
quently, in Germany there are neither explicitly nor implicitly legally binding price limits. On
the other hand, we can read in § 8 IV "Börsenordnung" of the Frankfurt Stock Exchange
from 02/25/1997 (rules developed by the stock exchanges themselves) that price formation
under heavy price fluctuations can only take place after an appropriate period of time. In
addition, a trading stop can, according to § 43 I BörsG, occur in the case of publication of
insider information by the issuing firm. Putting both facts together, there will practically be
an upper boundary for price changes even in Germany. - At any rate, b is an exogenous up-
per limit from the investor's point of view.

                                                       
39 Of course, price jumps smaller than 1% a day can no longer be given the attribute of a jump beyond the

subjective character of the minimum jump size. For, simulations of the diffusion process (e.g. instanta-
neous mean: 0.15 and instantaneous standard deviation: 0.2 for a geometric Brownian motion as well as
setting d t equal to one day, that is 1

360
) show that price changes between + 1,3% and -1,3% can be

modeled by an diffusion process without any problem. - In so far, using a lower limit for jumps does not
forgo any information of the price process.

40 See Roll (1989): 54 for a list of stock exchanges using that device.
41 See § 11 II BörsG, whereas we have to interpret "orderly" in the sense of equal opportunities and trans-

parency (see Kümpel (1996): 77). For further details with respect to price formation § 11 II 6 BörsG is
referring to the "Börsenordnungen" (rules developed by the stock exchanges themselves). But, also in the
"Börsenordnung" of the Frankfurt Stock Exchange from 02/25/1997 there are no explicit price limits
(see §8, provisions in the cause of price fluctuations).
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To sum up the above paragraph:

• A crash is a downward jump with
0 < aC  ≤ jump size  ≤ bC  ≤ 100%

• An explosion is an upward jump with
0 < aE  ≤ jump size ≤ bE  ≤ ∞

4.2 Consequences of economically reasonable jump description for modeling

4.2.1 Consequences for the jump probability

After the findings of chapter 4.1, we know jumps to have different scopes. We deal with
this fact by using improved models of the jump probability:
Our naive jump model of equation (12) implies that solely stock 1 is subject to jumps.
Therefore, we assumed implicitly firm-specific jumps. Due to this, we can generalize: Under
firm-specific jumps every stock has a jump possibility and thus probability of its own, that is
λ1d t , λ2d t , etc. Consequently, the probability of a simultaneous occurrence of two jumps

under firm-specific jumps is negligible42. Hence, the probability of a wealth jump under firm-
specific jumps equals the probability that stock 1 jumps or stock 2 or ..., i.e. we simply sum
over the individual probabilities.
Eventually, we have to take into consideration the two manifestations (crash and explosion)
of jumps. For that reason, the above described jump probabilities need an adaptation to this
specification: In the period between t and t d t+  there occurs with the probability
1 − −λ λCj Ejd t d t  no jump (stock j's price is governed by the diffusion component), with
probability λEj d t  an explosion and with probability λCj d t  a crash. Such an approach can

be justified from a practical point of view besides the mere theoretical construction: A
highly volatile environment restricts investors to forecasts only stating large movement, but
does not allow a reliable estimation of the vibrations' direction43. Hence, even in this envi-
ronment it is desirable to integrate both forms of jumps into one formula in order to gain
optimum portfolio strategies.

As opposed to firm-specific jumps, market jumps call for simultaneous jumps of all stocks
of the market; the probability that only one stock does not jump equals zero. Therefore, we
can no longer rely on the individual jump probability λj d t . We have to focus on the prob-

ability of a jump of the whole market λM d t , instead, that is: 1λ λd t d tk= = =... ...

                                                       
42 For, the probability that a simultaneous jumps of stock 1 and 2 occurs is ( )λ λ1 2d t d t o d t⋅ = .

43 We are talking about situations in which buying e.g. a straddle would be the optimum strategy. The most
prominent example is presented by Schwert (1990): 80: On October 28th and 29th 1929 stocks of a
portfolio representing the US stock market dropped by more than 10%, on October 30th stock prices
soared by more than 10%. Both on 29th and on 30th the market movement's direction was unclear.
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= =n Md t d tλ λ . Of course, we also have to distinguish between crashes and explosions

under market jumps.

4.2.2 Consequences for the jump amplitude

The jump amplitude - the second parameter characterizing jumps - is intended to describe
the extent of the price change due to occurrence of an exceptional event. Since extraordi-
nary events at different dates can lead to different price movements, we do not use a con-
stant to capture jump amplitudes, but a random variable. In general, every probability distri-
bution can be used to represent the jump size ~ϕ j (t), as long as it does not violate the range

of crashes and explosions prescribed, that is: aj ≤ ~ϕ j (t) ≤ bj. For example, possible candi-

dates are: uniform distribution, when an investor has no idea about the jump size, triangular
distribution to model crudely and Beta distribution to thoroughly analyze distributions
skewed to the right and to the left respectively44. The logarithmic normal distribution of
1 + ~ ( )ϕ j t  widely used in literature (e.g. Merton (1976) and Chang (1995)) due to its com-

putational advantages is not a permissible model of the jump size from a strictly theoretical
point of view because its input ranges from zero to infinity and lies beyond upper and, espe-
cially, lower limits of the amplitude.
Eventually, we have to differentiate between crashes and explosions and to distinguish be-
tween mutually uncorrelated (firm-specific jumps) and jointly distributed (market jumps)
jump amplitudes45.

4.2.3 Consequences for the wealth change

Putting together our results with respect to jump probabilities and amplitudes, we obtain the
following economically founded46 wealth change equation:

                                                       
44 For an explicit calculation of optimum portfolio weights under consideration of these distributions, see

Nietert (1996): 98 p. and 101.
45 Cluster-specific jumps are, from a theoretical point of view, a mixture between firm-specific and market

jumps: Within the cluster, stocks behave similarly to a market jump since every stock has to jump. Be-
tween different clusters, stocks behave like under firm-specific jumps because different clusters can jump
independently of each other. To sum up, cluster-specific jumps do not contain new information and will
be skipped for the rest of the article.

46 Strictly speaking, stochastically changing jump probabilities would be suitable to capture the occurrence
of surprising information and thus to consider economic needs of a jump model. However, we would
have to rely on a far more complex model of jumps without observing consequences on portfolio strategy.
For that reason, we skip further details and refer to Nietert (1998) and Nietert (1999).
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• firm-specific jumps:

(16a) d W(t) = ( ) ( )T Tt r W t d t r W t C t d t W t t d tw 1 w z( ) ( ) ( ) ( ) ( ) ( ) ( )α σ− + − +
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1 1

− ∑ + ∑
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(jump case)

• market jumps:

(16b) d W(t) = ( ) ( )T Tt r W t d t r W t C t d t W t t d tw 1 w z( ) ( ) ( ) ( ) ( ) ( ) ( )α σ− + − +

with probability ( )1 − +λ λEM CM d t (diffusion case)

∆SW t( ) = ( ) ( )T Tt r W t d t r W t C t d t W t t d tw 1 w z( ) ( ) ( ) ( ) ( ) ( ) ( )α σ− + − +

)t(W)t(~)t(w
n

1j
Mjj∑

=
ϕ+

with probability ( )λ λEM CM d t+ (jump case)

~ ( )ϕ Mj t jump amplitude of stock j under market jumps

Hence, we do not postulate large wealth changes, but derive them from the changes of sin-
gle parts of wealth - the individual stocks. We therefore avoid those problems that appeared
during the discussion of literature's jump models at the end of section 3.3.

In addition, a comparison of equation (16a) and (16b) shows that every stock has a jump
probability as well as amplitude under both firm-specific and market jumps. Although we
are considering scenarios completely different at the first glance, they are theoretically very
similar to handle. For that reason, it suffices to analyze one version, the basic results also
apply to the other case.
Due to this, we will focus on firm-specific jumps; they are able to illustrate the jump com-
ponent in the best way: For, under firm-specific jumps every stock has its own jump possi-
bility. Moreover, this is a useful feature even in the case of long lasting stock market crises,
e.g. the Southeast Asia crisis, because even under those circumstances stock market crashes
do not happen every day. We observe special movements of selected stocks instead.
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5 Optimization under (firm-specific) price jumps

5.1 Theoretical analysis

Only with the economically founded jump model developed in chapter 4 do we have the ba-
sis for a portfolio theory under price jumps.
To obtain optimum portfolio weights, we use the same technique as in chapter 3 during the
optimization under naive jump models. That is, we differentiate the Hamilton/Jacobi/Bell-
man equation47 with respect to the portfolio weights and rearrange:

(17) w(t) = ( )− −−W
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Thus, optimum portfolio weights (17) reproduce both results of the naive jump model (see
equations (15a) and (15b)): the optimum portfolio consists of two basic parts, the µ-σ-
efficient portfolio of "normal" price fluctuations (1st term) and correction terms (2nd term:
explosion and 3rd term: crash). The correction terms have two components: a structural
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47 The derivation of this equation can be found in appendix 1.

The sufficient conditions will be fulfilled if JWW < 0 holds (see Nietert (1996): 262).
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Moreover, we can now confirm the conjecture "jumps demand explicit correction terms"
formulated in equations (15a) and (15b) by means of equation (17) and the economically
founded jump model. To be more precise, there is exactly one correction term j for the jump
of each stock j48. Therefore, (17) calls for a totally new portfolio strategy: It does not work
to simply ignore jumps due to their rare occurrence or to simply adjust stocks' characteris-
tics to jumps and continue to use the old portfolio rules of the "normal" risk case. So far,
we have confirmed Spremann's guess49 that jump risks demand a new portfolio selection
strategy. We are also able to justify a related statement via (17): good diversification under
"normal" risk does not necessarily mean good diversification under jumps; for, correlation
between stocks' "normal" risk cannot take into consideration jumps because they are unable
to generate the 2nd and 3rd term in equation (17).

In order to analyze Spremann's second statement, the collapse of the Tobin separation under
jumps, and to be simultaneously able to scrutinize the correction terms, we transform the
optimum portfolio weights under jumps (17) into the funds representation - by analogy to
equation (10) of the "normal" portfolio selection. That is, normalizing the correction terms

in (17) by 1
0

0

T
kiΩ −















1 λ  the optimum portfolio weights under jumps read
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Pursuant to equation (18), a decision maker is indifferent between holding optimum portfo-
lio weights w(t) according to (17) or investing the weights wtang(t) and w tH ki ( )  in the funds

T and Hki. Therefore, investors' needs to allocate risk will be satisfied with the funds T and

                                                       
48 This is also true in the case of market jumps as we can illustrate in a two-stock-environment. The cor-

rection terms (without distinguishing between crashes and explosions) read:
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49 See Spremann (1997): 866 and 867 p.
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Hki alone. Since the composition of T and Hki is, in addition, independent of the indirect
utility function J[.] and thus investors' preferences, this statement does not only hold for one
specific, but all decision makers (extended Tobin separation). Consequently, we restate the
time-induced portfolio separation discovered by Franke50 under geometric Brownian motion
in a jump environment. For that reason, we contradict Spremann (1997)51, who claims that
investors will no longer hold identically structured portfolios under jumps.
Of course, we cannot combine the funds T and Hki, due to their different volume factors
wtang(t) and w tH ki ( ) . We need the tangency portfolio, n correction funds against explosions

and n correction funds against crashes, that is 2 n + 1 funds, to span the risk-return-
characteristics of n stocks. Hence, delegation of portfolio decision, the original concern of
portfolio separation, does not fail due to general lack of delegable decisions, but because it
is easier to construct the optimum portfolio directly from stocks rather than relying on
funds. In addition, we are faced with the unrealistic assumption of homogenous expecta-
tions referring to the jump parameters - jump parameters are part of the "short-run" price
movement.
Therefore, it is important to identify those circumstances under which we will need less than
2 n + 1 funds to span the risk-return-characteristics of n stocks. Obviously, we will need
less than 2 n + 1 funds if the jump probability of stock j equals zero. More interesting how-
ever, are the following scenarios of funds' number reduction. Firstly, in the case of identical
structural components, secondly, in the case of identical volume factors and thirdly in the
case of a combination of the first two points.
The first case - the standard approach of existing jumps models in literature52 - implies
identical crash and explosion probabilities for one stock j and yields in (17):
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According to (19), we need only one instead of two funds to correct stock j's jump conse-
quences.
The second case focuses on the combination of funds due to identical volume factors. This
can happen on the one hand with different stocks by putting together e.g. explosion ampli-
tudes:

(20a) [ ]{ } [ ]{ }E t J k E t J jt Ek W E t Ej W E
~ ( ) ~ ( )ϕ ϕ=

and thus in (17)

                                                       
50 See Franke (1983): 249.
51 See Spremann (1997): 866.
52 See Aase (1984), Eastham/Hastings (1988), Hastings (1992) and Aase (1993).



21

(21a) [ ]{ }−














+






























− −E t J jt Ej W E Ej Ek
~ ( )ϕ λ λΩ Ω1 1

0

0

0

0

Hence, it does not suffice that the explosion amplitudes of two stocks coincide since their
portfolio weights can diverge (due to the "normal" risk). Instead, we have to demand the
identity of the risk-neutralized53 jump amplitudes of stock j and k - according to equation
(20a).
On the other hand, identical volume factors will appear with just one stock j if the risk-
neutralized crash and explosion sizes coincide:
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The third case combines identical crash and explosion probabilities for stock j with identical
risk-neutralized crash and explosion amplitudes. Under these conditions, jumps of stock j do
not contribute correction terms to the optimum portfolio weights (17) because the bracket
in (19) becomes zero due to (20b).
To sum up, the discussion of the correction terms stresses the importance of jumps. The
number of jump terms only diminishes for obvious trivial cases λj = 0  or rather λ λEj Cj= .

Further reductions can merely occur in the pronounced special cases of equation (20a) and
(20b) or in the limiting case E kjϕ  →  ∞ 54 for sufficiently risk avers investors.

In a final step, let us analyze the exact correction behavior of the correction terms. This task
can be achieved most easily by using the fund representation: Calculating the return covari-
ance between stock j and correction term i, yields

for i = j
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53 In the spirit of option pricing theory under jumps, see Nietert (1997): 19.
54 See the ceteris paribus analysis of the following chapter.
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for i ≠ j
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( )0 01 vector that has in its i's column the number one and in every other
column the number zero

Rj stock j's return during period d t
RHki return of the ith correction fund against jump k (k = E, C) during

period d t

That means the correction portfolio Hkj eliminates, according to (22a), essentially55 stock j's
jump probability and, therefore, an important part of its jump risk. For that reason, the op-
timum portfolio weights of (17) are on the one hand able to consider huge loss dangers and
on the other hand are able to take into account the chances of immense price explosions.
Due to this, we establish equation (17) as an alternative to traditional Shortfall56 and Port-
folio Insurance approaches.
Although correction portfolio Hkj corrects class k jumps of stock j, it does not consist solely
of stock j's weight changes, that is, Hkj is not identical with stock j: For, calculating the

structural component of Hkj, Ω −














1

0

0
λkj , illustrates that we extract the jth column from the

inverted variance/covariance matrix weighted with λkj . Thus, the correction term influences

the portfolio weights of every stock because of complementary and substitutive connections
between stocks' "normal" risk and our fund representation (18) proves to be nontrivial.
Moreover, our portfolio adaptation via correction terms reminds us of the portfolio strategy
under stochastic opportunity set (Merton (1973a)/Breeden (1979)). - However, the similar-
ity to Merton (1973a) and Breeden (1979) is restricted to the basic idea and diverges in its
exact mechanism. There, under stochastic opportunity set, we have a vector x(t) influencing
all stocks. Hence, we structure the optimum portfolio by means of correction terms against
changes of x(t) in the following way: A loss in one stock due to e.g. an unfavorable change
of x(t) should be (partially) offset by a gain of another stock reacting positively on the
movement of x(t). Thus, there is direct compensation and for that reason, the correction
terms are called "hedge terms". Here, under jumps, there are no correction terms against
changes of x(t) in the equation of optimum portfolio weights (17) as, due to the firm-
specific character of the jumps, there cannot be a common factor x(t). For that reason, we

                                                       
55 The constant 

( )
1

10 0 1λkj Ω −
 and the weight wHkj(t) investors hold of the correction portfolio eliminate

each other, see equation (18).
56 See e.g. Albrecht (1993).
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are only able to restructure the portfolio to deal with jumps, but a direct (causal) compen-
sation effect does not exist. We therefore prefer the phrase "correction term".

5.2 Ceteris paribus analysis

To gain further insights into the optimum portfolio weights (17), we conduct a ceteris pari-
bus analysis with respect to the jump parameters amplitude and probability. As a prepara-
tory work, we separate the crash from the explosion case and use constant jump parameters
because this will facilitate stronger results:
Since the optimum portfolio weights w(t) appear on both sides of equation (17), we use im-
plicit differentiation and set in the crash case
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wCk(t) stock k's portfolio weight if crashes are the only type of jumps
vkj kjth element of the inverted variance/covariance matrix

Let us start our analysis with a change of the crash amplitude ϕC . Basically, we are inter-

ested in two effects on k's portfolio weight: Changes of parameters of stock k itself and of
another stock j, that is formally for i = (k, j):
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with negative sign since it generally holds vkk > 057. For the numerator we have

                                                       
57 We can prove the positive sign of vkk as follows: According to its definition, the (instantaneous) vari-

ance/covariance matrix Ω  is positive definite, i.e. we have for every vector m ≠ 0 (see e.g. Karlin/Taylor
(1975): 542): m mTΩ > 0 . Defining y m≡ −Ω 1 , yields m y= Ω . In addition, the existence of Ω -1 assures
Ω  y ≠ 0. Hence:

m m y y y yT T TΩ Ω Ω Ω Ω− −= = >1 1 0 , i.e. Ω -1 is positive definite.
Especially, we have for all identity vectors ek (k = 1,...,n) e ek kΩ − >1 0 . As e ek kΩ − 1  (k = 1,...n) portrays
the diagonal elements of Ω -1, we have proven the positive sign of vkk.
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The sign of (26a) is undetermined because the bracket has an ambiguous sign. The same is
true for (26b). In addition, we do not know the sign of vkj.
Hence, stock k's portfolio weight will increase, remain constant or decrease if its crash am-
plitude or the jump size of another stock rises. Complex complementary and substitutional
connections due to the "normal" risk of the stocks disprove the naive statement "an increase
in stock k's crash amplitude results in a reduction of its portfolio weight" and "an increase in
stock j's crash amplitude results in an increase of stock k's portfolio weights". Thus, the
connection to the "normal" risk is also responsible for the fact that some stocks have posi-
tive portfolio weights despite a crash and that there is no automatic short selling58. This re-
sult, economically not intuitive at the first glance, can be explained as follows: The cumula-
tive effect trading off chances/risks of "normal" price movements against chances/risks of
jumps consists on the one hand of a direct jump effect on portfolio weights (primary effect).
On the other hand, portfolio weights necessary because of the primary effect induce conse-

quences with respect to the "tolerance towards risk" [ ]−
J k
J W t

W C

W ( )
 (secondary effect). - An ex-

ample may help to illustrate this statement: Stock j's crash demands a significant reduction
of its portfolio weights (primary effect). But, these low portfolio weights do mean a loss of
diversification against "normal" risk and a different evaluation of this weak diversification
(secondary effect) compared to the pre-crash situation (risk tolerance is governed by the

additional term [ ]J k
J

W C

W

). Hence, we end with a smaller reduction of the portfolio weights

(cumulative effect).

In the special case ∂
∂ϕ

C k

C k

w t( )  however, we are able to exactly specify and interpret these

conditions under which an increase in stock k's jump amplitude has negative or positive
consequences on its portfolio weights. Restructuring the bracket in (26a), yields:

                                                       
58 See the results of our numerical analysis in appendix 2.

By the same token, in the case of explosions investors do not solely hold the stock subject to jumps.
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(27a)
[ ]
[ ]−

−
−

> −
J w t W t

J w t W t
w t W t

W Ck Ck

WW Ck C k

C k C k

( ( ) ) ( )

( ( ) ) ( )
( ) ( )

1

1

ϕ
ϕ

ϕ

      absolute risk tolerance
               measured
 at the wealth after the crash

wealth change

due to the crash

1 24 4 4 4 4 34 4 4 4 4 1 24 44 34 4 4

 59

or rather, analogously derived, for the explosion:

(27b)
[ ]
[ ]−

+
+

>
J w t W t

J w t W t
w t W t

W E k E k

WW Ek E k

E k E k

( ( ) ) ( )

( ( ) ) ( )
( ) ( )

1

1

ϕ
ϕ

ϕ

      absolute risk tolerance
               measured
 at the wealth after the explosion

     wealth change
due to the explosion

1 24 4 4 4 4 34 4 4 4 4 1 24 4 34 4

Only if the absolute risk tolerance measured at the wealth after the jump is larger than the
wealth change caused by stock k's jump, will in the case of an increase of the jump ampli-
tude C kϕ  ( E kϕ ) stock k's portfolio weight decrease (increase), that is, will the primary ef-

fect outweigh the secondary effect. Otherwise, the secondary effect dominates. But, the
secondary effect is unable to force the optimum portfolio weight of the stock subject to the
jump to rise above (fall below) the one without a crash (an explosion). Due to strictly posi-
tive marginal utility, the correction term of stock k always decreases (increases) the portfo-
lio weight in the crash case (in the explosion case). At worst, marginal utility of wealth after
the jump and the volume factor approach zero. Therefore, despite an explosion investors
hold the same portfolio weights as in the (pure) diffusion case when E kϕ  →  ∞  and the risk

tolerance is smaller than specified in (27b). Under crashes, we can construct such a behavior
only numerically. Economically, the crash amplitude is limited to - 100% and such extreme
reactions do not occur60.

We approach variations of the jump probability by analogy:

(28a)
∂
∂λ

M

Ck

= [ ]
kk Ck

W C

WW

v
J k

J W t
ϕ

( )

or rather,

(28b)
∂
∂λ

M

C j

= [ ]
kj C j

W C

WW
v

J j
J W t

ϕ
( )

According to equations (25) and (28a), the weights of stock k will decrease (JWW < 0) if its
crash probability increases. Due to the complex complementary and substitutional relation-

                                                       
59 Since wCk(t) can be smaller than zero (see the figures of the numerical analysis in appendix 2), (27a) is

no tautology, but a real constraint.
60 See the figures of the numerical analysis in appendix 2 concentrating on 50% jump probability, 1% or

rather 50% amplitude and high or rather low relative risk aversion.
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ship (the sign of vkj is unequivocal) between "normal" risk, this statement is not valid for
variations of stock j's crash probabilities.
Analyzing explosions, yields similar results: If stock k's explosion probability rises, its
weight will raise and stock j's weights will react ambivalently.
As we find in the case ∂

∂λ
w tk

k

( )  that there is only the primary effect and that the "tolerance

towards risk" [ ]−
J k

J W t
W C

WW ( )
 is not influenced by a variation of the jump probability, the une-

quivocal consequences of ∂
∂λ
w tk

k

( )  compared to ∂
∂ϕ
w tK

k

( )  become economically clear.

5.3 Numerical analysis

Finally, we will illustrate our theoretical results by means of numerical examples. Thereby,
we want to firstly stress the extent of the jump induced portfolio weight modification, sec-
ondly the separation into structural and volume terms, and thirdly, the importance of "nor-
mal" risk for the optimum decision under jumps. Since our calculations serve solely for ex-
planatory purposes, we choose a framework as simple as possible: We argue within the case
of only two stock which are both subject to "normal" risk, but only stock 1 underlying
jumps. In such an environment, we are able to completely control the correlation between
the stocks and, moreover, interpret our results economically. In addition, we use, as already
introduced in the ceteris paribus analysis, the simplest case of constant jump amplitudes.
That way, we can portray extreme scenarios: an amplitude probably representing the lower
boundary of a jump (1%) and a fairly fierce change (50%), without fine-tuning the probabil-
ity distribution. Eventually, we have to specify the utility function to calculate explicitly the

volume factors. To that end, we use isoelastic consumption ( C tγ

γ
( ) ) and bequest utility

functions ( W Tγ

γ
( ) ) yielding the following portfolio weights of stock 1 and 261:

(29a) w1(t) =
( ) ( )
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1
2
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1 1 2 12 2
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− − −
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σ σ σ σ η

r r
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− −

+ −1
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1

γ
σ
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1
2

2
2
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γ
σ
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1 - γ relative risk aversion

                                                       
61 See Nietert (1996): S. 89.
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or rather,

(29b) w2(t) =
( ) ( )
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In all62, our calculations demonstrate the significant influence of jump terms on optimum
portfolio weights: Even for relatively moderate jumps (e.g. 5% probability and 1% ampli-
tude) optimum portfolio weights with and without jumps deviate from each other visibly
with the result holding for both low and high risk aversion.
From the rows of the tables in appendix 2 we can moreover see the separation into struc-
tural component independent of investor's preferences and into volume factor dependent on
investors' preferences. The structural term is responsible for the unique sign of portfolio
weights for both low and high (relative) risk aversion. The volume factor is able to influence
the weights' levels only and can definitely not change the sign of portfolio weights.
It becomes also clear that low jump probabilities considerably moderate the effect of jumps
with a low jump probability (≈ structural term) exerting more influence than a low ampli-
tude (≈ volume term). For instance, we could increase the jump probability from 0.5% to
5% by 10 times and decrease the amplitude by 50 times from 0.5 to 0.01. Nevertheless, the
portfolio weights of the combination (0.5%;0.5) are for low risk aversion above those of
(5%;0.01). - Thus, we can again illustrate the theoretically derived risk eliminating behavior
of the correction terms: According to equation (22a) these care for the jump probability.
Finally, with the help of our numerical examples we want to emphasize the enormous im-
portance of the interdependence between jumps and "normal" risk. "Normal" risk makes a
decision optimal that does not immediately short sell the crashing stock or rather invests
solely in the exploding stock. On the contrary, we have to take into account complementary
and substitutional connections apostrophized in the theoretical part of our article. Moreo-
ver, these connections can be handled in our simplified 2-stock-framework: In the case of
positive correlation of stock 1's and 2's "normal" risk, a crash of stock 1 causes a rise in the
portfolio weight of stock 2 (and the riskless asset) financed by a decrease of stock 1's
weight. For, both stocks have a substitutional relationship: Higher correlation weakens di-
versification of "normal" risk and increases total risk. Since jumps are independent of "nor-
mal" risk, the fundamental substitutional relationship from the "normal" risk remains valid in
a jump/diffusion environment. - In the case of negative correlation of "normal" risk, both
stocks lose significant portfolio weights in favor of the riskless asset and stock 2 behaves
similar to a stock that is itself subject to crashes. The reason for this can be found in the

                                                       
62 For the figures in detail, please refer to the tables of appendix 2.
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complementary relationship between both stocks: Due to their contrary movement regard-
ing "normal" risk, investors combine both stocks to facilitate portfolio variance reductions
of "normal" risk below the variance of each single stock. Because of the cooperation of
both stocks, just one stock promises a lower "utility" and the observed portfolio weight ad-
aptations follow to maintain the correction effect with respect to the "normal" risk. - If
"normal" risk is uncorrelated, a crash-induced decrease in portfolio weights of stock 1 will
solely foster the weight of the riskless asset; the weight of stock 2 remains constant because
there is no link to stock 1 either from the diffusion or the jumps side of stock 1.
Analogous results hold in the case of price explosions: Substitutional connections lead to a
weight increase of the exploding stock 1 at cost of the not jumping stock 2 and the riskless
asset, complementary connections to an increase of both stocks' weights at cost of the
weight of the riskless asset. In the case of uncorrelated "normal" risk, the weight of stock 2
does not change, the weight of the riskless asset decreases.
In this way, the extreme case of 500% jump probability and 50% amplitude combined with
a high risk aversion (γ = -9) demonstrates the theoretically forecasted convergence behavior
against the portfolio weights under "normal" risk. For, portfolio weights are under those
circumstances far less extreme than in the case of 50% jump probability and 1% amplitude.

6 Summary

Stock price movements are characterized by occasional extreme vibrations, resulting in
dramatic losses during stock market crises. This can be demonstrated by the October crises
in 1987 and 1989 as well as the Southeast Asia, Russia and Brazil crises in 1998/99.
Therefore, we raised the question of how crashes could be neutralized by improved portfo-
lio planning. Our analysis has produced the following results:

• To be economically reasonable, jump models have to be distinguished between firm-
specific, cluster-specific and market jumps (scope of the jump) as well as crashes and ex-
plosions (direction of the jump). In addition, jump amplitudes have to be bounded from
both below and above.

• Jumps call for a completely new portfolio theory: We have to integrate jump risks ex-
plicitly into portfolio planning via correction terms.

• Therefore, the classical Tobin separation is no longer valid, but an extended Tobin sepa-
ration holds. - We need 2 n + 1 funds in lieu to span the risk characteristics of n shares.
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Appendix:

1 Derivation of the modified Hamilton/Jacobi/Bellman equation under
combined jump/diffusion processes

The Hamilton/Jacobi/Bellman equation is the prerequisite for determining optimum portfo-
lio weights. Therefore, we have to develop its adaptation to firm-specific jumps. For the
ease of exposition, we will commence with the analysis of just two stocks with only stock 1
subject to jumps; the n-stock case will follow by induction:
We start our derivation at the definition of the expected utility of the optimum strategy from
t to T:

(7) [ ] [ ] [ ]J W t t Max E e U C s d s e B W T
C

t
s

t

T
T( ), ( ) ( )

,
≡ ∫ +


− −

w

ρ ρ

Due to the Bellman principle of dynamic programming and the linear approximation of the
consumption integral between t and t t+ ∆ , we can write for (7)

(7') [ ]J W t, = [ ] [ ]{ }{ }tt,WWJtEt)t(CUeMax t

,C
∆+∆++∆ρ−

w

∆ change of a quantity

The term [ ]{ }E J W W t tt + +∆ ∆,  is the only unknown in (7'). Its development depends on

the occurrence of jumps, i.e. consists of the expected changes conditional on the event "a
jump occurs /no jump occurs"63. Formally:

(A1.1) [ ]{ }}E J W W t tt + + =∆ ∆, [ ]{ }E E J W W t tt t D+ +





∆ ∆,

mean conditional on the event "no jump  occurs"
1 24 4 4 4 34 4 4 4

[ ]{ }+ + +





E J W W t tt S∆ ∆,
mean conditional on the event "W jumps"
1 24 4 4 4 34 4 4 4

∆ WD change of wealth due to the diffusion component
∆WS change of wealth due to stock 1's price jumps

The probability that a wealth jumps occurs within the period between t and t t+ ∆  is identi-
cal to the probability of stock 1 jumping and equals 1λ∆ t . Combining the jump probabili-

ties of W with the appropriate values of J[.] and expanding referring to all variables not
subject to jumps, we can calculate the "outer" mean in (A1.1) explicitly and get

                                                       
63 See Tapiero (1998): 255 p.
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(A1.2) [ ]{ }}E J W W t tt + + =∆ ∆,

( ) [ ] ( )+ − + + + +
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+ ( )[ ]{ } ( )[ ]λ ϕ1 1 11∆ ∆ ∆t E J w t t W t t J t o tt t+ + +( )~ ( ) ( ),

Substituting (A1.2) into (7'), dividing by ∆ t  and taking limits ∆ t → 0 , we gain the fol-

lowing Hamilton/Jacobi/Bellman equation
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For the case of n stocks inclusive distinction between crashes and explosions, we get by
analogy:
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2 Numerical analysis

table of the assets' basic data:

stock 1 stock 2 riskless asset

α1 = 0.11 σ1 = 0.2 α2 = 0.12 σ2 = 0.22 r = 0.08

table of the portfolio weights:

solely "normal" risk

γ = 0 γ = -9

η12 = 0.7 η12 = 0 η12 = -0.7 η12 = 0.7 η12 = 0 η12 = -0.7

w1 = 0.2228 w1 = 0.75 w1 = 2.7184 w1 = 0.0223 w1 = 0.075 w1 = 0.2718
w2 = 0.6847 w2 = 0.8265 w2 = 2.5563 w2 = 0.0685 w2 = 0.0827 w2 = 0.2556
w0 = 0.0925 w0 = -0.5765 w0 = -4.2747 w0 = 0.9093 w0 = 0.8424 w0 = 0.4725

"normal" risk and additional crashes

γ = 0 γ = -9

η12 = 0.7 η12 = 0 η12 = -0.7 η12 = 0.7 η12 = 0 η12 = -0.7

with jump probability = 0.5 % and amplitude = -1 %

w1 = -0.6538 w1 = 0.2987 w1 = 1.8197 w1 = -0,0654 w1 = 0.0299 w1 = 0.1820
w2 = 1.2425 w2 = 0.8265 w2 = 1.9844 w2 = 0.1243 w2 = 0,0827 w2 = 0.1985
w0 = 0.4113 w0 = -0.1251 w0 = -2.8041 w0 = 0.9411 w0 = 0.8875 w0 = 0.6196

with jump probability = 0.5% and amplitude = -50 %

w1 = -8.3239 w1 = -5.3623 w1 = -7.0411 w1 = -0.4836 w1 = -0.3582 w1 = -0.4104
w2 = 6.1235 w2 = 0.8265 w2 = -3.6542 w2 = 0.3904 w2 = 0.0827 w2 = -0.1785
w0 = 3.2004 w0 = 5.5358 w0 = 11.6953 w0 = 1.0932 w0 = 1.2765 w0 = 1.5890

with jump probability = 5% and amplitude = -1 %

w1 = -7.9508 w1 = -3.5939 w1 = -5.6345 w1 = -0.7931 w1 = -0.3592 w1 = -0.5624
w2 = 5.8861 w2 = 0.8265 w2 = -2.7592 w2 = 0.5873 w2 = 0.0827 w2 = -0.2753
w0 = 3.0648 w0 = 3.7674 w0 = 9.3937 w0 = 1.2057 w0 = 1.2765 w0 = 1.8376

with jump probability = 5% and amplitude = -50 %

w1 = -28.6063 w1 = -19.8474 w1 = -27.3474 w1 = -0,933858 w1 = -0.7752 w1 = -0.8798
w2 = 19.0305 w2 = 0.8265 w2 = -16.5765 w2 = 0,6769179 w2 = 0.0827 w2 = -0.4772
w0 = 10.5759 w0 = 20.0210 w0 = 44.9239 w0 = 1,25694 w0 = 1.6926 w0 = 2.3570

with jump probability = 50% and amplitude = -1 %

w1 = -56.2484 w1 = -33.0674 w1 = -54.4211 w1 = -5.2615 w1 = -3.2069 w1 = -5.0959
w2 = 36.6209 w2 = 0.8265 w2 = -33.8051 w2 = 3.4309 w2 = 0.0827 w2 = -43.1602
w0 = 20.6275 w0 = 33.2410 w0 = 89.2262 w0 = 2.8306 w0 = 4.1243 w0 = 9.2560

with jump probability = 50% and amplitude = -50 %

w1 = -92.8264 w1 = -65.7100 w1 = -91.5752 w1 = -1,5209 w1 = -1.3240 w1 = -1.4771
w2 = 59.8978 w2 = 0.8265 w2 = -57.4485 w2 = 1.0505 w2 = 0,0827 w2 = -0.8573
w0 = 33.9286 w0 = 65.8835 w0 = 150.0238 w0 = 1.4704 w0 = 2.2414 w0 = 3.3344
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"normal" risk and additional explosions

γ = 0 γ = -9

η12 = 0.7 η12 = 0 η12 = -0.7 η12 = 0.7 η12 = 0 η12 = -0.7

with jump probability = 0.5 % and amplitude = 1 %

w1 = 1.0956 w1 = 1.1947 w1 = 3.5703 w1 = 0.1096 w1 = 0.1195 w1 = 0.3570
w2 = 0.1292 w2 = 0.8265 w2 = 3.0985 w2 = 0.0129 w2 = 0.0827 w2 = 0.3098
w0 = -0.2249 w0 = -1.0211 w0 = -5.6688 w0 = 0.8775 w0 = 0.7979 w0 = 0.3332

with jump probability = 0.5% and amplitude = 50 %

w1 = 8.5703 w1 = 6.2227 w1 = 10.0443 w1 = 0.4986 w1 = 0.4156 w1 = 0.5964
w2 = -4.6274 w2 = 0,8265 w2 = 7.2183 w2 = -0.2347 w2 = 0,0827 w2 = 0.4622
w0 = -2.9429 w0 = -6.0491 w0 = -16.2626 w0 = 0.7360 w0 = 0,5018 w0 = -0.0581

with jump probability = 5% and amplitude = 1 %

w1 = 8.3652 w1 = 5.0343 w1 = 10.6898 w1 = 0.8343 w1 = 0.5030 w1 = 1.0655
w2 = -4.4969 w2 = 0.8265 w2 = 7.6290 w2 = -0.4483 w2 = 0.0827 w2 = 0.7607
w0 = -2.8683 w0 = -4.8608 w0 = -17.3190 w0 = 0.6140 w0 = 0.41438 w0 = -0.8261

with jump probability = 5% and amplitude = 50 %

w1 = 28.8366 w1 = 20.6327 w1 = 30.1574 w1 = 0.9445 w1 = 0.8143 w1 = 1.0105
w2 = -17.5241 w2 = 0.8265 w2 = 20.0174 w2 = -0.5184 w2 = 0.0827 w2 = 0.7257
w0 = -10.3125 w0 = -20.4592 w0 = -49.1745 w0 = 0.5739 w0 = 0.1031 w0 = -0.7363

with jump probability = 50% and amplitude = 1 %

w1 = 56.5759 w1 = 34.2657 w1 = 58.4167 w1 = 5.2912 w1 = 3.3209 w1 = 5.4580
w2 = -35.1764 w2 = 0.8265 w2 = 38.0007 w2 = -3.2845 w2 = 0,0827 w2 = 3.5559
w0 = -20.3995 w0 = -34.0921 w0 = -95.4173 w0 = -1.0067 w0 = -2.4035 w0 = -8.0139

with jump probability = 50% and amplitude = 50 %

w1 = 93.0516 w1 = 66.4711 w1 = 94.3225 w1 = 1.5293 w1 = 1.3540 w1 = 1.5796
w2 = -58.3882 w2 = 0.8265 w2 = 60.8498 w2 = -0.8905 w2 = 0.0827 w2 = 1.0879
w0 = -33.6634 w0 = -66.2976 w0 = -154.1723 w0 = 0.3613 w0 = -0.4366 w0 = -1.6675
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