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1 Introduction

This paper addresses two theoretical and one empirical problem: The �rst problem deals

with the valuation of the delivery option which consists of the traditional quality option

and an additional issuer option component. The latter provides the seller of a bond futures

contract, hereafter named the short, with the right to choose for delivery between bonds

of di�erent issuers with, possibly, di�erent credit risk. To our knowledge this is the �rst

study which examines the value of this option in detail. This is carried out by analysing

the interdependency between the issuer option and the quality option, that derives from

di�erences in coupon and maturity and has been a subject of an extensive literature. Our

analysis of the delivery option is based on a two-factor aÆne credit-risk model as developed

by DuÆe and Singleton (1999).

Including credit-risky bonds in the delivery basket increases its heterogeneity. To control

for this e�ect we replace the traditional conversion factor system that accounts only for

maturity and coupon di�erences by issuer-dependent conversion factor systems. These

new price factors explicitly account also for di�erences in credit risk. Note, that the

futures contract itself is assumed to be default-free as it is daily marked to market. The

construction of these new conversion factor systems and the analysis of their relationship

with the value of the delivery option is our second theoretical contribution.

If the value of the delivery option increases in the presence of credit risk because of a more

heterogenuous delivery basket this may adversely a�ect the hedge eÆciency of the futures

contract which is a well-known key success factor. Therefore, in the empirical part of the

paper we compare the hedge eÆciency of single and multi-issuer futures with traditional

and issuer-dependent conversion-factor systems. As multi-issuer futures endowed with an

issuer-dependent conversion-factor system are not traded yet, we determine theoretical

futures prices from the OTC-prices of those German and Italian government bonds that

constitute the delivery basket.

Besides these theoretical and empirical contributions the paper is of high relevance for the

development of the European derivatives markets. The traded volume of the Bund Future

has increased tremendously, especially after the introduction of a single European currency

and contrary to the outstanding volume of the German government bonds that are eligible

for delivery. A European sovereign bond future whose delivery basket includes bonds

of di�erent sovereign issuers o�ers a straightforward solution to mitigate the increasing

danger of short squeezes. By analysing the relationship between the issuer-dependent

conversion factors and key success factors of a futures contract we can draw important

conclusions for the design of a prospective European sovereign bond future. We suggest

eight requirements that a conversion-factor system should meet to advance the success of

a futures contract in the market. Based on these requirements a recommendation is given

which of the three issuer-dependent conversion-factor systems will be best suited for such
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a contract.

Three strands of literature are closely related to our study. The valuation of a multi-issuer

future requires a multi-factor model that accounts for interest rate as well as for default

risk in the deliverable bonds. DuÆe et al. (1996) have shown for so-called intensity-

based models that the value of a defaultable claim can be calculated under fairly general

assumptions by discounting the promised payments at a default-risk adjusted discount

rate. Their results justify using an aÆne model framework in the spirit of Cox et al.

(1985).

Equally important as the literature on credit risk models is the previous research on the

valuation of quality options. Among these are the theoretically oriented studies of Ritchken

and Sankarasubramanian (1992), Berendes and B�uhler (1994), Cherubini and Esposito

(1995) and Bick (1997) who value the quality option in the context of arbitrage-free interest

rate models. Among others Lin and Paxson (1995) and Yu (1997) present notable empirical

results on the quality option of the Bund Future and a Japanese government bond future.

Finally, this paper relies on two preparatory empirical studies by D�ullmann and Windfuhr

(2000) and B�uhler et al. (2001). In these studies the parameters of the two-factor aÆne

model are estimated from the term structures of German and Italian government bonds.

The parameter estimates from B�uhler et al. (2001) are used in the comparative-static

analysis of the delivery option. Additionally the prices of the government bonds from this

study are used to value the delivery option and to determine the futures prices in the

analysis of the hedge eÆciency.

This paper is structured as follows: Section 2 recalls stylized facts about the delivery option

and the construction principles of conversion-factor systems. Three new conversion-factor

systems for credit-risky deliverable bonds are developed in section 3. In section 4 the

valuation model for the multi-issuer future and its delivery option is presented. Section

5 contains comparative-static results for the value of the delivery option. In section 6

multi-issuer futures prices for three selected conversion-factor systems are determined and

the hedge eÆciency of the corresponding contracts is analysed. The results of section 5 and

6 are used in section 7 to determine a ranking of the conversion-factor systems in terms

of their suitability for a prospective multi-issuer futures contract. Section 8 summarizes

and concludes.

2 Delivery Options in Bond Futures 1

The high number of about 75 % of exchange-traded derivatives that were delisted because

of an insuÆcient trading volume2 indicates that the design of a futures contract is a

1Readers who are familiar with the principles of conversion-factor systems may skip this section.
2See Johnston and McConnell (1989), p. 2.
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delicate issue. Arguably the most damaging factor to the success of a futures contract

is the danger of a short squeeze. In a short squeeze a manipulator exploits the delivery

mechanism of the future by establishing a portfolio that combines a long position in a

futures contract with a high concentration of ownership in the deliverable supply.3

In order to secure a suÆcient volume of deliverable bonds and to forestall a short squeeze

the short is conceded three types of delivery options. We di�erentiate in the following4

between the quality option that derives from di�erent coupon sizes and maturities of the

deliverable assets and depends on the term structure of interest rates and the issuer option

in the presence of di�erences in credit risk.

To account for di�erent maturities, coupons and credit risk we develop conversion-factor

systems, often called price factor systems, which adjust the invoice amount of a deliverable

bond relative to the value of the synthetic underlying. For a traditional bond future,

endowed with a quality but without an issuer option, these conversion factors account for

di�erences in coupon size and maturity of the deliverable assets.

However the price adjustment by conversion factors is generally not perfect and the bond

with the lowest adjusted price is called cheapest-to-deliver or brie
y ctd-bond. This asset is

regularly used for the cash-and-carry arbitrage which garanties the link between the bond

and the futures market. Therefore, the existence of a ctd-bond accompanied by a positive

value of the delivery option is principally favored by market participants. The relationship

between the bond and futures price at maturity, henceforth named the terminal prices,

and the conversion factors is as follows. Assume that n bonds with di�erent coupon size

cj , maturities Mj , conversion factors �j and prices P (T;Mj ; cj) can be delivered into a

futures contract at its maturity T . Then the arbitrage-free futures price F (T; T; f1 : : : ; ng)
at maturity is given by5

F (T; T; f1 : : : ; ng) = min
j�n

�
P (T;Mj ; cj)

�j

�
: (1)

The ratio of the bond price and the conversion factor is called its futures-equivalent price

and the bond with the lowest futures-equivalent price is the ctd-bond.

The futures-equivalent prices determine a monotonicly increasing ranking of the deliverable

bonds beginning with the ctd-bond. The price di�erences between them restrict the

up-movement of the futures price in the case of a short squeeze. Therefore, conversion

factors aim at reducing the di�erences between the futures-equivalent prices. Note that

theoretically an ideal conversion-factor system can be constructed that eliminates the

di�erences between the future-equivalent prices. The delivery option becomes worthless

3See Manaster (1992), p. 143.
4As a third type there exist timing options which o�er the short a choice when to deliver the assets

(see Gay and Manaster (1984), pp. 41{51, 68{71.). Timing options have been studied by Boyle (1989) and

more recently by Cohen (1995).
5Compare e. g. DuÆe (1989), p. 327.
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and a manipulator would not only have to squeeze the ctd-bond but all deliverable bonds

simultaneously. Such ideal conversion factors ��j are determined as the ratio of the terminal

market price of the bond and the market price of the synthetic underlying (with coupon

c0 and maturity M0):

�
�

j =
P (T;Mj ; cj)

P (T;M0; c0)
: (2)

In this case the futures price equals the market value of the notional bond. However,

this solution is not practically feasible because the notional bond price P (T;M0; c0) is not

observable.

Current price factors adopt the idea of a price ratio of the deliverable asset and the notional

bond but they use proxies instead of market prices. These proxies are determined by

assuming that the yield-to-maturity of each deliverable bond equals the coupon of the

notional bond so that the denominator of the price factor is standardized to the face

value of the notional bond. The invoice amount received by the short equals the futures

price multiplied by a bond-speci�c conversion factor. This conversion factor speci�es the

amount of the notional bond in nominal terms which matches one unit nominal value of

the deliverable asset. Note that the quality of a conversion factor system now depends on

the term structure of interest rates at maturity.

Summarizing, we pose three theoretical requirements for a conversion-factor system.

Firstly, the price factors should reduce the di�erences between the futures-equivalent bond

prices. Secondly, they should increase the uncertainty of the terminal ctd-bond because

then the manipulator doesn't know which bond he has to accumulate in order to squeeze

the futures price. Thirdly, the conversion factors should bring the terminal futures price

close to the theoretical price of its synthetic underlying. The di�erence between these two

prices determines the value of the so-called synthetic delivery option that has been studied

by Berendes and B�uhler (1994) for the German Bund Future. Note, that in contrast to the

common option de�nition the value of the synthetic option is not necessarily non-negative.

In the following section, based on these two requirements, we develop new conversion-factor

systems which account for di�erences in credit risk of the deliverable assets.

3 Conversion Factors for Multi-Issuer Contracts

The three issuer-dependent conversion-factor systems which are presented in this section

are constructed after the design of the Bund Future and di�er from this contract in so far

as bonds of one default-free and one credit-risky issuer are eligible for delivery. Note, that

although a generalization for more than one credit-risky issuer is straightforward we pose

this restriction here for expository purposes. The notional bond is de�ned as a default-risk

free bond with a coupon size of 6 %. Eligible for delivery are �xed coupon bonds, without

any option features and maturities between 8.5 and 10.5 years at future maturity. Two
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of the three new issuer-conversion factors are rating based. They are described in sections

3.1 and 3.2. The third conversion-factor system, presented in section 3.3, minimizes the

potential losses from delivering a default-free instead of a credit-risky bond.

The key idea of all three issuer-dependent conversion factors is to modify the traditional

price factor system by adding a credit-risk adjustment �j to the discount rate c0 of the

deliverable bond. If bond j has m outstanding cash 
ows Cj;k until maturity Mj = tm

with

Cj;k =

(
cj : 1 � k � m� 1

100 + cj : k = m
(3)

then its issuer-dependent price factor �0j is de�ned by

�
0

j(�j) =

Pm
k=1(1 + c0 + �j)

�tk Ci;k

100
: (4)

The issuer-dependent price factors di�er with respect to the calculation of the issuer-

speci�c yield adjustment �j which may or may not depend additionally on the maturity

of the bond.

3.1 Intensity-Based Conversion Factors

The �rst conversion-factor system needs as input only the issuer-dependent term structure

of cumulative default probabilities. It is derived from a credit risk model that is static in

the sense that the cumulative default probabilities that are observed when the trading in

the contract begins are assumed still to hold at maturity T of the future. In this model

the default of the bond issuer is treated as a singular jump event. The time to default

� is modeled as a continuous random variable with a distribution � which describes the

probability q(t) of default in a time interval (T ;T + t], namely q(t) = �(t).6 Assuming

that the corresponding probability density function � exists, the conditional probability

p(T + t < � � T + t+�tj� > T + t) that a credit-risky asset that has not defaulted up to

time T + t enters default in the time span �t can be determined as follows:

p(T + t < � � T + t+�tj� > T + t) =
�(T + t)

1� �(T + t)
��t: (5)

The �rst term of the product on the right hand side of (5) is called the default intensity

h(t). From (5) it follows immediately for the default probability for the time interval of

length t:

�(t) = 1� exp

�
�
Z T+t

T

h(s) ds

�
: (6)

6The future maturity T is selected as reference point in time but because of the static nature of the

model it can be chosen arbitrarily. Therefore this parameter is dropped for notational convenience whenever

possible.
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From the issuer-dependent cumulative default probabilities q(tm) a term structure of

hazard rates hj(tj) can iteratively be determined by exploiting the following relationship

that holds for discrete default intensities:

q(tm) = 1� exp

0
@� mX

j=1

hj(tj) ��t
1
A : (7)

In addition to the cumulative default probabilities a recovery fraction ' is needed to

quantify the credit risk and this again is assumed to be given exogenuously. Under the

recovery-of-market value assumption the bond price V̂ (T; T + tm; cj) can be determined as

follows by discounting the outstanding promised cash 
ows with a discount rate r0(t). This

rate r0(t) consists of two components, namely a risk-free rate, that equals the notional bond

coupon c0 after transformation into a continuous rate, and the credit-risk adjustment.

r
0(tk) =

kX
i=1

(log(1 + c0) + (1� ')hi(ti))�ti (8)

V̂ (T; T + tm; cj) =

mX
k=1

e
�r0(tk) Cj;k: (9)

Note that from (9) by requiring

V̂ (T; T + tm; cj) =

mX
i=1

Cj;i

(1 + c0 + �j)ti
(10)

a credit spread �j can be calculated in order to achieve consistency with the construction

principle laid out in (4). However, this last step is not mandatory because the nominator

of the conversion factor �0j in (4) can already be determined by V̂ (T; T + tm; cj).

Arriving at V̂ (T; T + tm; cj) by discounting at a default-risk adjusted rate in (9) reveals

a great similarity with the valuation of credit-risky bonds in the framework of DuÆe

and Singleton (1999). Whereas the DuÆe/Singleton model o�ers a much richer structure

and belongs to the class of continuous time models here the term structure of credit

spreads is static and the model structure much coarser. It is theoretically possible but

for two reasons it is not practically feasible to apply conversion factors that are fully

consistent with a DuÆe/Singleton model as it is presented in section 4. Firstly, employing

a continuous time model implies constantly changing conversion factors until maturity

of the futures contract which severely complicates the arbitrage between the bond and

the futures market. Secondly, market participants seem to prefer transparent conversion

factors and reject complex price factor systems as being easy to manipulate. The intensity

based conversion factors therefore are constructed to take a middle-ground between a

complex price factor system based on a continuous time credit risk model and the rather

crude traditional price factor system.

The rating-speci�c cumulative default frequencies di�er from the risk-neutral probabilities

if investors are risk averse. Employing these probabilities for bond valuation in (9) assumes
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that investors are risk neutral. This unrealistic assumption leads to credit risk adjustments

that are too small and it is dictated purely by the requirement to avoid complexity and

by the empirical problems attached to an explicit assessment of this risk premium. The

second conversion factor system that is introduced in the following section is subject to the

same critique whereas the third circumvents this assumption by relying on term structures

of interest rates and credit spreads that already include a premium for risk aversion.

3.2 Certainty-Equivalent Conversion Factors

The second conversion-factor system uses the same rating-speci�c default probabilities and

recovery rates as the intensity-based one. The key idea is to determine a theoretical price

of the deliverable bond by replacing its promised cash 
ows by their certainty-equivalent

values and discounting at the risk-free interest rate.

V̂ (T; T + tm; cj) =

mX
i=1

(1� q(ti))Cj;i + (100 + cj)'j (q(ti)� q(ti�1))

(1 + c0)ti
: (11)

V̂ (T; T + tm; cj), determined by (11), can either be used directly as nominator of the price

factor or a credit-risk premium �j that is needed in (4) can be determined in the same

way as for the intensity based price factors.

Note that the calculation of the conversion factors in (9) and (11) is rather similar but

di�ers in two ways. Firstly, the certainty-equivalent price factor system possesses less

model structure and poses no assumptions about the default event. It is posed in discrete

time whereas the intensity based price factors, although static in nature, too, are posed

in continuous time. Secondly, both conversion factor systems di�er because the recovery-

of-market value assumption in (9) is replaced by a recovery-of-nominal value assumption

in (11).

To ensure transparency of the conversion factor system we rely for the issuer-dependent

default probabilities and the recovery fraction on publicly available data from international

rating agencies. The historical default probabilities are obtained from the rating agency

Moody's and depend on the rating category of the issuer.7 We assume that the credit-risky

issuer is rated Aa. This is in line with the actual rating of Italian sovereign bonds which

are used for estimating the model parameters for the comparative-static analysis. It is

more diÆcult to justify a recovery value for sovereign debt because if a government bond

fails it is not clear how the lender can enforce his claim by legal means. Therefore we

assume that in case of a sovereign default the claimant receives no compensation at all,

i. e. the recovery value is zero.8

7See Moody's (1999).
8In a recent paper Gibson and Sundaresan show how a sovereign default can be modeled as a strategic

decision depending on the reputation costs, which concern the future access to credit markets, and the
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3.3 Delivery Loss minimizing Conversion Factors

The �rst two rating-based conversion-factor systems rest on the assumption of risk-

neutrality which is not expected to hold in a market with supposedly risk averse

investors. Therefore, the credit risk premium �j will typically be too small. The third

conversion-factor system solves this problem by treating the default-free term structure

and the credit spread term structure as exogenuous and determining �j directly from term

structures of credit spreads.

The key idea of this price-factor system is to determine the default spread in (4) by

minimizing the delivery loss that is incurred if a default-free instead of a credit-risky bond

with the same coupon size and maturity is delivered. Note that the default-free bond with

identical coupon and maturity characteristics serves only as a benchmark to determine

the delivery loss and does not necessarily belong to the delivery basket. To account for

di�erent cash 
ows of the deliverable bonds we minimize the average delivery loss of n

deliverable credit-risky bonds with prices V (T;Mj ; cj) at future maturity T . P (T;Mj ; cj)

denotes the price of a corresponding default-free bond and ADL(�) the average delivery

loss, depending on the default-yield adjustment �. Note that � depends only on the issuer

but not on other bond characteristics. ADL(�) is determined as follows:9

ADL(�) =
1

n

nX
j=1

j�j � V (T;Mj ; cj)

�0j(�)
� P (T;Mj ; cj)j: (12)

Clearly, the bond prices V (T;Mj ; cj) and P (T;Mj ; cj) are unknown before future maturity.

Therefore we consider a broad range of realistic interest rate and credit spread scenarios

and determine the credit-risk premium �j by minimizing the average delivery loss over all

scenarios.

To specify the term structures of interest rates and credit spreads, we need a (static)

term-structure model. As our focus is on robustness and not on the best �t of a speci�c

term structure we use the parsimonious term-structure model of Nelson and Siegel (1987).

Discount factors Æ(M ;�0; : : : ; �3) in this model depend only on their maturitiesM and on

four parameters �0; : : : ; �3:

Æ(M ;�0; :::; �3) = (13)

exp
h
�M

�
�0 + (�1 + �2)

�
1� exp

�
�M

�3

��
� �3

M
� �2 exp

�
�M

�3

��i
:

The parameter �0 of this model is the limit of the interest rate or credit spread forM !1.

The sum �0 + �1 can be interpreted as the instantaneous short rate or short spread. The

potential for retaliatory actions, e. g. trade sanctions. See Gibson and Sundaresan (2000) with references

to earlier studies.
9An alternative to minimizing ADL is to minimize the di�erence between the futures-equivalent price

of the default-free and the corresponding credit-risky bond. This results in almost identical conversion

factors.
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Table 1:

Parameters of the Nelson-Siegel Term Structure Model in Percent

interest rate term structure credit spread term structure

�0 �1 �
0
0 �

0
1

interval J1 J2 J3 J4

Minimum 4.00 -2.00 0.06 -0.06

Maximum 10.40 2.00 0.30 0.12

reference points 9 5 9 5

other parameters �2 and �3 determine the position and the magnitude of a hump in the

term structure. These two parameters are treated as �xed and their values are taken from

a former empirical study where the credit spreads between two sovereign borrowers are

�tted applying as well the Nelson-Siegel model.10

The range of the parameters �0 and �1 which determine the level and the slope of both

term structures are given in table 1. The range of the interest rate parameters is chosen to

re
ect weekly observed term structures of the German government bond market from 1970

to 1997. The minimum and maximum of the credit spread parameters are derived from

the observed credit spreads between German and Italian government bonds as reported

in B�uhler et al. (2001). The extreme values of �00 and �
0
1 are in line with a range between

zero and 42 bp for the long run limit of the credit spreads. We refer to this study as the

parameter estimates used to value the multi-issuer future in section 5 are also taken from

this study.

Referring to the delivery basket we consider four credit-risky bonds with coupons of 4 %

and 8 % and maturities of 8.5 years and 10.5 years, the minimum and maximum value

permitted for delivery.

The default-yield adjustment � is determined by minimizing the following objective

function G(�) where the average delivery loss ADL(:) is given by (12):

G(�) =
1

jJ1j � � � jJ4j
X
�02J1

X
�12J2

X
�002J3

X
�012J4

ADL(�;�0; �1; �
0
0; �

0
1) (14)

Here jJij; i 2 f1; : : : ; 4g denotes the number of parameter values as described in table 1.

The default-yield adjustment which minimizes G(�) is 20 bp. This value is assigned to �j

in (4) in order to determine a loss minimizing conversion factor.

The fact that for the delivery-loss minimizing conversion factors the credit risk premium

� does not depend explicitly on the maturity of the bonds contrasts with the �rst two

10See B�uhler et al. (2001).
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conversion factor systems and gives rise to the following concern. If the future-equivalent

prices are raised with the same premium � and, therefore, for a similar amount, then

the probability to become the terminal ctd-bond may concentrate on a single bond.

However, this problem is only of secondary nature for the following reasons. Firstly, the

conversion factor still depends on the maturity of the bond and, therefore, the increase

of the future-equivalent prices di�er considerably in absolute terms. Secondly, re-running

the optimization with a restricted basket that includes only the two credit-risky bonds

with a maturity of 8.5 years yields the same optimal value of �. This result underlines

that the di�erence between 10.5 and 8.5 years is too small to observe a perceptible change

in �. Thirdly, the credit risk premium � primarily aims at accounting for the di�erence

in credit risk between the obligors and not between the bonds of one single issuer. In

the comparative static analysis in section 5 it is exactly the possibility of a ctd-change

between bonds of di�erent obligors that has the most important impact on the value of

the delivery option.

For notational convenience the following abbreviations are used for the three conversion-

factor systems, IS for the intensity-based, CE for the certainty equivalent and LM for

the delivery loss minimizing price-factor systems.

4 Valuation of the Delivery Option in Multi-Issuer Futures

The value of the delivery option depends on the interest-rate and credit risk. From the

many possibilities to model these two risk components we rely on an intensity-based aÆne

two-factor model for the following reasons:

� It is diÆcult to model sovereign risk by structural models as the notion of a �rm value

is not easily transferable to the government bond sector. In addition, the classical

model of Merton (1974) and his immediate successors cannot explain empirically

observed credit spreads.11 Contrary to the observation of considerable credit spreads

for short-term government bonds, in structural models this spread converges to zero

as the time-to-maturity approaches zero.12

� A positive credit spread of short-term debt is explained by models that treat the

default event as a consequence of a strategic decision of stock holders.13 In principle

this type of models could be applied to value credit-risky government bonds even

if the strategic players in this game are not easily identi�ed. However, this type of

models is hard to implement empirically.

11See Jones et al. (1984) or Kim et al. (1993).
12DuÆe and Lando (2001) explain this observation as well in a �rm value model by asymmetric

information. However this solution does not transfer easily to the case of sovereign debt.
13See e. g. Leland (1998), Mella-Barral and Perraudin (1997) or Anderson and Sundaresan (1996).
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� The most promising group of credit-risk models for government bonds are the

reduced-form or intensity-based models.14 This model class o�ers 
exible and

tractable models which can explain positive credit spreads even immediately before

the maturity of a defaultable claim. Their key property, that is to treat the

bankruptcy process as exogenuous, makes them well suited for the valuation of public

bonds.

From a variety of intensity-based models we have selected the approach developed in

DuÆe et al. (1996) and DuÆe and Singleton (1999) who show that under fairly general

assumptions a credit-risky claim can be valued by adding to the instantaneous interest

rate a factor that re
ects the credit risk of the issuer.15

Additionally this model framework becomes very tractable by o�ering a straightforward

application of aÆne models which possess analytic solutions for many standard derivatives.

Furthermore, this aÆne framework has already been applied successfully in various

empirical articles, e. g. by DuÆe and Singleton (1997) in the US swap market, Du�ee

(1999) in the US corporate bond market and by Collin-Dufresne and Solnik (1999) in

the European swap market. Most notably an aÆne intensity based model has been used

successfully in a recent study by DuÆe et al. (2000) for the valuation of Russian public

debt.

The stochastic model of DuÆe and Singleton (1999) poses the usual assumptions of

arbitrage-free valuation theory. Therefore we assume a frictionless market with continuous

trading. The �ltration F = fFt : t � 0g describes the arrival of information in the market

over time. The process of the short rate r is adapted to the �ltration. Furthermore, we

assume the existence of an equivalent martingale measure Q.

Then, for a claim with a promised cash payment of C at time T the value of this claim

is given under the risk neutral measure by its expected value and discounting under a

default-risk adjusted rate that depends on the instantaneous short-term rate r, the default

intensity h and the recovery fraction '.16

V (t; T ) = E
Q
t

�
exp

�
�
Z T

t

(rs + hs(1� 's)) ds

�
C

�
(15)

The default risk adjustment ht(1�'t) is modeled by a single state variable st which has a

natural interpretation as the instantaneous credit spread or simply the short spread. We

further assume that the two state variables x1 = r and x2 = s follow a mean reverting

14See e. g. Jarrow and Turnbull (1995), Das and Tufano (1996) and DuÆe and Singleton (1999).
15In fact these models make one assumption which contrasts with conventional legal norm. They de�ne

the recovery value as a fraction of the market value of the claim immediately before default instead of the

nominal value. However, according to their own calculations the di�erence is negligible (see DuÆe and

Singleton (1999), pp. 3{4).
16See DuÆe and Singleton (1999).
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square root process. This process is de�ned under the physical measure as follows:

dxi (t) = �i (�i � xi (t)) dt+ �i

p
xi (t)dWi (t) ; i 2 f1; 2g (16)

We assume that the Wiener processes are uncorrelated. The market price of risk is de�ned

as �i

p
xi(t)

�i
.

The prices of pure discount bonds are given in closed form.17 The prices of coupon bonds

can be determined as a portfolio of pure discount bonds.

Having speci�ed the default risk model we turn to the valuation of the futures contract.

The key feature that distinguishes future and forward contracts is the marking-to-market

which ensures that the buyer of the future can be unconcerned about a default of the

contracting party. In the general framework studied in DuÆe and Stanton (1992), the

futures price can be determined as the expectation value under the risk-neutral measure

of the value of the claim at maturity. In the case of a basket of n credit-risky bonds with

associated conversion factors �1; : : : ; �n the futures price can be determined as follows:

F (t; T; f1; : : : ; ng) = E
Q
t

�
min

j=1;:::;n

V (T;Mj ; cj)

�j

�
: (17)

In special cases (17) has an analytic solution. In the model framework of Heath et al.

(1988) a closed form solution is derived by Ritchken and Sankarasubramanian (1992) in

the case of a one-factor Gaussian interest rate model and a delivery basket of pure discount

bonds. They remark that an extension of their closed form solution for coupon bonds is

feasible, however, much more complex.18 In a more general two-factor model they employ

numerical methods for the determination of futures prices.19 Cherubini and Esposito

(1995) derive closed form solutions for a bond future with deliverable coupon bonds in a

one-factor interest rate model of Cox et al. (1985). In a more recent paper Bick (1997)

derives a closed form solution for a future on multiple coupon bonds in the context of a

one-factor Vasicek model20.

Our case di�ers from the ones discussed in the literature because we have to consider

multiple deliverable coupon bonds in a two-factor aÆne model. Therefore, (17) has to be

solved numerically. This is achieved by solving the following integral numerically:21

F (t; T; f1; : : : ; ng) =
Z

1

0

Z
1

0

min
j=1;:::;n

V (T;Mj ; cj ; r; s) �1(t; T; r) �2(t; T; s)

�j
dr ds: (18)

The value of a futures contract whose delivery basket is reduced to a single bond, namely

the ctd-asset j� is given by

F (t; T; fj�g) = min
j=1;:::;n

E
Q
t

�
V (T;Mj ; cj)

�j

�
: (19)

17See Cox et al. (1985), p. 393.
18See Ritchken and Sankarasubramanian (1992), p. 208.
19See Ritchken and Sankarasubramanian (1995).
20See Vasicek (1977).
21The numerical integration is conducted with a modi�ed adaptive algorithm developed in Genz and

Malik (1980), that is implemented in Mathematica.
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In this special case, when the delivery option disappears,there exists an analytic solution,

given in Cox et al. (1981).22 The value of the delivery option DO(t; T; f1; : : : ; ng) is the
di�erence between the value of a future written on the ctd-bond and the value of the

multi-issuer future:

DO(t; T; f1; : : : ; ng) = F (t; T; fj�g)� F (t; T; f1; : : : ; ng): (20)

The transformation of (20) into (21) reveals the two drivers of the value of the delivery

option DO(t; T ). The lower integration bound is (21) is determined by the fact that zero

forms a re
ecting barrier in the CIR model.

DO(t; T ) =

Z
1

0

Z
1

0

V (T;Mj� ; cj�)

�j�
�(t; T; r)�(t; T; s) dr ds� (21)

Z
1

0

Z
1

0

min
j=1;:::;n

�
V (T;Mj ; cj)

�j

�
�(t; T; r)�(t; T; s) dr ds

=

nX
j=1

Z
1

0

Z
1

0

�
V (T;Mj� ; cj�)

�j�
� V (T;Mj ; cj)

�j

�
1f(r;s)2Gjg �(t; T; r)�(t; T; s) dr ds

Gj =
8<
:(r; s)jV (T;Mj ; cj)

�j
� V (T;Ml; cl)

�l
8l 2 f1; : : : ; ngnfjg ^ (r; s) =2

[
l<j

Gl

9=
; 23

:

The last transformation in (21) shows how the option value depends on two factors,

� the di�erence of the future-equivalent prices between the current ctd-bond j
� and

the ctd-bond at future maturity and, because these price di�erences only contribute

to the option value in the region Gj where j is the terminal ctd-bond,

� the probability of a change in the terminal ctd-bond that depends as well on the

conditional density functions �(t; T; r) and �(t; T; s) of the state variables r and s.

If the credit-risky bonds have coupons and maturities di�erent from those of the default-

free issues it is unclear to what extent a higher value of the delivery option must be

attributed to di�erent default-risk premiums or to additional coupon size and maturity

characteristics. However, in the following comparative-static analysis this fundamental

problem can be solved by a careful construction of the delivery basket. For every credit-

risky bond we add a corresponding default-free bond with the same coupon size and

maturity and vice versa. This allows to determine the value of the issuer option as a

residual, that is the di�erence between the values of the delivery option for the whole basket

and the delivery option for a subset of the basket that consists only of the default-free

assets.

22For completeness this formula is given as well in appendix A.
23The second condition for (r; s) ensures that the subsets Gj are pairwise disjoint and build a partition

of the integration domain.
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The parameter values of the two-factor model, given by (16), are estimated in B�uhler

et al. (2001) from the term structures of interest rates of German and Italian government

bonds under the assumption that the German government bonds are default-free.24.

The estimation period extends from May 1998 when the member states of the EMU

have been determined until February 2000. Therefore, we observe the rare case of two

liquid government bond markets trading without currency risk among them. The use of

empirically estimated parameter values improves on the validity of the comparative-static

analysis presented in the following section.

5 Comparative-Static Analysis of the Issuer Option

In the following comparative-static analysis we focus on the sensitivity of the value of the

delivery option with respect to three groups of determinants. The �rst group includes the

maturity of the futures contract and the composition of the delivery basket. The relevant

basket parameters are the number of bonds, their coupon size and time to maturity. These

determinants are analysed �rst. The second group refers to the level of the term structures

of interest rates and credit spreads. These levels depend on the instantaneous short rate,

the instantaneous short spread and the long term mean �i of the two stochastic processes.

The third group of parameters �i, �i and �i determine the volatility of interest rates and

credit spreads. Note that the mean reversion parameter �i in
uences also the shape of

the term structures. The parameter estimates from B�uhler et al. (2001) which are given

in table 13 are selected as reference values in the following analysis. The reference values

of the instantaneous short rate r = 3:5% and of the instantaneous short spread s = 5:4 bp

are determined as averages of the time series of state variables implied by the model in

B�uhler et al. (2001). The reference value for the maturity of the futures contract is three

months. This length is selected because it covers the period when the future is the most

liquid contract.

5.1 Dependency on the Delivery Basket and Time to Maturity

In the �rst step we examine the delivery option for two di�erent delivery baskets. The

�rst is given in table 2 and consists of four default-free and four credit-risky bonds with

coupons of 4 % and 8 % and time to maturities of 8.5 and 10.5 years respectively. The

basket is symmetric in the sense that for every credit-risky bond it contains a default-free

bond with the same maturity and coupon size. Numerical results from Cherubini and

Esposito and own calculations suggest, that the value of the delivery option increases

strongly with the di�erence in maturities so that this is set as wide apart as is allowed by

24The parameter estimates are given in appendix B.
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the contract design.25 For consistency the same basket is used for the determination of

the LM -conversion factors in section 3.3.

Table 2:

Composition of the Delivery Basket of Eight Bonds

bond characteristics 1 2 3 4 5 6 7 8

credit-risky no no no no yes yes yes yes

Coupon 8 % 4 % 8 % 4 % 8 % 4 % 8 % 4 %

time to maturity 8.5 8.5 8.5 8.5 10.5 10.5 10.5 10.5

Table 3 shows the value of the delivery option for the delivery basket from table 2 and

a subgroup of those four bonds that are default-free. For the basket of eight bonds

traditional, CE-, IS- and LM -conversion factors are employed. To put the values of

Table 3:

Value of the Delivery Option for Basket of Eight Bonds in Percent

bond characterictics conversion-factor value of the

default-free credit-risky system delivery option

4 0 traditional 0.03

4 4 traditional 0.22

4 4 CE 0,24

4 4 IS 0.23

4 4 LM 0.44

the delivery option under perspective it should be noted that under the traditional

conversion-factor system the value of the quality option, calculated for the default-free

subsample of the delivery basket, has a value of 3 bp. Under the same conversion-factor

system the delivery option of the full basket leads to a value of 22 bp so that the value of

the issuer option, calculated as the di�erence between both option values, is 18 bp. This

value is six times higher than the value of the quality option.

It is striking that the di�erences in the value of the delivery option between the traditional,

the IS- and the CE-conversion-factor systems are less than 2 bp and, therefore, almost

negligible. However, under the LM -price factors the option value doubles to a value of

44 bp. In the case of a nominal contract value of 100.000 Euro this transfers into 440

Euro which is an economically signi�cant amount. In order to explain these di�erences

we focus on two key factors which determine the value of the delivery option according to

(21): the probability that another bond becomes cheapest to deliver at future maturity

and the delivery loss that is incurred by delivering the current ctd-bond instead.

25See Cherubini and Esposito (1995), pp. 8{9.
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Panels 1 to 3 in �gure 1 demonstrate the contribution of the two value drivers of the

delivery option for the traditional und the issuer-dependent conversion factor systems. The

case of CE-conversion factors is omitted because it is not distinguishable from the case of

applying IS-conversion factors. Each panel shows the future-equivalent price di�erences

between the current ctd-bond 7 and the other deliverable bonds conditional on a reference

value of 3.55 % of the instantaneous short rate at maturity. This reference value is the

expected value of the short rate under the risk-neutral measure conditional on its current

value of 3.5 %. For this interest rate scenario the 5 %-quantiles of the instantaneous short

spread s are given on the x-axis.

For the traditional conversion factor system in panel 1 of �gure 1 we observe no changes

in the future-equivalent price di�erences if the short rate is below 1 bp which occurs with

a probability of 50 %. The default-free bonds 1 to 4 are never cheapest to deliver because

this conversion factor system does not account for default risk. Note that this result

depends on the symmetric composition of the delivery basket, in which the default-free

and credit-risky bonds have the same coupon size and maturity. For credit spreads s

beyond 20 bp which belong to the 90 %-quantile of s the credit-risky bond 8 replaces

bond 7 as the terminal ctd-bond.

If the traditional price factor system is replaced by IS-conversion factors the situation

presented in panel 2 arises. The IS-price factors reduce the future-equivalent price

di�erence between the default-free and the credit-risky bonds at maturity. For the

default-free bond 4 under a traditional conversion factor system the reduction is 40 bp

for s � 0:1 bp. However, this reduction of heterogeneity has no impact on the delivery

option, at least in this interest rate scenario, because a default-free bond never becomes

cheapest to deliver. For low short spreads the current ctd-bond 7 is replaced by bond 5

but the future-equivalent price di�erence is only 6 bp and has only a negligible impact on

the value of the delivery option.

Whereas the IS-conversion factor system does not change the value of the delivery option

in an economically signi�cant way the application of LM - instead of traditional price

factors leads to an economically relevant increase of 22 bp according to table 3. The

reason for this is revealed by panel 3 of �gure 1. For a credit spread s of 3 bp and

below the default-free bond 1 becomes the terminal ctd-bond. In these cases the future-

equivalent price di�erence between bond 1 and the ctd-bond is 54 bp and economically

very relevant. Combined with a high probability of occurance of 65 % this contributes to

the strong increase of the delivery option value relative to the traditional, the IS- and the

CE-conversion factors.

In order to understand why a default-free bond can become cheapest to deliver we focus on

the future-equivalent prices V (t; T; c)=�0 and P (t; T; c)=� of a credit-risky and a default-free

bond with same coupons c and maturity T . The adjustment of 20 bp in the LM -conversion
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Figure 1:

Future-Equivalent Price Di�erences from the Ctd-Bond at Maturity

Panel 1: Traditional Conversion Factor System
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Panel 2: IS-Conversion Factor System
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Panel 3: LM -Conversion Factor System
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Table 4:

Probabilities of Becoming the Cheapest-to-Deliver at Maturity for Eight

Deliverable Bonds

conversion default-free bonds

factor coupon/ time to maturity in years (y)

system 8 %, 8.5 y 4 %, 8.5 y 8 %, 10.5 y 4 %, 10.5 y

Traditional 0.0 0.0 0.0 0.0

CE 0.0 0.0 0.0 0.0

IS 0.0 0.0 0.0 0.0

LM 55.4 0.0 5.5 0.0

conversion credit-risky bonds

factor coupon/ time to maturity in years (y)

system 8 %, 8.5 y 4 %, 8.5 y 8 %, 10.5 y 4 %, 10.5 y

Traditional 32.7 0.0 47.6 19.7

CE 41.3 0.0 42.1 16.6

IS 41.0 0.0 42.4 16.6

LM 7.5 0.0 20.5 11.1

factor �0 decreases the denominator of this ratio for the credit-risky bond more than the

credit spreads for an instantaneous short spread of 3 bp decrease the bond price V (t; T; c)

in the nominator. Therefore the future-equivalent price of the credit-risky bond is higher

than that of the corresponding default-free bond and the latter is cheaper to deliver.

In order to verify if this change of the ctd-bond causes the strong increase in the value of

the delivery option, we determine the probabilities of all deliverable bonds to become the

terminal ctd-bond over all interest rate scenarios. The results are given in table 4. For the

traditional, the IS- and the CE-conversion-factor system the probability of a default-free

bond becoming cheapest to deliver is zero. When applying LM -factors instead, the two

default-free 8 %-bonds will become the terminal ctd-bonds with probabilities of 55.4 %

and 5.5 % which con�rms the results from �gure 1.

Summarizing the preliminary results from the analysis of futures contracts we conclude

that

� although the application of issuer-dependent conversion factor systems narrows the

future-equivalent price di�erences between the default-free and the credit-risky bonds

or rather the ctd-bond this increases the value of the delivery option.

� A high probability that default-free bonds become cheapest to deliver at maturity is

the key factor increasing the value of the delivery option relative to a future with a

traditional price factor system and this happens only for the LM -price factor system.
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A smaller delivery basket of a subset of four bonds retains qualitatively the results that

are obtained for the basket of 8 bonds. The smaller basket contains only the two bonds

of both issuers which have either the longest maturity/lowest coupon or the shortest

maturity/highest coupon. These are the bonds 1, 4, 5, and 8 in table 2. Because of its

parsimonious structure the reduced basket is used as reference in the following analysis of

the dependency of the option values on time to maturity and again in the comparative-

static analysis in the following section.

Figure 2:

Dependency of the Value of the Delivery Option on Time to Maturity
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In order to study the delivery option value dependent on the maturity of the future �gure

2 shows the value of this option for a time to maturity that lies between 0.5 and 8 months.

For the traditional ("Trad.") and the three issuer-speci�c conversion-factor systems the

option values decrease when the expiration date draws nearer. This is to be expected

because the continuously arriving information reduces the uncertainty which bond will

become the terminal ctd-bond. However, with only two weeks until delivery the option is

between 10 and 18 bp and therefore still very valuable. The order of the conversions factor

systems in terms of the option value changes with decreasing time to maturity. Whereas

at eight months to maturity the delivery option has the highest value for LM -conversion

factors and the lowest for traditional price factors, this order is reversed at two weeks to

maturity.
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5.2 Dependency on the Level of the Term Structures of Interest Rates

and Credit Spreads

In the following section the sensitivity of the delivery option value against changes in the

level of the term structures of interest rates and credit spreads are analysed. For there

are no noticeable di�erences between the results of the CE- and the IS-conversion factor

system only the latter are reported in this and the following subsection. The change

in level is achieved by simultaneously varying the two state variables, the instantaneous

short rate and the instantaneous short spread, and the long term means of the stochastic

processes (�1 or �2) in a range given in table 5. The delivery option values in the six

Table 5:

Parameter Values for the Analysis of Level-Dependency of the Delivery

Option

short interest rate 2.5 3.5 4.5 5.5 6.5 7.5

long term mean �1 5.0 6.0 7.0 8.0 9.0 10.0

short credit spread 0.03 0.05 0.07 0.10 0.15 0.25 0.55

long term mean �2 0.00 0.20 0.40 0.70 1.20 2.20 5.20

interest rate scenarios and seven credit spread scenarios given by table 5 are presented in

�gure 3. The option values of the credit spread scenarios are collected as a group of bars

for every interest rate scenario. The three panels in this �gure show the option values for

traditional, IS- and LM -conversion factors.

The �rst panel in �gure 3 presents the result for a traditional conversion-factor system

conditional on each of the interest rate scenarios. The option values depend strongly on

the interest rate scenario. For a low level of the term structure (r=2.5 %, �1=5 % and

r=3.5 %, �1 = 6 %) the option is relatively valuable with a maximum value of 85 bp. In

these cases the option value reacts sensitively to changes in the level of the credit spreads.

Especially for the lowest short rate (r=2.5 %, �1 = 5 %) the option value varies over a

wide range between 4 and 85 bp. Contrary, for a relatively high level of the term-structure

of interest rates (r � 4.5 %, �1 � 7 %) the delivery option is essentially worthless and does

not depend on the level of the credit spreads.

Comparing the three panels in �gure 3, which belong to di�erent price factor systems,

we observe that surprisingly the values of the delivery option for the traditional and the

IS-price factors are almost identical. However, applying the LM -conversion method leads

by far to higher option values in those interest rate scenarios when the option is already

valuable under a traditional price factor system. In the three scenarios with relatively

high interest rates (r � 4.5 %, �1 � 7 %) and apart from the lowest scenario for the credit

spreads (s = 3 bp, �2 = 0 bp) the delivery option is essentially worthless as it is for the
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Figure 3:

Dependency of the Delivery Option on Simultaneous Changes in the

Long-Term Mean �i and the State Variable xi
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Figure 4:

Dependency of the Value of the Delivery Option on �1
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other price factor systems.

The traditional price-factor system provides no credit-risk adjustment, in contrast to the

IS- and the LM -factors which provide the highest yield adjustment. This ascending order

but not the relative size of the yield adjustment for credit risk is re
ected by the values

of the delivery option. Figure 3 shows that LM -conversions factors lead by far to the

highest option values because of a high probability that a German bond becomes cheapest

to deliver at maturity. This observation con�rms the results from section 5.1.

5.3 Dependency on the Volatiliy of Interest Rates and Credit Spreads

In the following section the sensitivity of the issuer option against changes in the volatility

parameters is analysed. Apart from �1 and �2 the volatility of the interest rates and credit

spreads is a�ected by the mean reversion parameters �1 and �2.

Figure 4 presents the value of the delivery option depending on the volatility parameter

�1 of the short rate process for selected conversion-factor systems. For all price-factor

systems except of the LM -conversion factors the delivery option reaches its maximum at

or close to �1 = 0:06. For the LM -price factors the maximum is at �1 = 0:04 but a

more prominent di�erence are the relatively high option values for low parameter values

(between �1 = 0:01 and �1 = 0:04). If �1 decreases relative to the location of the maximum

of the option value, the ex ante ctd-asset switches for all but the LM -price factors from

the credit-risky 8 %-bond to the credit-risky 4 %-bond. A switch back becomes less likely
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Figure 5:

Dependency of the Value of the Delivery Option on �2
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given the lower volatility parameter and therefore, the option values diminishes for the

lowest value of �1 = 0:01. For the LM -conversion factors, however, the option value

stays above 30 bp even for low values of �1. For this price-factor system the option value

derives from a positive probability that the default-free 8 %-bond becomes cheapest to

deliver which is already 60 % for the reference value of �1 and stays close to this level

when �1 decreases.

Figure 5 shows the values of the delivery option dependent on �2. For values of �2 higher

than 0.09 the option value stays on a high level around 55 bp if the LM -conversion method

is applied. In this range of �2 the option values for the other conversion-factor systems

decrease monotonicly. The reason is again that only in the case of the LM -factors there

exists a high probability of a default-free asset to become cheapest to deliver at maturity

and this probability increases to 80 % for �2 = 0:16.

The mean reversion parameters �1 and �2 in
uence the futures price and, therefore, the

delivery option in two ways: �rstly, via their e�ect on the level and slope of the term

structure and, secondly, via the volatility vi(T � t) of the interest rates and credit spreads

for a time to maturity of T � t. vi(T � t) depends on �i in the following way when xi

denotes the state variable:26

vi(T � t) =
�i
p
xi

(T � t)
Bi(T � t; �i; �i; �i): (22)

In this analysis we assign �1 and �2 to the volatility parameters because the absolute

26Bi(T � t; �i; �i; �i) is abbreviated by Bi(T � t) in (31) in appendix A.1.
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Figure 6:

Dependency of the Value of the Delivery Option on �1
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values of their estimates are rather small and we expect that the impact on the volatility

of the term structures dominates the one on the level.

The dependency of the value of the delivery option on �1 is shown in �gure 6. The option

values peak where the uncertainty about which of the two credit-risky bonds will become

the ctd-bond at maturity is highest. For the LM -conversion factor system this is the case

when �1 = 0:08.

Figure 7 shows that if �2 is smaller than its reference value the delivery option increases

for all issuer-dependent conversion-factor systems. This result di�ers from the situation in

�gure 6. The key di�erence is that whereas a change of �1 a�ects all bonds in the delivery

basket in the same way, a change of �2 a�ects only the credit-risky assets. With decreasing

�2 the volatility of the spread v2(T�t) increases and the probability of a default-free bond
to become cheapest to deliver accordingly increases for all issuer-dependent conversion

factor systems together with the value of the delivery option. For the lowest value of

�2 = 0:02 the probability that the default-free 8 %-bond becomes the terminal ctd-asset are

65 % for the LM - and 60 % for the IS-price factors. Only the traditional conversion-factor

system ensures that the ctd-asset will always be credit-risky and hence the value of the

delivery option stays overall una�ected by changes in �2.

Comparing �gures 5 and 7 we observe for the LM -price factors, that the value of the

delivery option peaks for high values of �2 but low values of �2. The reason for this

observation is, that the volatility of the credit spreads, given by (22) increases with �2
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Figure 7:

Dependency of the Value of the Delivery Option on �2
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but decreases with �2. Therefore, for relatively high values of �2 and low values of �2

extremely high and low values of the short rate at expiration are more likely. Whereas

the former have a negligible impact on the value of the delivery option, the latter imply

a strong increase of the option value because the probability increases that default-free

bonds become cheapest to deliver.

Summarizing the results of the comparative-static analysis the following conclusions can

be drawn:

� For a high level of the term structure the ctd-bond can be anticipated with a high

probability and the in
uence of the credit spread on the value of the delivery option

is negligible.27

� The value of the delivery option reacts sensitively to changes in the parameters of

the two stochastic processes. Under a LM -conversion factor system the value of

the delivery option is in most cases considerably higher than under the other three

price-factor systems.

� The adjustment for credit risk in the nominator of the issuer-dependent conversion

factors necessarily decreases the di�erences between the futures-equivalent prices

of default-free and credit-risky bonds. This does not necessarily lower the value

27There exists one exception to this rule when the spreads are very low and the LM -conversion factors

are applied.
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of the delivery option. Although the issuer-dependet conversion factors reduce the

heterogeneity the probability of a change of the ctd-bond between di�erent issuers

increases exactly because the future-equivalent are closer to each other than under

a traditional price-factor system. This causes almost in any case the highest value

of the delivery option under the LM -price factor system.

The use of empirically estimated model parameters in the comparative-static analysis

contributes to its validity and justi�es comparing our results with �ndings of earlier

empirical papers on the quality option. Berendes and B�uhler (1994), Yu (1997) and Lin

and Paxson (1995) qualify as benchmark because they base their valuation of the delivery

option as well on consistent term structure models28 and examine with the Bund Future

a futures contract that is similar to the multi-issuer contracts in this paper.

Berendes and B�uhler (1994) decompose the value of the delivery option into a synthetic

delivery option and a 
exibility option. The former is de�ned as the price di�erence

between delivering the notional and the ctd-bond.29 Contrary to a common option

de�nition the value of the synthetic delivery option can be negative any time when the

notional bond is cheaper to deliver than the ctd-bond. The 
exibility option corresponds

with the de�nition of the delivery option usually found in the literature and in this paper.

For a selected observation day Berendes and B�uhler determine a value of the 
exibility

option of the Bund Future that is 8 bp for 8 months before expiration and only 3 bp for

5 months.30

Yu (1997) analyses the quality option of Japanese government bond futures with a 6

%-notional bond of 10 years to maturity. Government bonds are eligible if their maturity

is between 7 and 11 years. This means that the maturity window is wider than for the

Bund Future and a higher value of the delivery option is to be expected from the �ndings

of Cherubini and Esposito31. Three months prior to expiration the quality option has a

value of 12 bp which the author rates as "valuable but not signi�cant".32

Lin and Paxson (1995) determine for the Bund Future a quality option value of 9 bp three

months before maturity which equals approximately the value of the new issue option.

The name of the latter derives from the option conceded to the short to deliver a bond

that has not been issued at the time of the evaluation but is going to be issued and enter

the delivery basket before the the futures contract expires.

28There are earlier studies from Boyle (1989) and Hemler (1990) which evaluate the delivery option as a

switching option in the spirit of Margrabe (1978). However, the assumption that the price processes follow

geometric-brownian motions are fraud with theoretical problems, in particular with respect to their strong

dependency on the correlation estimates.
29See Berendes and B�uhler (1994), p. 1000-1001.
30See Berendes and B�uhler (1994), p. 1017.
31See Cherubini and Esposito (1995), pp. 8{9.
32See Yu (1997), pp. 606{607.
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To compare these earlier results with the �ndings of this study we consider �rst the

delivery option values of the futures contracts with delivery baskets of default-free subsets

of the multi-issuer future presented in table 3. For these two contracts the quality option

values are 9 bp in the case of four and 3 bp in the case of two deliverable bonds when

the traditional conversion-factor system is applied. This means that the empirical results

from earlier papers concerning the valuation of the quality option are remarkably in line

with the results in this study.

Note that the issuer option, calculated as the di�erence between the value of the delivery

option and the quality option, is in most scenarios more than four times higher than the

quality option and, therefore, economically much more important.

6 Hedge-EÆciency of Selected Conversion Factor Systems

An important result of the previous section is the increase in the value of the delivery option

if issuer-dependent price factors are applied, especially in the case of the LM -conversion

factor system. In the following we explore the e�ect of this result on the hedge eÆciency of

futures contracts. The hedging of bond positions has been the primary purpose of inventing

bond futures contracts in the �rst place. Empirical work by Black (1986) and the Bank

for International Settlements (1996) reveals the importance of the hedge eÆciency for

the success of a futures contract in the market. Their results underline the importance

of analysing the hedge eÆciency of a prospective multi-issuer contract under di�erent

conversion factor systems.

The following analysis involves specifying four design aspects that are the hedge instrument

together with its delivery basket, the hedge strategy, the composition of the long position

in the bond market that is to be hedged and the statistical method of measuring the hedge

eÆciency.

6.1 Hedge Instrument

The contract characteristics of the futures that are used as hedging instruments are de�ned

as in section 5. Because these contracts are not traded at this time, prices are generated

from the two-factor model presented in section 4. The parameters of this model are

estimated in B�uhler et al. (2001).33 To obtain futures prices consistent with the observed

market prices of the deliverable assets a calibration to the term structures of interest

rates and credit spreads is carried out. The calibration method has already been applied

successfully by Vetzal (1998) and is based on a proposition from Dybvig (1999). The key

idea of this method is to add to the two state variables a deterministic factor that depends

33See appendix B.
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Table 6:

Delivery Baskets of the Futures Contracts

between May 1998 and February 2000

deliverable bonds maturity of the future (month/year)

issuer coupon maturity 6/98 9/98 12/99 3/99 6/99 9/99 12/99 3/00

GER 6.000 % 4.1.2007 �

GER 6.000 % 7.7.2007 � � �

GER 5.250 % 4.1.2008 � � � � � � �

GER 4.750 % 4.7.2008 � � � � � �

GER 4.125 % 4.7.2008 � � � � �

GER 3.750 % 4.1.2009 � � � �

GER 4.000 % 4.7.2009 � � �

GER 4.500 % 4.7.2009 � �

GER 5.375 % 4.1.2010 �

ITL 5.750 % 10.7.2007 � � � � � � � �

only on calendar time. The latter is determined so that the mean squared model errors of

the prices of deliverable bonds are minimized.

The hedge analysis is conducted with weekly prices for the time period from May 1, 1998

to February 23, 2000. From the available futures contracts always the next-by future

is known to be the most liquid one.34 Assuming the same maturity dates as those of

the Euro Bund Future there would have been nine next-by contracts starting with a

contract maturing in June 98 and ending with a contract maturing in March 00. Table 6

presents the composition of the delivery baskets for these nine futures contracts. Because

we restrict ourselves to OTC-traded bonds, there exists only a single Italian government

bond maturing inside the relevant range of time to maturity that spans 8.5 to 10.5 years.

Focusing on the multi-issuer character of the future this time window for delivery is slightly

modi�ed so that this bond stays in the delivery basket even when its time to maturity is

less than 8.5 years. In order to avoid a distortion of the results by di�erent time windows

for the two issuers, German Bunds with a time to maturity between the Italien public

bond and the lower limit of 8.5 years are also included.

Note that because there is only a single credit-risky bond eligible for delivery, the

calibration of the default-model matches its market prices exactly whereas this does not

hold for the German government bonds.

34See Ederington (1979), pp. 164{165.
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6.2 Hedge Strategy

In order to assess to what extent the future quali�es as a hedging tool we assume risk

minimization as the primary hedging purpose.35 To this purpose two di�erent hedging

strategies are conducted. The �rst is a delta-hedge strategy against interest rate and credit

risk. In the framework of the two-factor model the multi-issuer future serves as hedging

instrument against credit risk. A short position in the youngest and therefore most liquid

German government bond of the delivery basket is selected as the hedging instrument

against interest rate risk.

The hedge ratios �F;i and �P;i are used for the multi-issuer future and the German bond

as second hedging instrument. They are de�ned for this delta-hedge strategy as follows,

when V , P and F denote the prices of the credit-risky bond to be hedged, the default-free

bond and the multi-issuer future respectively:36

�F = �@V=@s
@F=@s

(23)

�P = �@V=@r + �F
@F
@r

@P=@r
(24)

However, the aÆne model does not explain the observed bond prices exactly. Therefore,

we cannot expect a perfect hedge, in which case the returns of the long and the short

position would cancel each other out.

Although the delta hedge is the best hedging strategy from a theoretical perspective,

a duration hedge is still the pre-dominant strategy pursued by institutional investors to

protect their bond positions. Furthermore, it has performed well in empirical studies

like Brennan and Schwartz (1983) who compare it with a hedge strategy based on a

two-factor equilibrium model of the term structure of interest rates.37 In order to assess

the future prospects of a multi-issuer future it is important how well such a contract

performs in a hedging strategy that is prefered by practitioners. Therefore, we apply a

traditional duration hedge as a second hedging strategy. The hedge ratio is de�ned as the

ratio between the modi�ed duration38 of the bond acquired in the cash market and the

modi�ed duration of the ctd-bond times the conversion factor. Note that in this case only

the interest rate risk is accounted for in the hedge ratio, so that a less eÆcient hedge is to

be expected.

35See Ederington (1979), pp. 159{162, for references of other approaches with a two-dimensional risk-

return consideration.
36The values of the futures contract is determined numerically and, therefore, the partial derivatives

@Fu=@r and @Fu=@s have to be approximated as well numerically in the usual way by central di�erences.
37See Brennan and Schwartz (1983), pp. 17{28.
38See Sundaresan (1997), p. 132.
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Table 7:

Long Position in the Bond Market to be Hedged

issuer maturity designation of the bond position

ITL04 ITL11 GERITL05 GERITL11

GER second- � �

youngest

ITL 2005 � �

ITL 2007

ITL 2011 � �

6.3 Long Position of Bonds to be Hedged

The long position in the bond market, that is to be hedged, consists, �rstly and for

expositional simplicity, of one single Italian government bond and, secondly, of portfolios of

one German and one Italian government bond. The �ve bond positions that are considered

in the analysis are listed in table 7. We assume that a new long position is established in

weekly intervals by investing a nominal amount of Euro 100 and liquidating the position in

the following week. If the long position consists of only one asset this amount is invested

fully in the Italian bond and in case of a portfolio the amount is split in half between the

German and the Italian government bond. The hedge portfolio of a delta hedge strategy

consists of a long position Ki in the bonds to be hedged and short positions in the future

with price F and a Bundesanleihe with price P . wi denotes the portfolio weights of the long

position in the bonds. The hedge returns of the hedge portfolio �H(t) = H(t+�t)�H(t)

for the time interval �t of one week are calculated as follows when �i;F (t) and �i;P (t) denote

the respective hedge ratios.

�H(t) = �K(t)�
2X
i=1

wi ��i;F (t) ��F (t; T; f1; : : : ;mg)�
2X

i=1

wi ��i;P (t) ��P (t;M; c) (25)

�K(t) =

2X
i=1

wi (Ki(t+�t)�Ki(t)) : (26)

Usually investors roll over their position into the next futures contract at the end of the

last month before maturity and the liquidity of the next-by contract decreases afterwards.

This procedure is adopted in this analysis and the roll-over date is in the last week of the

month before future expiration.
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6.4 Assessing the Hedge EÆciency

In previous studies of the hedge eÆciency and in practitioners' handbooks the Johnson-

statistic39 V RM serves as the predominant measure for the hedge quality. This statistic is

de�ned as the ratio between the variance reduction of the returns achieved by the hedged

portfolio and the variance of the returns of the unhedged long position.40 N denotes the

number of weekly hedge intervals and �K and �H the average of the respective time

series.

V RM = 1�
PN

t=1(�H(t)��H)2PN
t=1(�K(t)��K)2

: (27)

We suggest that a hedging statistic should consider instead the squared di�erences from

the ideal hedge return �H�(t) instead of the time series averages �K and �H. The ideal

hedge return �H�(t) is de�ned as the return of the hedge portfolio if the multi-issuer

future is replaced as hedging instrument by a futures contract, written on the bond that

is to be hedged. Contrary to the multi-issuer contract this new future for bond i with

price F �(t; T; fig) is not endowed with a delivery option and hence its hedge quality is not

distorted by this option. The ideal hedge return �H�(t) of a hedge portfolio is de�ned as

follows with �K(t) de�ned in (26):

�H�(t) = �K(t)�
2X
i=1

wi � �i;F �(t) ��F �(t; T; fig): (28)

The variance reduction relative to the ideal hedge returns V RI is de�ned accordingly:

V RI = 1�
PN

i=1(�H(t)��H�(t))2PN
i=1(�K(t)��H�(t))2

: (29)

The hedge statistic V RM is used additional to V RI in the following analysis in order to

facilitate comparing the results with previous studies.

6.5 Analysis of Hedge Results

The hedge analysis is carried out in three steps: In the �rst step the hedge eÆciency is

determined for the LM -conversion-factor system applying two hedge strategies and it is

measured by two di�erent hedge statistics. This step aims at exploring the robustness of

the results with respect to these two criteria and to compare the achieved hedge eÆciency

with earlier studies. In the second step the value of the delivery option is analysed for

multi-issuer futures with di�erent conversion-factor systems. The third step focuses on

the impact of the conversion-factor system on the hedge eÆciency.

39See Johnson (1960), pp. 142{144.
40See Ederington (1979) and Figlewski (1996) among others.
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Table 8:

Variance Reduction in Percent Relative to an Ideal Hedge for

LM-Conversion Factors

hedge hedge- bond position to be hedged

statistic strategy ITL04 ITL11 GERITL05 GERITL11

V RI duration 92.4 94.3 87.2 96.2

delta 88.1 89.1 84.7 95.3

V RM duration 12.9 67.5 77.4 50.0

delta 12.3 50.6 93.6 50.9

6.5.1 Dependency on the Hedge Strategy and on the Hedge Statistic

The LM -price-factor system is applied in the �rst step because it leads to the highest value

of the delivery option in the comparative-static analysis. Therefore it o�ers the widest

scope for improvement of the hedge eÆciency. If, instead, the current ctd-bond almost

surely stays cheapest to deliver until expiration, then the conversion factors embedded in

the hedge ratio and the futures price formula cancel each other out in (25) and do not

e�ect the hedge result.

Table 8 presents the results for the hedge eÆciency in the case of LM -conversion factors

when both hedge strategies, delta hedge and duration hedge, are applied. The hedge

eÆciency is measured by the variance reduction relative to the ideal hedge returns V RI

and the Johnson statistic V RM . The composition of the long positions in bonds is given

in table 7.

Focusing �rst on the V RI-statistic the variance reduction for the duration hedge is between

87.2 % and 96.2 % and between one and �ve bp higher than in the case of a delta hedge.

This result can be attributed to the dependency of the delta hedge on the returns of

the second hedge instrument which is a short position in the German government bond.

Because there are more than one German bond in the deliverable basket their observed

prices are not fully consistent with the calibrated model. Therefore, the bond returns are

not fully captured by the model which reduces the hedge quality.

Comparing the results in table 8 with respect to the two di�erent hedge statistics V RM

and V RI the hedge eÆciency is overall higher if the V RI-statistic is applied. Exceptions

are GERITL07 for both hedge strategies and GERITL05 if a delta-hedge is applied. The

reason for these di�erences is the following. The time-homogenuous model cannot explain

the returns of the long position perfectly. This 'model error' a�ects the return �H�(t) of an

ideal hedge in the same way as the long position in bonds, because at the beginning and at

the end of every hedge interval the futures prices that are used for the calculation of �H�(t)

are calibrated to the term structures of interest rates and credit spreads. Therefore,
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this model error roughly cancels out in the terms of the sum in the nominator and the

denominator and does not a�ect the V RI-statistic. However, it a�ects the V RM -statistic

because it is not captured by the averages �H and �K.

Next we compare our results with three previous papers concerning the hedge eÆciency

of a bond futures contract and which employ similar hedge strategies. Toevs and Jacob

(1986) analyse the implications of hedging US government and GMAC bonds with 30 year

US Treasury-bond futures, applying among others a duration hedge strategy. They hedge

a long position in a US government bond with a maturity similar to the ctd-bond.41 The

V RM -statistic shows a variance reduction of 92 %. Note that this result refers to hedging

on a daily basis and taking 10-day moving averages in order to remove purely random basis

risk.42 For a maturity mismatched hedge (8 years to maturity) and for a long position

in a AA-rated GMAC bond the V RM -statistics drop to 78 % and 80 %. These results

suggest that a mismatch in maturity harms the hedge quality considerably and even more

than the di�erence in default risk does. The e�ect of a maturity mismatch is observed in

table 8, too, in which we �nd a very di�erent hedge quality when the same future is used

to hedge bonds of the same issuer but with di�erent maturities.

Meyer (1994) uses market prices of the Bund Future in order to hedge in two-week intervals

portfolios consisting of Bundesanleihen and other German public bonds. According to the

V RM -statistic the variance reduction is 80 % and still 70 % after including corporate

bonds in his portfolio.43 To obtain a comparable hedge scenario, we hedge a long position

in the second youngest Bundesanleihe from the delivery baskets given in table 6 and use

for a duration hedge the multi-issuer future, equipped with a traditional conversion-factor

system. The variance reduction according to the V RM -statistic is 78 % and, therefore,

close to the result in Meyer (1994).

Lin and Paxson (1995) analyse the hedge eÆciency of the Bund Future for portfolios

of Bundesanleihen. Similar to our study they measure the hedge quality for bonds of

several maturities (two, �ve and ten years) separately and employ two hedge strategies,

the �rst uses the conversion factor as hedge ratio and the second is a delta hedge. They

�nd that the future provides a low reduction in variance, measured by V RM , in the case

of a cross-hedge with a Bundesanleihe maturing in two years. In three out of six time

periods of half a year there is no variance reduction at all and for the other three periods

it varies between 4 % and 60 %. The low hedge eÆciency, especially for bonds with shorter

maturities, is in line with the results in table 8 for the Italian government bond maturing

in 2005.

Summarizing the results of the �rst step we conclude that replacing the common Johnson-

statistic by the new hedge statistic V RI gives di�erent and more reliable results. The

41See Toevs and Jacob (1986), pp. 66{68.
42See Toevs and Jacob (1986), p. 69.
43See Meyer (1994), pp. 264{266.
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hedge eÆciency reacts sensitively against a change in the long position of the bonds,

especially with respect to di�erences in their maturities. These results are in line with

earlier analyses of the hedge eÆciency of bond futures with similar hedge strategies, namely

Toevs and Jacob (1986), Meyer (1994) and Lin and Paxson (1995).

6.5.2 Hedge EÆciency and the Value of the Delivery Option

In the second step the value of the delivery option is analysed. Panels 1 to 3 in �gure

8 show the value of this option calculated for weekly observations. The vertical dashed

lines indicate the roll-over days when the next-by future is replaced by the next contract.

Whereas in the �rst panel the option value under traditional conversion almost vanishes

most of the time, the time series of the option values change erraticly in the last panel

when LM -price factors are applied. For the IS-conversion factors the option values in the

second panel of �gure 8 resemble those when traditional conversion factors are applied but

they increase stronger towards the end of the observation period.

The delivery basket for the hedge analysis di�ers from the one used in the comparative-

static analysis, especially because only a single credit-risky bond is available for delivery.

Therefore, the delivery option cannot derive its value from future changes of the ctd-bond

between di�erent credit-risky bonds of the delivery basket but only from the possibility

that a default-free asset will become cheapest to deliver. Instead, if the delivery basket

is built symmetrically of default-free and -risky assets, as it is in the comparative-static

analysis in section 5, then for a traditional conversion-factor system the short can always

select a credit-risky bond that is cheaper to deliver. In this case and if there is only

a single credit-risky bond eligible for delivery the delivery option would be worthless.

However, the delivery baskets in the hedge analysis are not symmetrically built and it

is possible that a default-free bond with other coupon and maturity characteristics will

become the ctd-asset in certain interest rate scenarios even under a traditional conversion

factor system. This happens when the future maturing in February 2000 is the next-by

contract and the delivery option has a value of up to 10 bp as is demonstrated in panel 1

of �gure 8.

Considering that the delivery basket contains only one single credit-risky bond, the values

of the delivery option for the LM -price factors are relatively high compared with our

results in the comparative-static analysis. Table 9 provides descriptive statistics of the

time series of the delivery option values for the three selected conversion-factor systems.

The high di�erences in relative terms between the mean and the median option value which

surface for the LM -conversion factors indicate the presence of relatively few observations

with relatively high option values which is con�rmed by the third panel in �gure 8. In how

far the price factor-dependent di�erences in the option value are related to di�erences in

the hedge eÆciency is explored in the third step of this analysis.
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Figure 8:

Value of the Delivery Option from May 1998 until February 2000 for

Multi-Issuer Futures
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Table 9:

Descriptive Statistics of the Value of the Delivery Option for Selected

Conversion Factor Systems in Basispoints

Conversion factor Traditional IS LM

Maximum 10 28 49

Mean 2 3 13

Median 2 2 6

Standard Deviation 1 4 14

Table 10:

Variance Reduction in Percent Relative to an Ideal Hedge with a

Delta-Hedge Strategy

conversion- bond position to be hedged

factors ITL04 ITL11 GERITL05 GERITL11

Traditional 89.7 90.2 84.6 95.0

IS 89.6 90.2 84.6 95.2

LM 88.1 89.1 84.7 95.3

Table 11:

Variance Reduction in Percent Relative to the Time Series Averages

(Johnson-Statistic) with a Delta-Hedge Strategy

conversion- bond position to be hedged

factors ITL04 ITL11 GERITL05 GERITL11

Traditional 12.3 51.6 93.7 50.9

IS 12.3 50.8 93.6 50.9

LM 12.3 50.6 93.6 50.9
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6.5.3 Impact of the Conversion Factor System on the Hedge EÆciency

Tables 10 and 11 present the hedge eÆciency measured by V RI and V RM for the selected

traditional, IS- and LM -conversion factors. The di�erences are negligible for both hedge

statistics. We conclude that although the delivery option values di�er considerably this

does not transfer into di�erences in hedge quality. Note that even under a LM -conversion

factor system, under which the highest option values are observed, the hedge eÆciency is

e�ectively still the same as under a traditional price factor system. The reason for this

observation is the result that the hedge eÆciency is not harmed by an increase of the

value of the delivery option in the �rst place. Therefore, there is not enough room for

improvement in the hedge quality to bring about a noticeably higher hedge quality.

The empirical result, that a valuable delivery option does not harm the hedge eÆciency

of a bond future is consistent with results in Lin and Paxson (1995).44 In their analysis of

the quality option they determine model prices of the Bund Future, �rstly endowed with

a delivery option and then, secondly, without. Comparing the hedge eÆciency of both

cases reveals no worse hedge quality in the presence of a delivery option.

7 Ranking of the Conversion Factor Systems

Based on the quantitative results from section 5 and 6 we compare the four selected

conversion factor systems concerning their suitability for a prospective multi-issuer bond

futures contract, e. g. for European government bonds. To this purpose we propose four

theoretical requirements as the �rst of two parts of a requirement catalogue.45

1. The �rst theoretical requirement is a fair settlement price. This means that the

invoice amount for the short has to re
ect accurately the di�erences between the

physically delivered asset and the notional bond which in
uence the asset price,

notably the coupon size, the time to maturity and the credit risk.

2. The conversion-factor system should reduce the heterogeneity, measured as the

potential delivery losses from delivering an asset di�erent from the ctd-bond. The

lower these delivery losses are the lesser becomes the potential gain of a short squeeze,

at least as long as the manipulator cannot squeeze the whole delivery basket.

3. Another aspect that helps to prevent a squeeze is a high uncertainty concerning

the terminal ctd-bond. Ideally the probabilities to become cheapest to deliver at

maturity of the future contract should be the same for all assets in the basket. This

and the previous requirement are the key factors which determine the value of the

delivery option.

44See Lin and Paxson (1995), pp. 117{123
45Note that the �rst three requirements restate conclusions from section 2.
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Table 12:

Ranking of Conversion Factor Systems

requirement traditional CE- IS- LM-

conversion-factor systems

1. fair settlement price 4 2 2 1

2. minimize potential delivery loss 4 2 2 1

3. high uncertainty about delivery 4 2 2 1

4. high hedge eÆciency 1 1 1 1

1. transparency 1 2 3 4

2. easy accessibility 1 1 1 1

3. robust against manipulation 1 3 3 1

4. o�ering of speculation pro�t 4 2 2 1

4. The conversion-factor system should improve the hedge eÆciency of the futures

contract.

Additional to the four theoretical requirements, we propose four practical requirements

that a conversion-factor system is expected to meet.

1. Comments from practitioners suggest that traders will be uncomfortable with a

conversion-factor system that is too complex and lacks transparency

2. Another requirement is a full-time accessibility. The easiest way to ensure this is by

conversion factors that are determined only once.

3. The conversion-factor system should be robust against manipulation attempts, for

instance by manipulating the market prices that are used for the determination of

the conversion factors.

4. Any uncertainty about the ctd-bond o�ers traders a chance of a speculation pro�t.

From this point of view the existence of a valuable delivery option may even

contribute to the success of the future in the market.

In order to rate the four proposed conversion-factor systems we apply a ranking with

respect to these eight requirements. We assign the number '1' to the conversion factors

that meet the requirement best and the number '4' to the conversion factors that do so

worst. The ranking is presented in table 12. With respect to the theoretical requirements

the LM -conversion factors perform best and the traditional price factors perform worst.

Ranked in between are the CE- and IS-conversion factors for whom we obtain very similar

results.
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The ranking changes when the trading requirements are considered. The traditional

conversion-factor system meets best the requirements of transparency, accessibility and

robustness against manipulation. However it does not account for a more heterogenuous

delivery basket when credit risky assets are included and, therefore, facilitates a

ctd-squeeze. Additionally, if a credit-risky asset is always cheaper to deliver, this reduces

the prospect of speculation pro�ts. The CE- and IS-conversion factors are better suited

than a traditional price-factor system considering the third and fourth requirement because

they account for di�erences in credit risk. All conversion factors are calculated only once.

However, because of their reliance on rating information the IS- and CE-price factors are

not as transparent as the traditional conversion method.

The LM -conversion factors must be considered as least transparent because they are

determined by solving a complex optimization problem. However, they perform best with

respect to the third and fourth practical requirement. They correct best for di�erences in

default risk and therefore increase in most cases the delivery option value which o�ers a

better chance of speculation pro�t.

Summarizing the ranking results, the LM -conversion factors are best suited for a

prospective multi-issuer futures contract as to the theoretical requirements. Concerning

the practical requirements the results are mixed but in three out of four it performs best

again and as to one of the other three criteria all price factor systems do not not di�er

at all. Therefore, we recommend this price-factor system for a prospective European

government future.

8 Conclusion

In this paper we address two theoretical and one empirical problem. The �rst problem

deals with the construction of appropriate conversion factors in the presence of default

risk, the second with the value of the delivery option in these cases and the third deals

with the impact of the conversion-factor system and the delivery option on the hedge

eÆciency of a multi-issuer contract.

We propose three conversion-factor systems which extend the construction principle of

traditional price factors by introducing an issuer-dependent premium for credit risk. The

data requirements are parsimonious: Two of the new price factor systems only need

cumulative default frequencies that are readily available from rating agencies. The third

conversion-factor system requires a set of term structures of interest and credit spreads

from which the credit risk premium is determined by minimizing potential delivery losses.

All three conversion factor systems reduce the di�erence in the future-equivalent prices

between default-free and credit-risky deliverable bonds. This reduces the heterogeneity of

the delivery basket and renders a short squeeze more diÆcult.
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In the theoretical part of the paper the value of the delivery option is analysed with

and without credit-risky bonds in the delivery basket and for di�erent conversion factor

systems. This study is extended to an extensive sensitivity analysis by varying the

parameters of the delivery basket and of the valuation model. The value of the default-risk

dependent issuer option is determined as a residual by subtracting the value of the interest

rate dependent quality option from the total value of the delivery option. We �nd that

for the traditional conversion-factor system the value of the issuer option is roughly more

than four times higher than the value of the quality option. The application of the new

issuer-dependent conversion-factor systems increases the value of the delivery option. The

most notable increases are caused by an increase of the probability that a default-free

bond becomes cheapest to deliver.

An important empirical question is the impact of the delivery option on the hedge eÆciency

of multi-issuer futures. Although we observe under di�erent conversion factor systems

quite di�erent values of the delivery option, there is no evidence that this harms the hedge

eÆciency of the futures contract. This result is veri�ed to be robust against changes in

the hedge strategy, the composition of the delivery baskets and against di�erent methods

how to measure the hedge eÆciency.

Additional to these theoretical and empirical contributions the appropriateness of the

selected conversion-factor systems for a multi-issuer contract, e. g. a prospective European

government bond future is discussed. To this purpose a catalogue of eight requirements

is compiled. Four theoretical requirements concern the settlement procedure, the

heterogeneity of the delivery basket, the uncertainty of the terminal ctd-bond and

the hedge eÆciency. Added to this are four practical requirements concerning the

transparency, accessibility, robustness against manipulation attacks and the prospect

of speculation pro�ts. Based on these eight requirements and the quantitative results

from the previous analysis a ranking is proposed of the traditional and three selected

issuer-dependent conversion-factor systems. This ranking enables us to recommend the

LM -price-factor system as most suitable for a prospective multi-issuer contract.
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A Valuation of Default-Risky Pure Discount Bonds and

Futures Contracts in a CIR-Model

A.1 Valuation of a Default-Risky Pure Discount Bond

V (t; T ; rt; st) = A1 (T � t)A2 (T � t) e�B1(T�t)rt�B2(T�t)st (30)

where for i 2 f1; 2g:

Bi (T � t) =
2
�
e
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A.2 Valuation of a Future on a Pure Discount Bond

F (t; T; f1g) =
2Y

i=1

Ai(M � T )

�
�i

Bi(M � T ) + �i

�2�i�i=�
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� exp
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�xi
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(34)

where for i 2 f1; 2g:

�i =
2 (�i+�i)

�2i (1�e
�(�i+�i)(T�t))

and Ai(M � T ), Bi(M � T ) and 
i are given by (32), (31) and (33).
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B Parameter Estimates of the Term Structures of Interest

Rates and Credit Spreads

Table 13:

Maximum Likelihood Parameter Estimates of the German Term Structure

This table summarizes the parameter estimates of the CIR one-factor model for their German

term structure of interest rates and the credit spread structure between Italian and German

government bonds. The estimates are from B�uhler et al. (2001). The numbers in parentheses are

the asymptotic standard errors. The sample period includes 92 weekly observations and extends

from May 1998 to February 2000.

Estimates (Standard Errors)

Parameter German Term Structure Credit Spreads

�i 0.0651 (1.4638) 0.1023 (2.2430)

�i 0.0598 (1.3439) 0.0018 (0.0394)

�i 0.0558 (0.0006) 0.0935 (0.0022)

�i -0.0340 (1.4740) -0.3460 (2.2436)

�i + �i 0.0311 (0.0107) -0.2437 (0.0046)
�i�i

�i+�i

0.1249 (0.0414) -0.0008 (0.0000)
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