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Abstract

We investigate the behavior of prices of equity options in the Cor-
porate Securities Framework suggested by Ammann and Genser (2004)
where equity is the residual claim of a stochastic EBIT. Option prices are
obtained by two numerical methods: (i) Approximation of the EBIT-
process by a trinomial lattice and calculation of all securities by back-
ward induction. (ii) Evaluation of the risk-neutrally expected value of
the equity option at maturity by direct numerical integration. Econom-
ically, the current state of the firm with respect to bankruptcy and the
capital structure influence to a large extent the particular risk-neutral
equity (return) distribution at option maturity and the level and slope
of implicit Black and Scholes (1973)-volatilities as a function of strike
prices. Additionally, we oppose the tradition of relating equity return
moments to implied volatilities. This connection might be misleading
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Odense, Paul Söderlind, Rico von Wyss, Stephan Kessler, Ralf Seiz, Michael Verhofen, Bernd
Genser, Bernd Brommundt, and especially Christian Riis flor for helpful comments and
insightful discussion. Financial support by the National Centre of Competence in Research
”Financial Valuation and Risk Management” (NCCR FINRISK) is gratefully acknowledged.
NCCR FINRISK is a research program supported by the Swiss National Science Foundation.

i



when bankruptcy probabilities become high.
JEL-Classification: G13, G33
Keywords: option pricing; volatility smiles; firm value models; bankruptcy

ii



Explaining Volatility Smiles of Equity Options with
Capital Structure Models

Abstract

We investigate the behavior of prices of equity options in the Cor-
porate Securities Framework suggested by Ammann and Genser (2004)
where equity is the residual claim of a stochastic EBIT. Option prices
are obtained by two numerical methods: (i) Approximation of the EBIT-
process by a trinomial lattice and calculation of all securities by backward
induction. (ii) Evaluation of the risk-neutrally expected value of the eq-
uity option at maturity by direct numerical integration. Economically,
the current state of the firm with respect to bankruptcy and the capital
structure influence to a large extent the particular risk-neutral equity (re-
turn) distribution at option maturity and the level and slope of implicit
Black and Scholes (1973)-volatilities as a function of strike prices. Addi-
tionally, we oppose the tradition of relating equity return moments to im-
plied volatilities. This connection might be misleading when bankruptcy
probabilities become high.
JEL-Classification: G13, G33
Keywords: option pricing; volatility smiles; firm value models; bankruptcy

1 Introduction

One of the frequently discussed issues in the asset pricing literature is
why the theoretical option prices in the Black and Scholes (1973)/Merton
(1974) framework cannot be observed empirically. Implied volatilities of
observed option prices calculated in the Black/Scholes setting are not
constant. They are higher for lower strike prices than for higher ones.
The convex relationship is commonly referred to as an option’s volatility
smile or smirk.1

1The literature on implied option volatilities is huge. Early evidence of the existence of
implied volatility smiles is MacBeth and Merville (1979) who base their work on studies of
Latané and Rendleman (1975) and Schmalensee and Trippi (1978). Emanuel and MacBeth
(1982) try to relax the stringent volatility assumption of the Black and Scholes (1973) to
account for the volatility smile but fail by a constant elasticity of variance model of the
stock price. More recent studies of Rubinstein (1994), Jackwerth and Rubinstein (1996),
and Jackwerth and Rubinstein (2001) take the volatility smile as given and exploit option
prices to extract implied densities of the underlying asset. See also Buraschi and Jackwerth
(2001) who report that after the 1987 market crash, the spanning properties of options
decreased. They conclude that more assets are needed for hedging option prices which hints
to additional risk factors such as stochastic volatility.
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Several extensions of the Black/Scholes framework have been sug-
gested to account for these empirical observations which can be catego-
rized in two groups. First, a pragmatic stream of the literature intro-
duced volatility structures and thus changed the physical distributional
assumptions for the underlying. Although this procedure yields satisfying
results for equity option trading, economic intuition is still lacking which
underpins the use of volatility structures.2

Second, an economic stream of the literature tried to explain why the
pricing kernel, defined as the state price function at option maturity, is
different to the one implied by the Black and Scholes (1973) model. Arrow
(1964) and Debreu (1959), Rubinstein (1976), Breeden and Litzenberger
(1978), Brennan (1979) and others relate state prices to investor utility
and the state dependent payoffs of securities and disentangle the effect
of the investor’s utility function from the probability distribution of the
underlying asset. Therefore, the pricing kernel – and the value of securi-
ties – depends on assumptions about the utility function of the investor
and on the distribution of the security.3 The pricing kernel is valid for all
securities in an economy. However, when taking an individual firm’s per-
spective, the simple pricing kernel needs to be augmented by additional
risk factors such as default or liquidity.

Using the Corporate Securities Framework of Genser (2005a) and the
analytical solution of Ammann and Genser (2005) and Genser (2005b) a
simpler economic explanation might be suggested: The implied Black/Scholes-
volatility smile of equity options can be related to the specific ability of
equity holders to declare bankruptcy. This feature introduces dependence
on the particular path of EBIT and changes the distribution of equity due
to the conditioning on survival until option maturity. Contract design of
equity, especially the limited liability, changes the local volatility of eq-
uity which in turn depends on the current state of the firm and influences
the pricing kernel and equity option’s implied volatilities. Our approach
is related to Geske (1979)’s compound option approach. However, in con-
trast to Geske (1979) whose underlying of the compound option might
be interpreted as a Merton (1974)-like firm with only one finite maturity
zero bond outstanding, the Corporate Securities Framework allows for

2See e.g. Rubinstein (1994) who adopts this procedure to the binomial model by allowing
an arbitrary distribution of the underlying at option maturity. Heston and Nandi (2000)
derive closed form solutions for options where the volatility of the underlying which follows
a GARCH process.

3Franke, Stapleton and Subrahmanyam (1999) analyze the pricing kernel directly by
comparing pricing kernels of investors with changing degree of risk aversion at different
levels of investor’s wealth. Franke et al. (1999) find the pricing kernel to be convex to
accommodate for the dependence of risk aversion and investor’s wealth leading to convex
implied Black/Scholes-volatilities.
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a complex capital structure. As will be shown later, the debt structure
influences the slope and the level of the implied volatility smile.4

In a related empirical study, Bakshi, Kapadia and Madan (2003) link
the volatility smile to the distribution of equity returns. They show that
a higher skewness and a lower kurtosis of equity returns result in steeper
volatility smiles. Empirical evidence supports their hypothesis. However,
Bakshi et al. (2003) do not offer an economic explanation why individual
stock’s returns should be skewed. In our EBIT-based firm value frame-
work, the leverage ratio depends on the current state of the firm with
respect to bankruptcy. Firms far from bankruptcy and with low leverage
ratios exhibit a risk-neutral equity distribution that reflects the proper-
ties of the assumed EBIT-process. The function of implied equity option
volatilities with respect to strike prices are at a low level but steep. The
closer the firm is to bankruptcy skewness and kurtosis of equity values
increase. The implied volatility level rises significantly but the smile be-
comes flatter, at least in the ABM-case. However, we stress that higher
moments of equity returns might be misinterpreted in the presence of
bankruptcy probabilities. Moreover, a key determinant of implied volatil-
ity structures is the firm’s capital structure.

Toft and Prucyk (1997) value equity options in the restrictive Le-
land (1994) framework. The Corporate Securities Framework extends
the Toft and Prucyk (1997) analysis. Their model is a special case of our
framework if we restrict the capital structure to perpetual debt, the tax
structure to corporate taxes only, and if we assume that free cash flow af-
ter taxes follows a geometric Brownian motion instead of EBIT following
an arithmetic or geometric Brownian motion. We are able to analyze the
pricing of options under different assumptions for the EBIT-process and
of firms that have a complex capital structure. Toft and Prucyk (1997)
shed some light an complex capital structures when they proxy a debt
covenant in the perpetual debt case by the amount of a firm’s short term
debt. Our model allows to analyze firms with short term debt and long
term debt directly.

Although security prices have analytical solutions as shown in Genser
(2005b), options written on the equity value can only be valued numeri-
cally. We propose two numerical methods which will be used in this sec-
tion: first, a trinomial lattice is used to approximate the EBIT-process
and equity options are valued by backward induction. Second, we calcu-

4One might argue that these observations do not carry over to index options because the
index cannot go bankrupt. However, the index consists of firms that can go bankrupt. The
bankruptcy probability cannot be diversified away. E.g. pick an index of two firms with
uncorrelated bankruptcy probabilities of 1 % per year. Only with a probability of 98.01 %
both firm survive the next year. With almost 2 % probability the index exhibits at least
one bankruptcy.
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late the expected option value at option maturity by numerical integration
which is possible because we investigate European style equity options.
Additionally, both methods allow a fairly good approximation of the first
four central moments of the equity value and its return distribution at op-
tion maturity. Therefore, we can directly compare our simulation results
to empirical findings of Bakshi et al. (2003).

The paper is structured as follows. Section 2 summarizes the the
EBIT-framework and describes its approximation in a trinomial lattice.
Section 3 explains the valuation of options in the numerical integration
scheme. In Section 4 we analyze the simulation results with respect to
the equity return distribution and volatility smiles. Section 5 concludes.

2 A Trinomial Lattice Approach for the

Corporate Securities Framework

2.1 The Approximation of the EBIT-Process

The stochastic factor in the corporate security framework is the firm’s
EBIT η which is assumed to follow an arithmetic Brownian motion under
the equivalent risk-neutral martingale measure Q

dη = (µη − θ · ση) dt + σηdzQ, (1)

where µη and ση are the physical drift and standard deviation of the
EBIT-process, θ is a risk premium which transforms the original process
into a risk-neutral Q-martingale. The EBIT-process is driven by a a
standard Wiener process zQ under the risk-neutral probability measure
Q.5 All parameters in equation (1) are assumed to be constant.

A risk-neutral valuation tree can be constructed in which the discount
rate is the riskless interest rate r. We approximate the stochastic process
numerically by a trinomial tree with time steps ∆t and EBIT step size

∆η = λ
√

ση∆t. (2)

λ denotes a EBIT spacing parameter.
Writing for the risk-neutral drift of the EBIT process µ = µη − θ · ση,

the probabilities at each node to reach the following up-, middle-, and

5We assume that all probability spaces are well defined and that all expectations and
integrals exist.
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down-state nodes are

πu =
σ2

η∆t + µ2∆t2

2∆η2
−

µ∆t

2∆η
, (3a)

πm = 1 −
σ2

η∆t + µ2∆t2

∆η2
, (3b)

πd =
σ2

η∆t + µ2∆t2

2∆η2
+

µ∆t

2∆η
. (3c)

In equations (3) the two parameters λ and ∆t can be chosen freely.
To have a good approximation of the EBIT-process 900 to 1’100 steps

are needed that determine ∆t subject to the maturity of the tree. Kam-
rad and Ritchken (1991, p. 1643) suggest a value of λ = 1.2247 which
they show to have the best convergence properties on average in their
application in multi-state variables option pricing.

In the Corporate Securities Framework, the firm declares bankruptcy
whenever total firm value V hits a constant barrier VB. The total firm
value can be calculated explicitly by discounting all future EBIT with the
constant riskless interest rate r which yields

V =
µ

r2
+

ηt

r
. (4)

EBIT is distributed to all claimants of the firm. So, total firm value
of an EBIT-model does not only include the market value of debt and
equity, but also bankruptcy losses, and taxes to the government. This
alters the notion of the bankruptcy barrier, as well as losses in case of
bankruptcy compared to traditional firm value models. The bankruptcy
barrier can equivalently be defined in terms of an EBIT-value by

ηB = VB · r −
µ

r
. (5)

The literature on barrier options valuation in lattice models, observes
pricing problems because the barrier usually lies between two nodes. If ∆t
is decreased, the value of the barrier option might not converge because
the barrier usually changes its distance to adjacent nodes. Boyle and Lau
(1994) demonstrate the oscillating pattern of convergence. To overcome
the deficiency Boyle and Lau (1994) suggest to adjust the steps ∆η such
that the barrier is positioned just above one layer of nodes.6 To mimic
the algorithm, a λ closest to 1.225 is chosen to ensures that the ]t0, T1]-
bankruptcy barrier lies just above one node level. With this parameter

6See e.g. Kat and Verdonk (1995) or Rogers and Stapleton (1998) for other methods to
overcome the convergence problem.
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constellation, the security values of the debt and equity issues converge
sufficiently well to their analytical solutions.

The case of geometric Brownian motion can be treated along the same
lines. Assume that EBIT follows7

dη̄

η̄
=

(

µ̄η − θ̄ · σ̄η

)

dt + σ̄ηdzQ. (6)

where µ̄η and σ̄η denote the constant instantaneous drift and volatility
of the process, under the physical measure P, and θ̄ the risk premium to
change the measure to the equivalent martingale measure Q. To simplify
notation, denote the risk-neutral drift by µ̄ = µ̄η − θ̄ · σ̄η. Then, total firm
value amounts to8

V̄t =
η̄t

r − µ̄
, (7)

which replaces the version for the arithmetic Brownian motion of equa-
tion (4). Then, the logarithm of the EBIT η̄

d ln(η̄) =

(

µ̄ −
σ̄2

η

2

)

dt + σ̄ηdzQ, (8)

follows the arithmetic Brownian motion of equation.

2.2 Payments to Claimants and Terminal Secu-

rity Values

In each node, EBIT is distributed among the claimants of the firm (see
Figure 1). Payments to claimants are different in case of bankruptcy.
Therefore, Figure 1 exhibits two separate EBIT-distribution algorithms
for the firm being (i) solvent and (ii) insolvent. The bankruptcy decision
is modeled by testing if the expected future firm value in the current node
is lower or equal to the bankruptcy level VB.9

If the firm is solvent, the claims to EBIT are divided between debt and
equity investors. Debt holders receive the contracted coupon payments
and at maturity the notional amount. The rest of the EBIT remains with
the firm.

7Trying to keep the notation comparable to the case of arithmetic Brownian motion, we
will use a bar to indicate respective GBM-parameters.

8See e.g. Shimko (1992) for guidance how to solve for the firm value.
9This decision criterion can be generalized to equity holder’s optimal decisions whether

to honor current and future obligations of other claimants of the firm. The general splitting
procedure of EBIT among claimants is not affected.
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Figure 1: Splitting the EBIT in a typical node among claimants

The government imposes a tax regime which reduces the payments
to the different security holders further. Debt investors pay a personal
income tax rate τd on their coupon income. The firm pays a corporate
income tax rate τ c on corporate earnings – EBIT less coupon payments.
What remains after adjusting for cash flows from financing transactions –
the issue of new debt or the repayment of old debt – is paid out to equity
investors as a dividend. The dividend is taxed at a personal dividend tax
rate of τ e. Equity holders face the classical double taxation of corporate
income.10

If the dividend is negative, equity investors have to infuse capital into
the firm. We apply the tax system directly to these capital infusions
as well so that negative corporate earnings and dividends result in an
immediate tax refund. However, we exclude capital infusions due to debt
repayments from the equity investor’s tax base.

In a bankruptcy node, the current firm value is split among bankruptcy
claimants: debt holders, government and a bankruptcy loss. The remain-

10Full double taxation can be exclude by altering the equity holders tax base from dividend
income.
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ing value is then first distributed to debt holders proportionally to their
outstanding notional. The distribution to debt holders is limited to the
total notional amount. It might be possible that equity holders receive
the excess portion of the residual value in bankruptcy if the bankruptcy
barrier VB allows. All bankruptcy claims except the loss portion which
is excluded from tax considerations are treated like equity for tax pur-
poses, so that the final corporate earnings and final dividend are taxed
accordingly.

To improve our numerical values we implement lattices not until the
end of the longest lasting debt issue but use the analytical formulas de-
rived in Genser (2005b), Sections 3.2 and 3.3, at each terminal node of
the trinomial tree.

Note that the analysis can be extended to other tax regimes easily
by changing the cash flows from equity investors and the firm to the
government according to the assumptions.11.

2.3 Security Valuation

All security prices are derived from the EBIT process. Having determined
all cash flows to the claimants and terminal security values, expectations
in all other nodes before are discounted at the riskless interest rate. This
leads to values for the total firm value, the market value of all debt issues,
and equity, and finally the value of tax payments.

The same procedure can be used to price options on equity, since
we have equity values at each single node. Call option values at option
maturity are

CT = max(ET − X, 0),

where ET denotes the price of equity at a specific node and X the exercise
price. From these terminal values, we move backwards through the tree
using the risk-less interest rate and the probabilities implied by the EBIT-
process in equations (3).

3 Numerical Integration Scheme

If only European derivatives are studied which depend solely on their
value at option maturity and if bankruptcy of the firm knocks out the
derivative, its prices can be calculate computationally more efficiently.

The value of a derivative Yt0(η, T ) as of time t0 with maturity T can
be calculated as its expected payoff at maturity under the risk-neutral

11See e.g. Genser (2005a) for alternative assumptions about the tax system.
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probability measure.12

Yt0(η, T ) = e−r(T−t0)EQ
t0

[YT (ηT , T )]

= e−r(T−t)

∫ ∞

−∞
YT (ηT , T )(1 − φT (t0, T, ηt0 , ηT , ηB(T )))dηT , (9)

where φT (t0, T, ηt0 , ηT , ηB(T )) = P (ηT ∈ dη, τ > T )P (τ > T ) denotes the
joint probability of reaching a level of ηT at the derivative’s maturity and
the firm going bankrupt before T when starting today at ηt0 . This prob-
ability is deduced in Ammann and Genser (2005) as a byproduct of the
derivation of the bankruptcy probabilities . Recall that this bankruptcy
probability for the interval ]t0, tj = T ] is

Φ(t0, T, ηt0 , ηB(T )) = 1 − Pν(Xtj ≤ ztj , Mtj < ytj ), (10)

with13

Pν

(

(−1)pj(Ai)Xtj ≤ ztj − 2

j
∑

i=1

(−1)pj(Ai)−1yti1{i∈Ai}

)

= ez∗n
ν

σ2 Nn

(

ztj − z∗j − Ωj,nν

σ
√

tj
, Ω(Ai)

)

.

Differentiating this equation with respect to zT , results in the desired
density

φT (t0, T, ηt0 , ηT , ηB(T )) =
∂Φ(t0, T, ηt0 , ηT )

∂zT

. (11)

For the special case where the bankruptcy barrier is constant or the
derivative’s maturity lies before the first capital restructuring, the density
simplifies to14

φ(t0, T, a, b) =
exp

{

µa
σ2

η
− µ2T

2σ2
η

}

ση

√
T

[

n

(

−a

ση

√
T

)

− n

(

2b − a

ση

√
T

)]

.(12)

In equation (12), n(·) denotes the standard normal density, a the starting
value of the state variable and b its terminal value.

In general, the integral of equation (9) can only be solved analytically
if the payoff function YT (η, T ) is well behaved. For option prices in the
Corporate Securities Framework with several finite maturity debt issues,

12See e.g. Cochrane (2001).
13Respective definitions of variables, sets, and notational conventions are given in Genser

(2005b) Subsection 3.2.3.1.
14See Harrison (1985).
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closed form solutions cannot be derived.15 However, the value of the
derivative at maturity YT (ηT , T ) can be calculated analytically for each
ηT since security values in the Corporate Securities Framework can be
calculated explicitly. Therefore, we use numerical methods16 to evaluate
the integral in equation (9). Using the call option payoff YT (ηT , T ) = CT

yields the desired call option prices on the firm’s equity.
Note that it is easier to differentiate numerically equation (10) because

the resulting multivariate normal densities would include 2N terms of
both the multivariate normal distribution function and its density where
N denotes the number of barriers. Depending on the accuracy of the ap-
proximation of the multivariate normal distribution, a numerical differ-
entiation of hitting probabilities can build up considerable approximation
errors that prevent the numerical integration algorithms for equation (9)
from converging in reasonable time. To overcome the numerical prob-
lems, the hitting probability of equation (10) can be used to calculate
sufficient data points to be able to spline the distribution function. It is
numerically more efficient to spline the distribution function because the
error accumulating numerical differentiation of the hitting probability is
avoided. Moreover, the distribution function is monotonously increasing
and has therefore an easier shape than the density. By differentiating
the spline, equation (11) can be extracted with much higher accuracy.
The probabilities can be found by evaluating the spline at the respective
ending values.17

4 Numerical Results

In the following subsections, equity option prices in our Corporate Secu-
rities Framework are compared to the Black/Scholes framework by calcu-
lating implied Black/Scholes volatilities. Firms with EBIT following an
arithmetic and a geometric Brownian motion are analyzed, we can show
that the general structure of implied volatilities does not only depend on

15Toft and Prucyk (1997) analyze call prices on leveraged equity in a setting where only
one perpetual debt issue is outstanding. This simplifies the analysis and allows the derivation
of explicit formulae.

16Some numerical methods are sensitive to changes in the boundary values if the inte-
grand only has values different from zero over closed interval. We therefore integrate from
the bankruptcy-EBIT ηB to an upper bound of ηt0 +8ση

√
T . Above the upper bound prob-

abilities φT (t0, T, ηt0 , ηT , ηB(T )) are virtually zero and no value is added to the integral.
17Note that a similar method is used to extract implied densities from traded option prices.

There the strike/implied volatility function is splined to extract the distribution function of
equity prices at option maturity. See e.g. Brunner and Hafner (2002) and the references
therein.
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the distributional assumption but primarily on the firms being allowed
to go bankrupt and its capital structure.

A plot of implied volatilities against strike prices is used to visualize
the functional form of the option prices. A plot of the unconditional
partial equity density at option maturity helps for an in-depth analysis
of the implied volatility structures.18

A comparative static analysis is performed for the EBIT-volatility,
the risk-neutral EBIT-drift, the risk-free interest rate, the EBIT-starting
value, and the financing structure of the firm. The following subsections
summarize and interpret the results of the simulation.

4.1 The Base Case Firm

Each firm in the economy faces a constant risk-free interest rate of r = 5%,
which is a widely used interest rate level in numerical examples through-
out the literature. The government is assumed to tax corporate earnings
at a tax rate τ c = 35%, income from equity investments and coupon in-
come at τd = τ e = 10%. The corporate tax rate is at the upper edge
of what is observed in the European Union. The personal tax rates are
chosen to reflect that smaller investors are tax exempt on their invest-
ment income in many countries or evade taxes by shifting capital abroad
so that only the net effect of taxation on corporate securities’ prices is
modeled.

The firm specific factors that are common among GBM- and ABM-
firms are its current EBIT-level of ηt0 = 100. Since short term debt seems
to have a major impact on option prices, both firms have issued only one
short term bond with a maturity of T1 = 1 year, a notional of P1 = 1′850,
and a coupon of C1 = 4.5 %, and one perpetual bond with a notional of
P2 = 1′250 paying a coupon of C2 = 6 %.

The loss of firm value in default is set to α = 70 % (65 %) in the ABM-
case (GBM-case)19 which yields bankruptcy barriers of VB(T1) = 5′083.33
(4′375.14) and VB(T2) = 2′083.33 (1′785.71) if 50 % of the total notional

18The equity density is called partial because it only starts at an equity value of zero and
the intensity of the zero value is not displayed in the graphs. As a result, the shown densities
need not integrate to one. The ”missing” probability mass is attributable to bankruptcy.

19Although the bankruptcy loss ratio α appears high, consider that α is measured with
respect to total firm value in case of bankruptcy and does not refer to a loss rate of market
value of firm’s assets. Alderson and Betker (1995) estimate the mean percentage of total
values lost in liquidation to be 36.5 % of a sample of 88 firms liquidated in the period from
1982 to 1993. Gilson (1997) reports a mean percentage liquidation cost of 44.4 %. His
sample contained 108 firms recontracting their debt either out-of-court or under Chapter 11
in the period 1979-1989. Our α must be higher because it refers to a firm value representing
all value from future EBIT-payments in a bankruptcy node.
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of debt20 is to be recovered in case of bankruptcy.
The only missing parameters are those for the ABM- and GBM-

processes, respectively. If we choose a risk-neutral ABM-EBIT-drift un-
der the measure Q of µ = 10 and a standard deviation of ση = 40, a
GBM-process with parameters µ̄ = 3 1/3 % and σ̄η = 18 % results in
approximately the same security values as the ABM-case.

4.2 Comparison of Numerical Methods

The trinomial lattice approach was implemented by using 900 steps21

until option maturity and λ ≈ 1.75. Due to the short option maturity a
higher step size was needed to better grasp the knock-out feature of the
option. Since the first bankruptcy barrier is most important, it appeared
useful to choose λ to hit the first barrier exactly. For firms close to
bankruptcy, λ is set close to 1.25 to get enough non-bankrupt nodes.

For the numerical integration approach, the risk-neutral distribution
function was approximated by 200 points from the bankruptcy-EBIT to
8 standard deviations above the expected EBIT at option maturity. The
accuracy of the multivariate normal distribution was set to 1e-8 so that
each point had a maximum accumulated error of not more than 1e-6.
The spline of the equity value distribution function at option maturity
has an even lower error because it tends to eliminate errors of different
sign. The numerical integration is performed with an error of 1e-6.

The trinomial tree approach and the numerical integration method
give identical option prices up to minor approximation errors due to the
numerical methods. Table 1 summarizes the differences of option prices
and implied volatilities for the base case scenario of ηt0 = 100 and the
option maturity being 6 months. The table reports in Panel A the relative
option price difference and in Panel B the relative difference of implied
volatilities. We choose to report relative differences to account for level
effects.

Despite the fact that option prices and implied volatilities are very
sensitive to the approximation, the differences between option prices are
small given that they range from -0.0179 % to 0.2584 % of the respective
price of the numerical integration approach. The respective range for
implied volatilities is -2.1731 % and 0.1078 % of the implied volatilities
of the numerical integration approach. Especially the mean differences

20This is in line with usual assumptions. A standard reference is Franks and Tourus (1994)
who report that on average 50.9 % of face value of total debt is recovered by debt holders.

21In the tree approach option prices were hard to approximate when the bankruptcy
barrier changed during the option’s life. If the option maturity falls after the short-term
debt maturity, 1’100 steps were needed to get reasonable accuracy.
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Table 1: Summary of relative differences of equity option prices (Panel A)
and implied volatilities (Panel B) of the η0 = 100, TO = 0.5 scenario sets
between the numerical integration and the lattice approach. The table reports
the minimum and maximum relative differences as well as the mean absolute
difference (MAD), the mean difference (MD), and the standard deviation of the
mean difference (SDev). All numbers are in % of the values of the numerical
integration approach.

Panel A: Relative Option Price Differences

Scenario Obs. Min Max MAD MD SDev.

All ABM and GBM scenarios 609 -0.0179 0.2584 0.0087 0.0035 0.0223
ABM only 315 -0.0151 0.1697 0.0079 0.0022 0.0182
GBM only 315 -0.0179 0.2584 0.0094 0.0048 0.0252
OTM-options 290 -0.0179 0.2584 0.0138 0.0072 0.0313
ITM-options 290 -0.0109 0.0366 0.0040 0.0002 0.0058

Panel B: Relative Implied Volatility Differences

Scenario Obs. Min Max MAD MD SDev.

All ABM and GBM scenarios 609 -2.1731 0.1078 0.0430 -0.0342 0.1408
ABM only 315 -0.0355 0.0559 0.0102 -0.0032 0.0133
GBM only 315 -2.1731 0.1078 0.0760 -0.0662 0.1904
OTM-options 290 -0.2532 0.0690 0.0248 -0.0175 0.0373
ITM-options 290 -2.1731 0.1078 0.0621 -0.0518 0.1985

MD are very comforting with only 0.0035 %. Comparing the maximum
and the minimum pricing differences in Panel A, both approaches tend to
prices in-the-money options and options of the ABM-EBIT-model equally
well whereas higher price differences for the GBM-model and out-of-the-
money options can be observed. However, the worst mean differences of
0.0072 % for out-of-the-money options is still remarkably good.

Looking at implied volatilities in Panel B, the pattern of relative dif-
ferences is almost similar. ABM-option implied volatilities differences are
again smaller than those of GBM-option implied volatilities. However,
in-the-money option implied volatilities show higher differences than out-
of-the-money implied volatilities. The effect is not surprising because –
in contrast to out-of-the-money options – implied volatilities of in-the-
money options tend to be particularly sensitive to the approximated op-
tion price and the expected equity value. However note, that the mean
differences of implied volatilities are sufficiently low, as well.
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4.3 Equity values and their densities at option

maturity

Analyzing the densities of equity values becomes quickly difficult if the
firm has a complex capital structure. To differentiate between different
effects and to compare different scenarios Tables 2 and 4 summarize the
first four moments of the equity distribution (Columns 9 to 12) and its
return distribution (Columns 13 to 15) at option maturity22 for all scenar-
ios and for ABM- and GBM-firms, respectively. Panel A depicts the case
of a 6 month option, Panel B the one of a 9 month option. The first three
rows cover the base case firm with different initial EBITs η0. Rows 4 and
5 illustrate the case of changes of the risk-neutral EBIT-drift µ, followed
by two rows of the case of changed EBIT-volatility ση, risk-less interest
rates r, and two rows of different option maturities TO. The last four
rows depict scenarios with different maturities for the short-term bond
T1. Figures 6 and 8 depict the equity value densities of the ABM- and
GBM-firm in the 6 scenarios: a shift of the initial EBIT (Panel A), the
risk-neutral drift (Panel B), the EBIT-volatility (Panel C), the risk-free
interest rate (Panel D), the option maturity (Panel E), and the maturity
of the short-term bond (Panel F). In the accompanying Figures 7 and 9,
the density plots of equity values are translated into the corresponding
equity return density plots.

4.3.1 General Comments

Equity is the residual contract to EBIT with a right to abandon future
obligations. This has several effects on the risk-neutral density of equity
values for a future point TO if a good-state firm approaches bankruptcy.
We start the discussion with the ABM-case.

One of the decisive elements of the moments of the equity value dis-
tribution is the position of the expected equity value. From Figure 2 we
gain the insight that the expected equity value moves from the center
of the distribution further towards zero if initial EBIT approaches zero.
The position of the expected equity value in the partial density influences
equity value moments considerably. The change of the moments of the
equity value distribution is illustrated in Figure 3. As can be seen, the
distribution and its moments undergo different phases.

(i) If an ABM-firm is far from bankruptcy, the density of equity is al-
most normal. Given a capital structure, finite maturity debt values

22The first four central moments shown are calculated by numerical integration of the
respective expectation similar to option prices in equation (9). Without loss of generality, we
define the return distribution of equity values with respect to its expected value. Therefore,
the expected values of the return distribution are zero in all scenarios.
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Table 2: Unconditional central moments of the equity and its return distribution at option maturity as well as

LS-regression results of the form ln(σ) = β0 + β1 ln
(

X
Et

)

in the ABM-Corporate Securities Framework. The base-

EBIT η0 = 100 and parameters are changed as displayed in the first 6 columns. The bankruptcy barrier is set such
that the recovery of debt holders is 50 % of total debt outstanding and losses in case of bankruptcy are α = 70 %.
T1 denotes the maturity of the short bond, Φ(TO) the bankruptcy probability up to option maturity TO.

Panel A

η(0) µ ση r VB T1 TO Φ(TO) EQ(E(TO)) σ(E(TO)) ζ(E(TO)) κ(E(TO)) σ(rE(TO)) ζ(rE(TO)) κ(rE(TO)) exp(β0) β1 p-value
75.0 10.00 40 5.00% 5083.33 1.00 0.500 40.2354% 640.63 453.47 1.7795 3.7381 49.79% 0.8273 4.0334 1.6562 -0.5396 0.00
100.0 7.8111% 1205.89 415.28 0.4427 2.9036 40.40% -2.0186 11.1134 0.6396 -0.9108 0.00
125.0 0.7781% 1625.25 403.06 -0.2763 3.4487 30.39% -2.4926 15.0766 0.3688 -0.8365 0.00
100.0 8.00 81.1339% 185.78 384.86 2.8430 8.7371 71.49% 2.4950 6.4728 3.7620 -0.2015 0.00
100.0 15.00 0.0000% 2662.99 358.18 -0.0118 3.0187 13.83% -0.6551 3.6748 0.1934 -0.5102 0.00
100.0 30 1.8075% 1311.98 319.59 -0.3454 3.6215 30.44% -2.7058 16.7824 0.3839 -1.0831 0.00
100.0 50 16.1224% 1101.28 487.79 1.1189 3.1794 45.03% -1.2774 8.3216 0.9108 -0.7493 0.00
100.0 4.00% 0.0000% 2761.85 448.08 -0.0091 3.0106 16.90% -0.8020 3.9919 0.2327 -0.5055 0.00
100.0 5.50% 92.3149% 81.74 292.62 4.2235 18.9662 69.87% 3.7564 14.3446 5.0367 -0.1265 0.00
100.0 1.000 18.5796% 1250.11 465.23 1.7271 4.0329 29.93% 1.1891 2.8677 0.6105 -0.8920 0.00
100.0 2.000 18.5988% 2230.36 768.89 1.5186 3.4094 29.37% 0.6149 4.4332 0.6818 -0.5958 0.00
100.0 0.25 1.6363% 2364.47 370.51 0.2903 3.0306 15.88% -0.4819 3.8408 0.5898 -1.0769 0.00
100.0 0.75 7.8111% 1231.06 390.92 0.4954 3.1376 36.47% -2.0377 12.5244 0.5971 -0.9953 0.00
100.0 1.50 7.8111% 1171.37 435.42 0.4780 2.7821 43.75% -1.9311 9.8993 0.6810 -0.8060 0.00
100.0 3.00 7.8111% 1126.61 447.80 0.5648 2.8050 46.44% -1.8343 9.0008 0.7166 -0.7134 0.00

Panel B

η(0) µ ση r VB T1 TO Φ(TO) EQ(E(TO)) σ(E(TO)) ζ(E(TO)) κ(E(TO)) σ(rE(TO)) ζ(rE(TO)) κ(rE(TO)) exp(β0) β1 p-value
75.0 10.00 40 5.00% 5083.33 1.00 0.750 47.6579% 654.46 523.34 1.8376 3.8319 51.68% 1.3333 3.3410 1.5753 -0.4889 0.00
100.0 13.7522% 1228.50 446.94 1.0660 3.3341 37.03% -1.3127 10.2378 0.6298 -0.9340 0.00
125.0 2.5796% 1650.77 451.70 0.1342 3.2643 32.12% -2.1618 13.3058 0.3627 -0.8067 0.00
100.0 8.00 83.9805% 188.91 427.49 2.9499 9.3417 72.39% 2.6412 7.1579 3.2852 -0.1823 0.00
100.0 15.00 0.0006% 2705.31 438.66 -0.0135 3.0249 16.90% -0.8294 4.3224 0.1919 -0.5079 0.00
100.0 30 4.5342% 1337.25 342.38 0.2403 3.4897 29.56% -2.2579 15.7406 0.3760 -1.0760 0.00
100.0 50 23.9330% 1120.98 546.56 1.5499 3.7139 42.51% -0.3310 6.6534 0.8989 -0.7486 0.00
100.0 4.00% 0.0009% 2798.91 548.75 -0.0102 3.0119 20.87% -1.0339 4.9413 0.2312 -0.5045 0.00
100.0 5.50% 93.4312% 83.15 319.18 4.3925 20.3326 68.91% 4.0033 16.2126 4.2848 -0.1183 0.00
100.0 0.500 7.8111% 1205.89 415.28 0.4427 2.9036 40.40% -2.0185 11.1144 0.6396 -0.9108 0.00
100.0 1.000 18.5796% 1250.11 465.23 1.7271 4.0329 29.93% 1.1891 2.8677 0.6105 -0.8920 0.00
100.0 2.000 18.5988% 2230.36 768.89 1.5186 3.4094 29.38% 0.6147 4.4440 0.6818 -0.5958 0.00
100.0 0.25 1.6366% 2394.83 467.62 -0.0612 4.0098 19.89% -0.8657 5.1310 0.4958 -0.9898 0.00
100.0 0.75 13.7522% 1253.98 403.03 1.5582 3.8167 27.33% 0.8803 2.7616 0.5762 -0.9417 0.00
100.0 1.50 13.7522% 1193.54 480.26 0.9597 3.0557 42.37% -1.4494 9.1353 0.6789 -0.8137 0.00
100.0 3.00 13.7522% 1148.22 501.85 0.9993 3.0741 46.01% -1.4099 8.2204 0.7164 -0.7091 0.00
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Figure 2: Equity value densities of 6 month equity options in the ABM-
Corporate Securities Framework as a function of η0. Expected equity values
are indicated by solid lines. Path probabilities are obtained by differentiating
the splined distribution function of EBIT at option maturity.

at option maturity are rather insensitive to changes of EBIT23 be-
cause debt has an upper value limit, i.e. its risk-free counterpart.
Equity of firms far from bankruptcy gain with each increase of EBIT
a constant amount making the equity distribution symmetric and
driving excess-kurtosis to zero.
Taking the high risk-neutral drift and low interest rate scenarios in

23The sensitivity of a security at option maturity with respect to the EBIT-level is impor-
tant because we integrate over the product of the equity values which depends on the EBIT
prevailing at option maturity, and the probability of occurrence which is a function of both
the initial EBIT and the EBIT at option maturity, from the bankruptcy barrier to infinity.
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Figure 3: Equity value density moments of 6 month equity options in the
ABM-Corporate Securities Framework as a function of η0. The moments are
obtained by numerical integration.

Table 2 as an example, the skewness is slightly below 0 and kurtosis
slightly above 3.

(ii) The abandonment option bounds the value of equity from below
at zero. The equity density will therefore exhibit a mass concen-
tration at zero which is equal to the bankruptcy probability for a
given time in the future. As a result, the continuous part of the
unconditional distribution of equity value only integrates to 1 −
Φ(t0, T, ηt0 , ηB(T )) ≤ 1. The bankruptcy probability pulls the ex-
pected equity value towards zero which implies that debt issues
leave the region where they are insensitive to bankruptcy. How-
ever, finite maturity debt is still a sticky claim despite the slightly
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higher bankruptcy probability because they receive some recovery in
bankruptcy. The stickiness of a debt issue depends on its maturity.
Thereby, shorter maturity bonds are less sensitive than longer-term
bonds. As a result, equity value suffers higher losses than debt if
EBIT decreases but benefits more if EBIT increases. The asymme-
try increases when approaching bankruptcy. It causes equity value
skewness to decrease and excess-kurtosis to increase. The behavior
of equity value skewness directly depends on the redistribution of as-
sets for different realizations of EBIT at option maturity. If the firm
moves closer to bankruptcy, equity value suffers from higher values of
bankruptcy losses while finite maturity debt values are less affected.
The probability of low equity values increases more than the normal
distribution would predict, which skews the equity distribution to
the right.24

This type of the equity value distribution is illustrated by the low
risk and the high EBIT-value scenarios in Table 2.

(iii) If the firm moves further towards bankruptcy, the bankruptcy event
starts to dominate the shape and moments of the distribution. Eq-
uity skewness increases rapidly from its intermediate lower values.
Equity kurtosis decreases to values even below 3. These effects are
only driven by the mass concentration of the equity value distribu-
tion at 0 and have no direct economic interpretation. Pick as an
example the base case 100-EBIT-firm and the cases of the short-
term debt with longer maturities (Table 2). All these scenarios have
in common that they have a modest bankruptcy probability, but a
relatively high standard deviation.

(iv) Close to bankruptcy, equity values are dominated by the bankruptcy
event. Since the left tail of the distribution is no longer existing, eq-
uity value standard deviation decreases, skewness increases further,
and kurtosis can reach levels significantly above 3. Good examples
of these cases are the low 75-EBIT, the low risk-neutral drift, the
high interest rate and the high risk firm (Table 2).

The risk-neutral density of continuous equity returns can be directly
gained from the equity value density.25 Figure 4 illustrates the equity

24Intuitively, we can argue directly within the trinomial tree: Fix the EBIT-tree’s proba-
bilities at each node. The vertical spacing of EBIT at one point in time is constant. However,
the equity values at adjacent nodes are not equally spaced. The spacing of equity values
relative to its current node’s value increases close to the bankruptcy node because debt
holders are senior claimants to the remaining total firm value. Therefore, the local relative
volatility of equity increases close to bankruptcy. Economically this is intuitive since the
equity value in a bankruptcy node is 0 to which a positive value of equity is pulled to.

25See the note on the conversion of densities in Appendix A.
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Figure 4: Equity return densities of 6 month equity options in the ABM-
Corporate Securities Framework as a function of η0. The 0-returns are in-
dicated by solid lines. Path probabilities are obtained by differentiating the
splined distribution function of EBIT at option maturity.

return densities for initial EBIT ranging from 50 to 150. The closer the
firm moves towards bankruptcy, the more moves the peak of the return
density into the positive quadrant although the return is defined relative
to its expected value.26 In contrast to the equity value distribution, the
equity return distribution has support over the whole real line because as
the equity value at some future point approaches 0, its continuous return
goes to minus infinity. However, the return distribution integrates only to
1−Φ(t0, T, ηt0 , ηB(T )) ≤ 1, as well. Therefore, bad state firms (low initial
EBIT, low risk-neutral drift, or high risk-less interest rate) have a positive

26See the zero-return line of each return density.
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Figure 5: Equity return density moments of 6 month equity options in the
ABM-Corporate Securities Framework as a function of η0. The moments are
obtained by numerical integration.

expected return given that they survive until option maturity, and a pos-
itive skewness (see also Panels B and E of Figures 7 and 9, respectively)
alongside with high kurtosis. It is exactly this bankruptcy probability
that complicates the interpretation of return distributions and its mo-
ments. In some cases, the unconditional moments even become quite
misleading if one compares them to moments of a regular distributions.

Comparing Figures 3 and 5, the return moments follow an almost
similar pattern as the equity value moments described above although
at a different level and with changes at a different scale. However, some
additional notes might be warranted. The equity return standard devia-
tion depends directly on the relative level of expected equity value and its

20



standard deviation. The equity return standard deviation is driven by two
effects: (i) the equity standard deviation increases in absolute terms and
(ii) the expected equity value decreases. Both effects increase return stan-
dard deviation until equity value standard deviation drops low enough to
allow equity return standard deviation to fall as well. Therefore, equity
return standard deviation starts to drop much closer to bankruptcy than
the equity value standard deviation.

Return skewness is expected to be negative in general because a de-
crease of EBIT always results in a relatively larger decrease of equity
value than an increase. Therefore, return skewness is much lower than
equity value skewness and only the bad state firms encounter positive
return skewness because of the missing left tail. By the same argument,
the tails of the return density are thicker than normal thus return kur-
tosis is much higher than the equity value kurtosis for good state firms.
The swings of equity return kurtosis are more pronounced. Close to
bankruptcy, the increase of return skewness and kurtosis is dampened by
the relatively higher return standard deviation.

The equity value distribution of the GBM-firm runs through the same
four stages described for the ABM-firm.27 There are two distinct differ-
ences, though: First, equity value skewness never decreases below 0. Sec-
ond, equity value kurtosis always exceeds 3. Both moments show the same
swings the closer the firm moves towards bankruptcy. In fact, the ABM-
and GBM-firm are indistinguishable if they are close to bankruptcy. Note
further, that the equity return distributions show much similarity so that
it becomes difficult to tell which process drives EBIT if the return distri-
bution is the only kind of information.

Equity values are distributed neither normally nor log-normally in the
ABM- and GBM-case. However, all densities look normal for good-state
firms.

To summarize the general findings of this subsection, Table 3 gives
an overview of the first four central moments of the equity value and its
return distribution.

4.3.2 Comparative Statics

After the general discussion about equity value and return densities and
before going into details, note that parameter changes influence the eq-
uity density due to either a reduction of total firm value and/or a redis-
tribution of a constant total firm value among different claimants. By

27See Figures 14 and 15 in the appendix for the equity value densities as a function
of initial EBIT and its moments. Figures 16 and 17 display the respective equity return
densities and moment series.
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Equity Value Distribution
Firm State (i) Excellent (ii) Good (iii) Medium (iv) Bad

EBIT follows ABM GBM ABM GBM ABM GBM ABM GBM
EQ(ET ) very large large medium small
σ(E(T )) small rel. small medium rel. large
ζ(E(T )) ≈ 0 > 0 ≤ 0 > 0 > 0 >> 0 >> 0 >>> 0
κ(E(T )) ≈ 3 > 3 ≤ 3 > 3 ≥ 3 >> 3 >> 3 >>> 3

Equity Return Distribution
σ(rE(T )) very small small medium large
ζ(rE(T )) < 0 < 0 << 0 > 0
κ(rE(T )) > 3 >> 3 > 3 (decr.) >> 3

Table 3: The first four central moments of the equity value and its return dis-
tribution depending on the current state of the firm with respect to bankruptcy
and the distributional assumption. The return distribution is centered around
its expected value.

equations (4) and (7), total firm value does not depend on the volatil-
ity of the EBIT-process if the risk-neutral drifts are left unchanged.28

A change of the volatility that leads to a change of equity value results
from a redistribution of firm value, i.e. a change of the probability of
bankruptcy. A change of the financing structure does not change total
firm value either but has effects on the distribution of value among dif-
ferent claimants. All other parameter changes, those of the risk-neutral
drift, interest rates, and initial EBIT-value, change firm value and the
firm’s stance towards bankruptcy.

Pick first the cases where total firm value does not change. An increase
of the EBIT-volatility decreases the expected equity values (see Panel C
of Figure 6). The skewness of equity values changes from negative to
positive. The kurtosis starts above 3 decreases to below 3 and increases
again. Thus, we observe a firm that moves through the first three types of

28Note that the risk-neutral EBIT-process under the measure Q is modeled directly. If
we had started with the EBIT-process under the physical measure P, µη would be the drift
of the physical EBIT-process and the risk premium θη is needed to change the probability
measure to the risk-neutral measure Q. Then, a change of ση alters the risk-neutral drift
by means of the risk premium. Here, we use the implicit assumption that a change of
the volatility induces a change of the risk premium so that the risk-neutral drift remains
unaffected.
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Table 4: Unconditional central moments of the equity and its return distribution at option maturity as well as

LS-regression results of the form ln(σ) = β0 + β1 ln
(

X
Et

)

in the GBM-Corporate Securities Framework. The base-

EBIT η0 = 100 and parameters are changed as displayed in the first 6 columns. The bankruptcy barrier is set such
that the recovery of debt holders is 50 % of total debt outstanding and losses in case of bankruptcy are α = 65 %.
T1 denotes the maturity of the short bond, Φ(TO) the bankruptcy probability up to option maturity TO.

Panel A

η(0) µ ση r VB T1 TO Φ(TO) EQ(E(TO)) σ(E(TO)) ζ(E(TO)) κ(E(TO)) σ(rE(TO)) ζ(rE(TO)) κ(rE(TO)) exp(β0) β1 p-value
75.0 3.33% 18% 5.00% 4357.14 1.00 0.500 78.6057% 144.36 290.58 3.1360 12.8248 70.22% 2.4493 6.4458 3.5985 -0.2102 0.00
100.0 1.0069% 1323.58 504.69 0.4842 4.4591 45.73% -1.8564 8.4684 0.5634 -0.4179 0.00
125.0 0.0015% 2312.42 623.62 0.4734 5.1688 28.57% -0.9775 4.6390 0.3826 -0.2763 0.00
100.0 3.00% 26.3453% 580.39 376.12 1.9185 6.5375 53.45% -0.4574 5.9861 1.3027 -0.5139 0.00
100.0 3.67% 0.0014% 2323.50 624.04 0.4731 5.1476 28.43% -0.9680 4.6012 0.3813 -0.2751 0.00
100.0 13% 0.0310% 1364.97 361.03 0.2650 3.8795 29.02% -1.3621 7.2263 0.3786 -0.3665 0.00
100.0 23% 4.7142% 1272.28 617.97 1.0015 6.6668 56.75% -1.7032 7.1600 0.7669 -0.4233 0.00
100.0 4.00% 0.0000% 6789.70 1244.04 0.8086 10.6568 18.33% -0.3932 3.4415 0.2547 -0.1192 0.00
100.0 5.50% 63.1049% 285.36 371.07 2.4781 7.8316 63.15% 1.8390 4.4066 2.6452 -0.3150 0.00
100.0 1.000 6.3537% 1375.84 659.58 1.1645 4.3383 48.69% -0.8721 3.6766 0.5582 -0.4000 0.00
100.0 2.000 6.3623% 2511.92 1021.12 1.2887 4.9195 39.57% -0.6929 4.7161 0.4763 -0.6091 0.00
100.0 0.25 0.0319% 2405.18 502.35 0.3630 3.2449 21.39% -0.6037 3.4751 0.3716 -0.6644 0.00
100.0 0.75 1.0069% 1324.15 497.10 0.4528 3.3109 44.28% -1.7827 8.2907 0.5556 -0.3955 0.00
100.0 1.50 1.0069% 1321.51 512.43 0.3935 3.2055 47.09% -1.8875 8.3964 0.5757 -0.4317 0.00
100.0 3.00 1.0069% 1321.20 523.53 0.3973 3.1576 48.32% -1.8775 8.1756 0.5892 -0.4262 0.00

Panel B

η(0) µ ση r VB T1 TO Φ(TO) EQ(E(TO)) σ(E(TO)) ζ(E(TO)) κ(E(TO)) σ(rE(TO)) ζ(rE(TO)) κ(rE(TO)) exp(β0) β1 p-value
75.0 3.33% 18% 5.00% 4357.14 1.00 0.750 82.1484% 148.58 336.05 3.4339 17.1215 71.26% 2.6329 7.3133 3.1836 -0.1868 0.00
100.0 3.3795% 1349.92 594.06 0.8910 6.0670 50.56% -1.6599 7.4386 0.5603 -0.4092 0.00
125.0 0.0370% 2347.46 770.62 0.6018 6.2762 35.93% -1.2563 5.7652 0.3819 -0.2762 0.00
100.0 3.00% 35.5460% 593.90 447.57 2.2563 8.8675 52.62% 0.4202 5.0979 1.2833 -0.4877 0.00
100.0 3.67% 0.0349% 2362.69 771.83 0.6005 6.2314 35.69% -1.2421 5.7264 0.3805 -0.2749 0.00
100.0 13% 0.2768% 1392.10 441.14 0.4041 4.1405 35.62% -1.5152 7.5855 0.3766 -0.3580 0.00
100.0 23% 10.3782% 1297.22 719.96 1.6434 12.5294 57.68% -1.3839 6.5952 0.7651 -0.4225 0.00
100.0 4.00% 0.0000% 6867.45 1536.65 0.9031 12.2042 22.53% -0.5064 3.3914 0.2549 -0.1352 0.00
100.0 5.50% 68.9919% 292.03 433.74 2.6543 9.8096 65.84% 2.0388 4.7540 2.4232 -0.2772 0.00
100.0 0.500 1.0069% 1323.43 503.60 0.4160 3.2699 45.69% -1.8622 8.4936 0.5637 -0.4189 0.00
100.0 1.000 6.3537% 1375.84 659.58 1.1645 4.3383 48.69% -0.8721 3.6766 0.5582 -0.4000 0.00
100.0 2.000 6.3623% 2511.92 1021.12 1.2888 4.9192 39.56% -0.6937 4.7278 0.4763 -0.6090 0.00
100.0 0.25 0.0319% 2437.30 625.27 0.6554 7.6604 26.50% -0.7502 3.7543 0.3425 -0.2048 0.00
100.0 0.75 3.3795% 1350.65 585.25 0.9715 6.2502 46.16% -1.0368 3.8813 0.5528 -0.3836 0.00
100.0 1.50 3.3795% 1347.98 605.72 0.8322 5.7932 53.05% -1.7603 7.5811 0.5733 -0.4328 0.00
100.0 3.00 3.3795% 1347.66 620.26 0.8105 5.5245 54.87% -1.7673 7.3857 0.5883 -0.4292 0.00
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Figure 6: Unconditional partial densities of equity in the ABM-Corporate
Securities Framework with η0 = 100 at TO = 0.5: Parameter changes are
indicated in the legend. The bankruptcy barrier VB is set so that 50 % of
the outstanding notional is recovered in bankruptcy and bankruptcy losses
are α = 70 %. Path probabilities are obtained by differentiating the splined
distribution function of EBIT at option maturity.

equity densities described above. Skewness and kurtosis change according
to the discussion for the type (ii) firm.

A change of the financing structure extends short-term bond maturity
and reduces the current and the expected equity value. For the ABM-
case, Panel F of Figure 6 shows that financing structures with T1 > 0.5
result in overlapping equity densities. In the T1 = 0.25-case, the expected
equity value shifts considerably to the right. Four effects drive this result:
First, the 3-month bond is repaid before option maturity. Equity holders
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Figure 7: Unconditional partial return densities of equity in the ABM-
Corporate Securities Framework with η0 = 100 at TO = 0.5: Parameter
changes are indicated in the legend. The bankruptcy barrier VB is set so that
50 % of the outstanding notional is recovered in bankruptcy and bankruptcy
losses are α = 70 %. Path probabilities are obtained by differentiating the
splined distribution function of EBIT at option maturity.

do not face this payment at option maturity and so expected equity value
rises. Second, due to the lower total debt outstanding the firm faces a
lower bankruptcy barrier at option maturity than at t0. If the debt ma-
turity is increased for more than the option maturity, not only option
holders have a higher probability of being knocked out29 but also equity

29Note that the probability of going bankrupt in the first three months is only 1.4385 %,
whereas the bankruptcy probability until option maturity with longer lasting bonds is
7.8111 %. See Table 2.
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Figure 8: Unconditional partial densities of equity in the GBM-Corporate
Securities Framework with η0 = 100 at TO = 0.5: Parameter changes are
indicated in the legend. The bankruptcy barrier VB is set so that 50 % of
the outstanding notional is recovered in bankruptcy and bankruptcy losses
are α = 65 %. Path probabilities are obtained by differentiating the splined
distribution function of EBIT at option maturity.

holders at option maturity face the higher bankruptcy barrier. Third,
longer-maturity bonds pay coupons for a longer period, thus increasing
debt value and decreasing equity value. Fourth, higher coupon payments
imply higher tax savings due to the tax advantage of debt which shifts
value from the government to equity holders. The decreasing expected
equity values in Table 2 demonstrate that the coupon and bankruptcy
probability effect dominate when the short-term bond maturity is in-
creased.
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Figure 9: Unconditional partial return densities of equity in the GBM-
Corporate Securities Framework with η0 = 100 at TO = 0.5: Parameter
changes are indicated in the legend. The bankruptcy barrier VB is set so that
50 % of the outstanding notional is recovered in bankruptcy and bankruptcy
losses are α = 65 %. Path probabilities are obtained by differentiating the
splined distribution function of EBIT at option maturity.

The equity return standard deviations reflect exactly that behavior
(Column 13 Table 2). The longer the short-term bond maturity, the
higher becomes the return standard deviation. The higher moments of
the equity and its return distribution are driven by the lower sensitiv-
ity of short-term bonds to changes in EBIT and the higher bankruptcy
probability during the life of the short-term bond. Panel F of Figure 6
clearly displays that the bankruptcy effect dominates. For a given den-
sity value, equity values are lower in the increasing part of the equity
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densities the longer the maturity of the short-term bond. As a result, the
equity value standard deviation and skewness increase whereas kurtosis
decreases. The return moments show the same pattern. However, returns
are skewed to the left and not to the right, as expected.

Table 4 and Panel F of Figures 8 and 9 depict the GBM-case which
show the same effects.

Changing the option maturity TO, i.e. the point in time at which we
investigate the equity densities in the future, gives further insights into
the dependence of the equity distribution on option maturity and the
capital structure. Table 5 summarizes the moments of the ABM-equity
value and its return distribution for maturities ranging from 3 months to
3 years where the standard deviations have been annualized by the

√
T -

rule (see also Rows 10 and 11 of Table 2 and Panel E of Figures 6 and 7
for the respective graphs of the equity value and its return densities).

Table 5: ABM-equity value and its return moments of the equity distribution
with maturities TO from 0.25 to 3. Standard deviations are annualized by the√

T -rule.

TO EQ(E(TO)) σ(E(TO)) ζ(E(TO)) κ(E(TO)) σ(rE(TO)) ζ(rE(TO)) κ(rE(TO))
0.25 1,182.12 702.77 -0.2432 2.9625 76.2450 % -2.4349 12.5044
0.50 1,205.89 587.29 0.4427 2.9036 57.1358 % -2.0185 11.1144
0.75 1,228.50 516.08 1.0661 3.3341 42.7505 % -1.3139 10.2492
1.00 1,250.11 465.23 1.7271 4.0329 29.9259 % 1.1891 2.8677
1.50 2,179.92 557.87 1.6068 3.3781 21.2804 % 1.1930 2.9633
2.00 2,230.36 543.69 1.5187 3.4095 20.7674 % 0.6154 4.4277
3.00 2,331.06 525.84 1.4349 3.4630 19.9796 % -0.1092 6.3654

The repayment of the short-term bond at T1 = 1 has a large impact on
the equity distribution. Expected equity value surges because the debt
burden is reduced. Although standard deviations increase in absolute
terms, the annualized standard deviations decreases but jumps up after
the repayment date. This discontinuity is driven by the prevailing higher
equity value and the fact that the left tail of the equity value distribution
is lengthened i.e. the distance of the expected value to the bankruptcy
level is extended. The return standard deviation decreases monotonically
meaning that the relative riskiness of the firm decreases the longer it
survives. In any case, scaling standard deviations of distributions at
different points in time by the

√
T -rule is impossible.

The higher moments of the ABM-equity value distribution are clearly
influenced by the proximity to bankruptcy. Skewness increases at first be-
cause the left tail of the distribution continues to be cut and probability
mass is concentrated at 0 as bankruptcy becomes more probable. After
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the debt repayment, the bankruptcy barrier falls and the restitution of
part of the left tail reduces skewness again. Kurtosis increases until the
debt repayment date, jumps down at that date, and starts growing again.
The peculiar behavior of the higher moments of the return distribution is
experienced here as well. The last two columns of Table 5 exhibit a good
example. The sudden jump of the bankruptcy level causes return skew-
ness to change its sign and return kurtosis to drop below 3. Inspection
of Panel E of Figure 7 does not reveal these facts!

Table 6: GBM-equity value and its return moments of the equity distribution
with maturities TO from 0.25 to 3. Standard deviations are annualized by the√

T -rule.

TO EQ(E(TO)) σ(E(TO)) ζ(E(TO)) κ(E(TO)) σ(rE(TO)) ζ(rE(TO)) κ(rE(TO))
0.25 1,297.07 728.76 0.1512 3.1387 63.5196 % -1.5634 7.8315
0.50 1,323.43 712.20 0.4160 3.2699 64.6123 % -1.8622 8.4936
0.75 1,349.74 684.04 0.7829 3.7046 58.3691 % -1.6617 7.4388
1.00 1,375.84 659.58 1.1645 4.3383 48.6858 % -0.8721 3.6766
1.50 2,449.05 700.41 1.2914 4.6809 26.8249 % -0.2256 3.5146
2.00 2,511.92 722.04 1.2887 4.9194 27.9808 % -0.6931 4.7179
3.00 2,640.78 756.49 1.3994 5.5727 29.2571 % -1.1809 5.9715

Interpretation of the moments of the GBM-equity value and return
distribution as a function of maturity can follow along the same lines as
the ABM-case (see Table 6, Rows 10 and 11 of Table 2, and Panel E of
Figures 6 and 7). The same decrease of equity value standard deviation
at the debt repayment date can be experienced. Thereafter, annualized
equity value standard deviations increase slightly as expected if EBIT
follows a log-normal distribution. However, equity value skewness and
kurtosis increases continuously with maturity. The equity return distri-
bution shows a more interesting pattern. In contrast to the ABM-case,
equity return standard deviation increases after debt repayment. How-
ever, higher return moments show an ambiguous pattern but skewness
stays negative and kurtosis above 3 for all maturities.30

All other changes to the base case parameter set cause a change of
total firm value per se which forces a redistribution of claim values. A
reduction of the risk-neutral EBIT-drift, of the initial EBIT-level, and
an increase of the risk-less interest rate results in a reduction of firm

30Ait-Sahalia and Lo (1998) report in their Figure 7 moments of risk-neutral return dis-
tributions estimated non-parametrically from time series of option prices. Higher return
moments of the S&P-500 index are instable with respect to maturity and show kinks. Ef-
fects that our simple example exhibits, as well.
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value and thus of the expected value of equity. The closer the firm moves
towards bankruptcy, the higher equity value skewness, the higher the
kurtosis, i.e. the firms are of type (iii) and (iv). Moves in the opposite
direction makes the equity densities look normal, i.e. firms approach
those of type (i). Panels B and D of Figure 6 for the ABM-case and
Figure 8 for the GBM-case illustrate this truncation of the density on the
left at bankruptcy.

Comparing our return moment pattern to those reported in Table 6
of Bakshi et al. (2003), the picture fits into our simulated moments: (i)
Our return distribution exhibits positive return skewness if the firm is
close to bankruptcy. In Bakshi et al. (2003), IBM is not a convincing
candidate for this. However, ABM-equity return densities around debt
repayments dates have higher skewness as well. (ii) Our return kurtosis is
generally above 3. The exception again is the ABM-equity return density
around debt repayment. American International, Hewlett Packard, and
IBM have average kurtosis below 3. (iii) There is a tendency that an
increase of skewness implies higher kurtosis, which Bakshi et al. (2003)’s
Table 6 shows, as well. Exceptions in our model are only firms just before
bankruptcy, which usually have no options traded on their equity. (iv)
Our volatility and skewness is generally higher.

As a final remark, differences might be due to the replication pro-
cedure used by Bakshi et al. (2003) who need to average across option
maturities to get a maturity-consistent time series of option prices. Since
we can resort to the whole unconditional distribution of equity at matu-
rity, Bakshi et al. (2003)’s results might be biased within our framework
and therefore be not the best comparison. Additionally, we showed above
that debt repayments before option maturity have a huge impact on the
equity return distribution which might distort the results of Bakshi et al.
(2003). However, it is the only study so far that analyzes individual stock
option.

4.4 Equity option prices and implied Black/Scholes

volatilities

In option markets it is observed that option’s implied Black/Scholes
volatility as a function of strike prices is monotonously falling. This
specific functional form is usually referred to as the option’s volatility
smile. The economic literature did not present an easy explanation for
this phenomenon but tried technical extensions such as stochastic volatil-
ity models which produced observed volatility smiles.31

31See Jackwerth (1999) for a literature overview. Stochastic volatility models have been
studied before by e.g. Heston and Nandi (2000) and Heston (1993). Dumas, Fleming and
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In the Corporate Securities Framework, an inversion of the Black and
Scholes (1973) formula is not possible because the prices of all security
values depend only on the size of EBIT and the capital structure in a par-
ticular state at option maturity. Payments during the life of the option to
debt and equity holders are irrelevant. Therefore, we can calculate equity
option prices by numerical integration and by finite difference methods.
The implied volatilities of the option can be backed out from the more
general form of the Black and Scholes (1973) option pricing formula which
is based on the expected future value of the underlying asset.32

Ct0 = e−r(TO−t0)EQ [max(ETO
− X, 0)]

= e−r(TO−t0)
[

EQ [ETO
] N(d1) − XN(d2)

]

(13)

where

d1 =

ln

(

EQ[ETO ]
X

)

+
σ2

IV

2 (TO − t0)

σIV

√
TO − t0

d2 = d1 − σIV

√

TO − t0,

and σIV is the annual implied volatility of the logarithm of the underlying
equity value E over the period TO − t0.

When using implied Black/Scholes volatilities as a benchmark, we
compare each of our scenarios with the log-normal density of equity which
Black and Scholes (1973) assumed for the underlying. If the Black and
Scholes (1973) model were correct, the implied volatilities for all options
must be equal.

From equation (13) it follows that high option prices imply high im-
plied volatilities. If implied volatilities increase for lower strikes, the
equity densities have more probability mass left of the strike price than
the log-normal density. To see this, take a state contingent claim which
pays 1 currency unit if the equity price has a certain level at maturity.
As Breeden and Litzenberger (1978) point out, the price difference of two
of such claims with different strike levels are related to the difference of
the probability of the two states actually occurring. If the claim with the
lower strike is worth more than the other as implied by the log-normal
assumption implicit in the Black/Scholes model, this probability must be

Whaley (1998) provide evidence that an implied volatility tree in the sense of Rubinstein
(1994) is not superior to the ad-hoc applied implied volatility curve in a Black/Scholes
model. See also Grünbichler and Longstaff (1996) who analyze volatility derivatives where
the volatility itself is assumed to follow a mean-reverting process. Fleming, Ostdiek and
Whaley (1995) describe the properties of the quoted volatility index on the S&P 100.

32See, e.g. Hull (2000), p.268 ff.
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higher. Thus, we can conclude that the probability mass between the
strikes of these two claims is higher than implied by the Black/Scholes
distributional assumption.33

Bakshi et al. (2003) analyze the connection between the physical eq-
uity return distribution, its risk-neutral counterpart, and the resulting
equity option implied Black/Scholes volatilities on a single-stock basis.
The analytical and empirical results strongly support the hypothesis that
the more the risk-neutral return distribution is left-skewed, the higher
the curvature of implied volatility smile. Furthermore, a higher kurtosis
flattens the smile somewhat. Their Table 5 summarizes these results.

The simulation results of equity option prices in our ABM-Corporate
Securities Framework support that behavior. The GBM-firm exhibits
exceptions to their rule if the bankruptcy probability rises very quickly.
However, we are able to give intuition to these findings. In our model,
the equity return distribution results from the specification of the equity
contract as being the residual claim to EBIT, a complex capital structure,
and the distinct ability of equity owners to declare bankruptcy. This is
the primary economic interpretation of the results found by Bakshi et al.
(2003), and so completes their analysis on the economic level.

In all our examples, we find a downward sloping implied volatil-
ity curve. The level of implied volatilities and the curvature of the
strike/volatility function depend on the current state of the firm towards
bankruptcy expressed by the equity return standard deviation. If we de-
tail the analysis by comparing our parameter settings, we find several
stylized facts: (i) Implied volatilities of the GBM-case are higher than
those of the comparable ABM-case if the firm is far from bankruptcy. The
opposite is true close to bankruptcy because the GBM-volatility decreases
with the EBIT-level thus changing the term structure of bankruptcy prob-
abilities. (ii) The closer the firm is to bankruptcy, the higher the implied
volatility of at-the-money options. (iii) The ABM-implied volatility struc-
ture gets flatter for higher at-the-money implied volatility levels. These
firms have a high return distribution skewness and kurtosis. (iv) The
GBM-firm exhibits steeper slopes at higher implied volatility levels.

It seems important to note that the linking of the level and shape of
the volatility smile to equity return moments seems only suitable for good
state firms. Following our discussion about higher moments of the return
distribution, the bankruptcy probability might bias the relation detected
by Bakshi et al. (2003). Their sample firms can be considered as being
far from bankruptcy.

Figures 10, 11 display implied volatility curves against moneyness for
ABM- and GBM-firms for 6 month option maturity. Hereby, moneyness

33See Appendix B for a more formal exposition.
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Figure 10: Implied Black/Scholes volatilities of 6 month equity options in the
ABM-Corporate Securities Framework with η0 = 100: Parameter changes are
indicated in the legend. The bankruptcy barrier VB is set so that 50 % of
the outstanding notional is recovered in bankruptcy and bankruptcy losses are
α = 70 %. Option prices are obtained by numerical integration.

is defined as the fraction of the strike to the current equity value. As ex-
pected, lower EBIT-starting values (Panels A), higher interest rates (Pan-
els D), lower risk-neutral drifts (Panels B), and higher EBIT-volatility
(Panels C) take the firm closer to bankruptcy and thus show higher im-
plied volatility levels.

The maturity of the option (Panels E) has only a major impact on
the volatility smile if debt is repaid during the option’s life. Then, the
implied volatility smile becomes much flatter in the ABM-case and drops
in the GBM-case. Recall from the last subsection that expected equity
values increase due to the capital infusion by equity owners to repay debt.
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Figure 11: Implied Black/Scholes volatilities of 6 month equity options in the
GBM-Corporate Securities Framework with η0 = 100: Parameter changes are
indicated in the legend. The bankruptcy barrier VB is set so that 50 % of
the outstanding notional is recovered in bankruptcy and bankruptcy losses are
α = 65 %. Option prices are obtained by numerical differentiation.

The last three columns of Tables 2 and 4 are devoted to a regression
analysis as performed by Bakshi et al. (2003) in their Table 3. The implied
volatility is represented by the regression model

ln(σIV ) = β0 + β1 ln

(

X

E0

)

. (14)

In equation (14), exp(β0) can be interpreted as the at-the-money implied
volatility. β1 is a measure of the steepness of the implied volatility curve.
For example, the figures of Rows 10 and 11 confirm that increasing the
option maturity continuously increases the ATM-implied volatility, but
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the 2-year option has the lowest slope.
Note that the at-the-money implied volatility is always higher than

the standard deviation of the equity return density for good state firms.
This reflects the fact that the expected future equity value lies above the
current value of equity and so the at-the-money implied volatility with
respect to the expected future equity value is lower.

For firms closer to bankruptcy implied volatilities can become large.
At-the-money levels of 100 % and more are common.

The effects of changes of the financing structure need a more detailed
discussion. As mentioned in the last subsection, equity return standard
deviations depend on the schedule of debt maturities. Recall that the
earlier the short-term debt matures, the more imminent becomes debt
repayment. If the firm survives, the bankruptcy barrier is lowered and
the equity value jumps upwards. Extending short-term debt maturity
increases the period of coupon payments and the bankruptcy barrier in
the extension period which decreases current and future equity value. As
a result, equity return standard deviation and ATM-implied volatilities
increase. As can be seen from Figure 10 Panel F, the slope of the im-
plied volatility smile flattens. This graph also illustrates Toft and Prucyk
(1997)’s debt covenant effect although they interpret a higher covenant,
i.e. a higher bankruptcy barrier, as a substitute of the amount of short-
term debt. Effectively, we increase the bankruptcy barrier as well. How-
ever, we have the additional effect of a reduced (expected) equity value
because the maturity of short-term debt is extended. As is demonstrated
here, the term structure of the corporate capital structure matters. The
simple argument of a debt covenant is not enough to explain the richness
of implied volatility smiles. Again, our framework gives a very intuitive
and simple explanation.

5 Concluding Remarks

In this study, we use a numerical implementation of the Corporate Securi-
ties Framework to price options on equity in order to explain the existence
and the shape of volatility smiles. We compare our option prices to the
Black/Scholes setting by calculating implied volatilities.

Since our distributional assumptions are different to those of the
Black/Scholes environment, differences in the shapes of implied volatil-
ity curves have to be expected. However, it is interesting that our eco-
nomically intuitive environment is sufficient to explain a behavior that
needed much more elaborate mathematical techniques before. We find
that the distributional assumption for EBIT is not crucial to the gen-
eral downward sloping shape of implied volatilities but the features of
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the equity contract. Equity holders can stop infusing capital into the
firm and declare bankruptcy. The option on equity forgoes. As a re-
sult, the unconditional distribution of equity values at option maturity
is skewed and exhibits excess kurtosis. ABM-firms and GBM-firms run
through several stages of distribution types. We categorized the stages
by four generic types of distributions when a firm in an excellent con-
dition moves towards bankruptcy. Equity return distributions of ABM-
and GBM-firms behave surprisingly similar except for the level and the
sensitivity. Good state firms exhibit small return standard deviation, a
slightly negative skewness and a small excess kurtosis. If the firm moves
towards bankruptcy the return standard deviation and kurtosis increase,
skewness decreases. Close to bankruptcy the skewness turns positive at
high levels of the standard deviation and kurtosis. The effects are due to
the concentration of the probability mass of the equity value distribution
at zero. As a result, moments of equity value and return distributions of
firms close to bankruptcy must be interpreted carefully because the levels
of higher moments might be misleading when compared to moments of
regular distributions.

The effects on option prices are as follows: All curves of implied
volatilities as a function of moneyness are convex and monotonously de-
creasing. Options on equity of firms close to bankruptcy generally show
very high at-the-money implied volatilities with a decent slope. The fur-
ther the firm’s distance to default, the lower implied volatility levels and
the steeper the slope. Financing decision can have a significant impact
on implied volatilities. Repayment of debt around option maturities in-
curs sharp increases in implied volatilities due to the jumps by equity
values. Switching to longer debt maturities might decrease equity values
due to higher coupon payments which outweighs the present value effect
of no immediate debt repayment. For good state firms, debt repayment
can effectively decrease implied volatilities of longer lasting equity op-
tions because (i) expected equity value is increased (ii) and bankruptcy
becomes less imminent once the debt burden is lowered.

In the GBM-case, the term structure of bankruptcy probabilities can
influence equity values considerably and thus effectively increase the slope
of implied volatilities the higher its level.

Our explanation of equity smirks is simply and intuitively linked to
the economic condition of the firm and to its debt structure. We argue
this is a significant progress to other studies of option smirks which use
mathematically more elaborated but economically less intuitive concepts.
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A A Note on the Change in Variable

of Equity Value and its Return Density

Plots

The discussion in 4.3 relies heavily on the unconditional partial density
plots displayed. The density as of equation (12) is defined heuristically
for a small interval dηT as explained in Section 3. Equity values at op-
tion maturity and the respective return values are functions of the state
variable ηT , the densities with respect to the stochastic Variable η have
to be translated into densities of the new variable.

If the distribution function of η for the ABM-case is denoted by
F (ηT ) = PQ(η ≤ ηT ; MT > ηB) with a density of f(ηT ) = ∂/∂η(Φ(·))
and equity values at maturity T are an invertible function of EBIT
ET = E(ηT ), the probabilities for the two events must therefore be the
same.

PQ(η ≤ ηT ; MT > ηB) = PQ(E ≤ ET ; MT > ηB)
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For the density of equity values fE this requires that

fE(ET ) =
∂

∂η
F (ηT )

∂

∂η
E−1(ηT )

= f(ηT )

(

∂ET

∂η

∣

∣

∣

∣

η=ηT

)−1

, (15)

since the invertible function is one dimensional in the stochastic param-
eter.

Transforming the equity density into a return density requires the
same transformation as above. Denote the equity return with respect to
the expected value at the option maturity by rE(T ) = ln(ET /EQ(ET )).
So equity return density can be calculated by

f r(rE(T )) = fE(ET )ET , (16)

since ∂rE(T )/∂ET = ET .
The GBM-case is equivalent to the ABM-case if η is replaced by ln(η̄)

and ηB by ln(η̄B). The derivatives in equation 15 are then taken with
respect to ln(ηT ). Equation 16 does not change.

B Distributional Assumptions and Op-

tion Prices

To support the understanding of how distributional assumptions affect
option prices, it is necessary to decompose price differences of option
with different strikes. Writing the call option value as an expectation
under the risk-neutral measure Q

C(t, T, X) = EQ[e−r(T−t)(ET − X)+]

= e−r(T−t)

∫ ∞

0
(ET − X)+q(ET )dET

= e−r(T−t)

∫ ∞

X

(ET − X)q(ET )dET ,

where ET denotes the underlying value, X the strike, and T the time of
maturity of the call option C at time t, the price difference of a similar
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call option but with a lower strike X − ∆X, where ∆X > 0 is

∆C(t, T, X, ∆X) = e−r(T−t)

(
∫ ∞

X

(ET − X)q(ET )dET

−
∫ ∞

X−∆X

(ET − X − ∆X)q(ET )dET

)

= e−r(T−t)

(

∆X

∫ ∞

X−∆X

q(ET )dET

+

∫ X

X−∆X

(ET − X)q(ET )dET

)

. (17)

Figure 12: Option price differences due to differences of strike prices

Equation (17) can nicely be illustrated by Figure 12, which shows
the payoffs at maturity of two options with strikes X and X − ∆X,
respectively. The lower strike option can be replicated as a portfolio of
the option with strike X (the area above the gray rectangle and below
the dashed line, the area due to the lower strike ∆X (the gray rectangle),
and the dotted triangle which the low-strike option holder will not get.

Comparing implicit volatilities is equivalent to comparing the proba-
bility mass between X − ∆X and X. If this probability mass is higher
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than that of the log-normal distribution, the option price rises more than
the Black/Scholes option price leading to an increase in implied volatili-
ties. More generally, the option price difference must exceed

∆CN (t, T, X, ∆X) = e−r(T−t)

[

X

(

N(d2) − N(d2 −
γ

σ
√

T − t

)

−EQ(ET )

(

N(d1) − N(d1 −
γ

σ
√

T − t

)

+∆XN(d2 −
γ

σ
√

T − t
)

]

, (18)

where γ = 1 − (∆X)/X is the proportional decrease of the strike and d1

and d2 are defined as in equation (13). In equation (18), the first two lines
represent the dotted triangle of figure 12 and the third line is equivalent
to the gray rectangle.

C Additional Figures
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Figure 13: Equity values after tax as a function of EBIT-volatility and current
EBIT value of a GBM-firm.

43



60
80

100
120

140
160

0

2000

4000

6000

8000
0

0.5

1

1.5

2

2.5

3

3.5

Initial EBIT

Unconditional Partial Density of Equity Value

Equity Value at Option Maturity

D
en

si
ty

Figure 14: Equity value densities of 6 month equity options in the GBM-
Corporate Securities Framework as a function of η0. Expected equity values
are indicated by solid lines. Path probabilities are obtained by differentiating
the splined distribution function of EBIT at option maturity.
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Figure 15: Equity value density moments of 6 month equity options in the
GBM-Corporate Securities Framework as a function of η0. The moments are
obtained by numerical integration.
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Figure 16: Equity return densities of 6 month equity options in the GBM-
Corporate Securities Framework as a function of η0. The 0-returns are in-
dicated by solid lines. Path probabilities are obtained by differentiating the
splined distribution function of EBIT at option maturity.
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Figure 17: Equity return density moments of 6 month equity options in the
GBM-Corporate Securities Framework as a function of η0. The moments are
obtained by numerical integration.
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