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Testing copulas to model financial dependence

Abstract

Copulas offer economic agents facing uncertainty a powerful and flexible tool to

model dependence between random variables and are preferable to the traditional,

correlation-based approach. In this paper we show how standard tests for the fit of a

distribution can be extended to copulas. Because they can be applied to any copula

and because they are based on a direct comparison of a given copula with observed

data, these tests are preferable to existing, indirect tests. We illustrate the tests

by selecting a copula to manage the risk of a well diversified portfolio consisting of

stocks, bonds and real estate. They provide clear evidence in favor of the Student’s t

copula, and reject both the correlation-based Gaussian and the extreme value-based

Gumbel copula. A detailed inspection of the tails reveals that the Student’s t copula

accurately captures the risk of joint downside movements, while it is underestimated

by the Gaussian and overestimated by the Gumbel copula. Because existing tests

that focus on bivariate tail dependence fail to unambiguously select from these three

alternatives, the results indicate the superiority of our approach to test and select

copulas for modelling dependence.

Key words : financial dependence, copulas, distributional tests, tail dependence

JEL classification: G11, C12, C14
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1 Introduction

Modelling dependence is of key importance to all economic fields in which uncertainty

plays a large role. It is a crucial element of decision making under uncertainty and risk

analysis. Consequently, an inappropriate model for dependence can lead to suboptimal

decisions and inaccurate assessments of risk exposures. Traditionally, correlation is used

to describe dependence between random variables, but recent studies have ascertained

the superiority of copulas to model dependence, as they offer much more flexibility than

the correlation approach. Clemen and Reilly (1999) discuss the application of copulas

in decision marking, Frees and Valdez (1998) show the use of copulas in actuarial risk

analyses, while Embrechts et al. (2002) advocate using copulas in finance. An important

reason to consider other copulas than the correlation-implied Gaussian copula is its failure

to capture dependence between extreme events. However, up to now no consensus has

been reached on which copula to use in specific applications or on how to test the accuracy

of a specific copula.

In this paper we propose a new procedure to determine which copula to use. Generally,

theory offers little guidance in choosing a copula, making the selection an empirical issue.

Since a copula is equivalent to a distribution, we consider traditional tests designed for

the fit of a distribution on a sample. We show how modifications of the Kolmogorov-

Smirnov test and the Anderson-Darling test can be applied. These tests are based on a

direct comparison of the dependence implied by the copula with the dependence observed

in the data. If dependence over the complete distribution is important, as in the case

of investment decisions, the Kolmogorov-Smirnov tests can be chosen because of their

focus on the fit in the distribution’s center. If dependence of extreme values is of interest,

as in the case of risk management, the Anderson-Darling tests are preferable, because

they pay more attention to the tails. Using these direct tests of the fit of a copula has

several advantages over alternative approaches proposed in the literature. First of all, it is

applicable to any copula, not only to the Student’s t and Gaussian copula. Second, it can

be used for copulas of any dimension, not only for bivariate copulas. Third, it indicates
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whether a copula captures the observed dependence accurately, and not only whether it

can be rejected against another specific copula. Finally, if the tests that we propose for

selecting a copula are used, the decision is based on the complete dependence pattern,

contrary to selection procedures that consider only part of the dependence pattern (i.e.

dependence of extreme observations).

We apply the tests to select a copula for the risk management of an asset portfolio

consisting of stocks, bonds and real estate, which are among the main asset classes avail-

able to investors. As investors are typically averse to downside risk, it is important to

capture the risk of joint downside movements of the asset prices, without failing to exploit

the diversification possibilities that the assets offer. This is particularly relevant for the

allocation over the different asset classes, which is generally the first step of portfolio con-

struction, because this step should realize most diversification advantages. Therefore, we

consider the Gaussian, the Student’s t and the Gumbel copula to model the dependence.

The Gaussian copula is the traditional candidate for modelling dependence. The Student’s

t copula is a natural second candidate, because it can capture dependence in the tails

without giving up flexibility to model dependence in the center. We include the Gumbel

copula, because it is directly related to multivariate extensions of extreme value theory,

which has gained popularity in risk management over the last decade (see e.g. Longin,

2000). To make proper inferences of extreme events, we base our analysis on six years of

daily returns of US indexes that represent the asset classes. Our procedure provides clear

evidence against the Gaussian and Gumbel copulas, but does not reject the Student’s t

copula. As a comparison, we apply the approach of Poon et al. (2004), which is based on

bivariate dependence in the tails and show that it does not facilitate a decision. A detailed

comparison of the tail behavior present in the data with the tail behavior of the copulas

shows the importance of choosing an appropriate copula for risk management. While the

Gaussian copula leads to a serious underestimation of the risk of joint downside move-

ments and the Gumbel copula overestimates it, the Student’s t copula captures this risk

accurately. Moreover, these differences are statistically significant.

Our study adds to the ongoing debate on modelling dependence in finance, particularly
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regarding asset returns. This debate concentrates not only on which copula to use, but

also on the methods used to make the selection. Different authors have proposed different

methods, based on either dependence in the tails1, likelihood ratio tests2, correlations

conditional on the size of returns3 or regime switching models4. However, contrary to our

approach, none of these methods tests directly the fit of a dependence model. Moreover,

the recent methods based on dependence in the tails can only handle bivariate dependence

and take only part of the dependence pattern into account. Likelihood ratio tests can

only handle nested copulas, while the methods based on size-conditional correlations are

sensitive to (corrections for) biases (see Corsetti et al., 2005). Regime switching models are

generally difficult to combine with copulas. Finally, the evidence supplied by the different

methods on relatively similar data sets is mixed. We try to overcome the drawbacks of

these existing methods by proposing tests that relate directly to the fit of a dependence

model. We extend the work of Malevergne and Sornette (2003), who only consider the

Gaussian copula.

The remainder of this article is structured as follows. Section 2 discusses the tests and

their application to the Gaussian, the Student’s t and the Gumbel copulas. In Section 3

we show how to use the tests to select a copula to model dependence in a risk management

application. We demonstrate the advantages of our approach by comparing it with the

testing procedure in Poon et al. (2004). A detailed analysis of tail behavior shows the

importance of choosing the right copula. Section 4 concludes.

1See Hartmann et al. (2004), Poon et al. (2004) and Longin and Solnik (2001).
2See Mashal et al. (2003) and Mashal and Zeevi (2002).
3See Ang and Chen (2002), Campbell et al. (2003), Campbell et al. (2002), Forbes and Rigobon (2002)

and Loretan and English (2000).
4See Ang and Bekaert (2002), Edwards and Susmel (2001) and Ramchand and Susmel (1998).
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2 A procedure to test the fit of copulas

In this section we explain how the Kolmogorov-Smirnov and Anderson-Darling tests can

be implemented for copulas. We start with a short introduction on copulas.5 In the second

subsection we present the tests, followed by a discussion of the implementation in the third

subsection.

2.1 Copulas

Dependence between random variables can be modelled by copulas. A copula enables the

calculation of the joint probability of events from the marginal probabilities of each event.

This makes copulas attractive, as the univariate marginal behavior of random variables

can be modelled separately from their dependence. For a random vector X of size n with

marginal cumulative density functions Fi, the copula with cdf C(·) gives the cumulative

probability for the event x:

P (X ≤ x) = C(F1(x1), . . . , Fn(xn)). (1)

The applicability of copulas is wide, as Sklar (1959) proves that each multivariate dis-

tribution with continuous marginals has a unique copula representation. Moreover, any

function C : [0, 1]n → [0, 1] satisfying some regularity restrictions implies a copula.6

Tail dependence is an important property of copulas. It describes the behavior of copu-

las when the values of the marginal cdf Fi reach their bounds zero (lower tail dependence)

or one (upper tail dependence) and is defined as the limiting probability that a subset of

the variables in X has extreme values, given that the complement has extreme values.7 If

the limiting probability equals zero, a copula exhibits tail independence; if the probability

exceeds zero, it exhibits tail independence.

5A more rigorous treatment of copulas can be found in Joe (1997) and Nelsen (1999). For a discussion

applied to finance we refer to Cherubini et al. (2004) and Bouyé et al. (2000).
6See Definition 1 in Embrechts et al. (2002).
7Joe (1997) Sec. 2.1.10 gives a definition for the bivariate case, which is generalized by Schmidt and

Stadmüller (2003) to n > 2 dimensions.
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The traditional use of correlation to model dependence implies using the Gaussian

copula which has cdf:

CΦ
n (u; Ω) = Φn(Φ−1(u1), . . . , Φ

−1(un); Ω), (2)

where u is a vector of marginal probabilities, Φn denotes the cdf for the n-variate standard

normal distribution with correlation matrix Ω, and Φ−1 is the inverse of the cdf for the

univariate standard normal distribution. For imperfect correlated variables, the Gaussian

copula implies tail independence.

Closely related to the Gaussian copula is the Student’s t copula, with cdf:

CΨ
n (u; Ω, ν) = Ψn(Ψ−1(u1; ν), . . . , Ψ−1(un; ν); Ω, ν), (3)

where Ψn denotes the cdf of an n-variate Student’s t distribution with correlation matrix

Ω and degrees of freedom parameter ν > 2, and Ψ−1 is the inverse of the cdf for the

univariate Student’s t distribution with mean zero, dispersion parameter equal to one

and degrees of freedom ν. The Gaussian and Student’s t copula belong to the class of

elliptic copulas. A higher value for ν decreases the probability of tail events. As the

Student’s t copula converges to the Gaussian copula for ν → ∞, the Student’s t copula

assigns more probability to tail events than the Gaussian copula. Moreover, the Student’s

t copula exhibits tail dependence (even if correlation coefficients equal zero). For ν > 30,

differences between the Student’s t and Gaussian copula are negligible.

The third copula we consider in the paper is the Gumbel copula, which belongs to

the class of Archimedean copulas. The Gumbel copula is an extreme value copula.8 Its

standard cdf is given by

CG
n (u; a) = exp


−

(
n∑

i=1

(− log ui)
a

)1/a

, (4)

with α ≥ 1, where α = 1 implies independence. Because this standard cdf implies the

same dependence between all combinations of marginal variables ui, we use the extension

8Joe (1997) provides a detailed, general discussion of extreme value theory in relation to copulas, while

Bouyé (2002) discusses it from a risk management perspective.
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of the standard Gumbel copula proposed by Bouyé (2002). He uses a recursive definition,

in which the dependence of the marginal probability ui+1 with the preceding marginal

probabilities u1, . . . , ui is characterized by a specific parameter ai:

CB
n (u1, . . . , un; a1, . . . , an−1) =





CG
2 (u1, u2; a1) if n = 2

CG
2 (CB

n−1(u1, . . . , un−1; a1, . . . , an−2), un; an−1) if n > 2,

(5)

with α1 ≥ α2 ≥ . . . ≥ αn−1 ≥ 1. CG
2 () denotes the standard bivariate Gumbel copula as

defined in Eq. 4. The restrictions on the α’s impose a descending dependence order: the

dependence between u1 and u2 is at least as strong as the dependence between u1 and u2

on the one hand and u3 on the other. The ordering of the variables is therefore important.

The Gumbel copula exhibits upper tail dependence but lower tail independence, which can

be reversed by using the survival copula.9

2.2 Test statistics for the fit of copulas

The tests we propose belong to the large class of test statistics for the fit of distributions.

Suppose we want to test whether a specific distribution for a random variable accurately

fits the corresponding observations. Under the hypothesis that this is the case, the em-

pirical cumulative distribution of the observations FE will converge to the hypothesized

cumulative distribution FH almost surely, as stated by the Glivenko-Cantelli theorem (see

Mittelhammer, 1996, p. 313). Therefore, we can use the deviations of the empirical dis-

tribution from the hypothesized distribution to test the fit. Let xt be a realization of the

9The cumulative joint probability of events u is calculated by the survival copula: P (U ≤ u) = C̄(ιn−u),

where C̄ denotes the joint survival function. For a random vector X with (multivariate) density function

F (x) (not necessarily a copula) the joint survival function is defined as F̄ (x) = P (X ≥ x). Joe (1997) (p.

10, item 39) gives the general formula that relates F̄ to F (e.g. for the two dimensional case F̄ (x1, x2) =

1− F1(x1)− F2(x2) + F (x1, x2), where Fi denotes a marginal distribution).

8



random variable X out of sample of T realizations. We propose the following four statistics:

DKS = max
t
|FE(xt)− FH(xt)|; (6)

DKS =

∫

x

|FE(x)− FH(x)|dFH(x); (7)

DAD = max
t

|FE(xt)− FH(xt)|√
FH(xt)(1− FH(xt))

; (8)

DAD =

∫

x

|FE(x)− FH(x)|√
FH(x)(1− FH(x))

dFH(x). (9)

The first distance measure is commonly referred to as the Kolmogorov-Smirnov dis-

tance, of which the second is an average. The third distance measure is known as the

Anderson-Darling distance after Anderson and Darling (1952), and the fourth is again

an average of it. The Kolmogorov-Smirnov distances are more sensitive to deviations in

the center of the distribution, whereas the Anderson-Darling distances give more weight

to deviations in the tails. The average measures are used to limit the influence of out-

liers. To further limit the influence of outliers in the Anderson-Darling distances, we follow

Malevergne and Sornette (2003) by replacing the original (FE(xt) − FH(xt))
2 term by

|FE(xt) − FH(xt)|. The distributions of the statistics under the null hypothesis are non-

standard. Moreover, the parameters for the hypothesized distribution are often estimated

on the same data. Therefore, simulations are necessary to evaluate the statistics.

One way to test the fit of a specific copula is to derive the test statistics directly, by

transforming each observation to the corresponding marginal probabilities, based on which

the distance measures are then calculated. The hypothesized and empirical copulas take

the place of FH and FE, respectively. The empirical copula CE based on a sample X gives

the joint probability for a vector of marginal probabilities u as follows:

CE(u;X ) =
1

T

T∑
t

I(x1,t ≤ x
bu1·T c
1 ) · . . . · I(xn,t ≤ xbun·T c

n ), (10)

where I(·) is the indicator function, which equals 1 if the statement in parentheses is true

and zero otherwise, and x
buj ·T c
j is the kth (ascending) order statistic, k being the largest

integer not exceeding uj · T .
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Inspired by Malevergne and Sornette (2003) we propose a slightly different approach

that can be applied when dealing with elliptical copulas. As the cumulative distribution

functions of elliptical distributions are generally not available in closed form, calculation

of the hypothesized probabilities will be computationally demanding if the number of

dimensions increases. We use a faster procedure and evaluate the fit of elliptical copulas

in terms of the fit of a univariate random variable. We use the property that the density

functions of elliptical distributions are constant on ellipsoids. Each elliptically distributed

random variable implies a univariate random variable with a specific distribution that

corresponds with the radii of the ellipsoids of constant density (see Fang et al., 1990, for

a formal treatment). Instead of considering the observation itself we consider the squared

radius of the ellipsoid of constant density that it implies. We compare the empirical

distribution of the squared radii with their theoretical distribution, which are standard

distributions in case of the Gaussian and Student’s t copula.

For a random vector U = (U1, . . . , Un)′ with marginal uniform distributions on [0, 1]

and dependence given by the Gaussian copula with correlation matrix Ω, we construct the

squared radius as:

ZΦ = Ũ ′Ω−1Ũ , (11)

where Ũ = (Φ−1(U1), . . . , Φ
−1(Un))′ and Φ−1(·) is the inverse of the standard normal cdf.

The random variable ZΦ has a χ2
n-distribution. This follows easily upon realizing that Ũ

has a normal distribution with correlation matrix Ω, which makes ZΦ the sum of n squared

random variables that are independently, standard normally distributed. So, starting with

a sample having uniform marginal distributions, we transform each observation u to z =

ũ′Ω−1ũ and calculate its associated cumulative probability by the cdf of the χ2
n-distribution.

For the Student’s t copula we use a similar transformation. Let V = (V1, . . . , Vn)′ be

a random vector with each Vi uniformly distributed on [0, 1] and dependence given by the

Student’s t copula with correlation matrix Ω and degrees of freedom ν. Now we construct

the squared radius as

ZΨ = Ṽ ′Ω−1Ṽ /n, (12)
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where Ṽ = (Ψ−1(V1; ν), . . . , Ψ−1(Vn; ν))′ and Ψ−1(Vj; ν) is the inverse function of the stan-

dard Student’s t distribution with degrees of freedom parameter ν. The variable ZΨ is

distributed according to an F -distribution with degrees of freedom parameters n and ν.

Note that the variable Ṽ has a Student’s t distribution and can therefore be written as

W/
√

S/n, with W being an n-dimensional normally distributed random variable with

correlation matrix Ω and S being a univariate random variable with a χ2
ν-distribution.

Consequently, we can write

ZΨ =
W ′Ω−1W/n

S/ν
,

which makes ZΨ the ratio of two χ2-distributed variables divided by their respective degrees

of freedom. Therefore, it has an Fn,ν distribution. So when we test the Student’s t copula,

we start with a sample having uniform marginal distributions, transform each observation v

to ṽ′Ω−1ṽ/n and calculate the cumulative probability with the cdf of the Fn,ν distribution.

2.3 The procedure

Suppose that we want to use a specific copula with cdf C and parameters θ to model the

dependence of a random variable X for which we have a sample available of size T . The

procedure that we propose to evaluate the fit of this copula consist of four steps:

Estimation step We estimate the parameters θ. In general two approaches can be used

for estimating copula parameters. For our test procedure we advocate the inference

functions for margins method (IFM) (see Joe, 1997, Ch. 10). In this two-step

approach the parameters for the marginal models are estimated first. In the second

step, the copula parameters are estimated with the marginal distribution parameters

treated as given.10 It is also possible to apply maximum likelihood to jointly estimate

the parameters for the marginal models and the copula. Though IFM is less efficient

than one-step maximum likelihood, it is computationally more attractive and allows

larger flexibility in the estimation techniques for the marginal models.

10The resulting estimators θ̂ belong to the general class of sequential estimators (see Newey, 1984).
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Evaluation step We evaluate the fit of the copula with the estimated parameters by

calculating the four distance measures of the previous subsection. If the copulas

belong to the elliptical family, we propose to base the calculation on a transformation

of the uniform marginals. We use d̂KS, d̂KS, d̂AD and d̂AD to refer to the distance

measures for the original sample.

Simulation step To test whether the distance measures provide evidence for rejecting

the fit of the copula, we need to construct the distribution of the distance measures

under the null hypothesis. Given the form of the distance measures and the fact that

the parameters of the copula are not known but estimated, simulations should be

used. For each simulation, we generate a random sample of size T from the copula

with parameters θ̂.11 We apply the estimation and evaluation step on this simulated

sample (and find a new estimate for θ). Each simulation yields new values for the

distant measures. Combined, the simulations result in a distribution of random

variables corresponding to d̂KS, d̂KS, d̂AD and d̂AD.

Test step Finally, we use the distribution that results from the simulation step to judge

the values d̂KS, d̂KS, d̂AD and d̂AD, by determining their p-value. p-values below the

commonly used thresholds of 10%, 5% or 1% lead to rejection of the fit of the copula

on that sample.

This procedure can be implemented straightforwardly. Note that the estimation step

within the simulation step should be applied to the marginal parameters as well. If, for

example, the empirical distributions are used to model the marginal distributions of the

original sample, they should be used for the simulated sample too.

11Simulation techniques for copulas can be found in Bouyé et al. (2000). General simulation techniques

are discussed in Devroye (1986). Aas (2004) discusses a specific simulation technique for Gumbel copulas.
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3 A risk management application

In this section we consider three copulas to model the dependence between asset returns.

The assets we consider are stocks, bonds and real estate. When investors determine their

asset allocations, stocks, bonds and real estate are among the main asset classes available

to them. The investor’s objective is to construct a portfolio that has the optimal risk-return

trade-off. The risk that a specific portfolio entails is directly related to the dependence

between the portfolio’s constituents. Consequently, the model used for the dependence is

of key importance for the construction of an optimal asset allocation. Moreover, portfolios

are often constructed by a top-down approach, in which the allocation to the different asset

classes is determined first. Since dependence within asset classes is generally stronger than

dependence between the different classes, this first step should ensure most diversification

advantages.

Overwhelming evidence has been established that investors are sensitive to downside

risk, implying that investors pay specific attention to extreme negative returns.12 This

makes it important to capture the risk entailed by the joint tail behavior of returns, without

failing to exploit the diversification possibilities represented by the center of the return

distribution. Therefore, we consider the Gaussian, the Student’s t and the Gumbel copulas

to model dependence. The Gaussian copula, the traditional method to model dependence,

is most sensitive to the center of the distribution and implies tail independence. The

Gumbel copula is most sensitive to tail dependence. Being an extreme value copula,

it is an extension of the successful univariate extreme value theory techniques in risk

management, as shown by Longin (2000) and Jansen et al. (2000). In their study of

dependence of extreme returns Longin and Solnik (2001) and Poon et al. (2004) also

use the Gumbel copula. Hennessy and Lapan (2002) consider portfolio allocations when

Archimedean copulas are used to model dependence. The Student’s t copula can capture

12See Kahneman and Tversky (1979) and Tversky and Kahneman (1991) for a general discussion. Be-

nartzi and Thaler (1995) and Berkelaar et al. (2004) discuss the implications of downside risk aversion

from a finance perspective.
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both dependence in the center and the tails of the distribution, and has been proposed as

alternative to the Gaussian copula by several authors including Glasserman et al. (2002),

Campbell et al. (2003), Mashal et al. (2003), Valdez and Chernih (2003) and Meneguzzo

and Vecchiato (2004). Though the evidence for tail dependence is actually mixed, as Longin

and Solnik (2001) and Hartmann et al. (2004) find positive evidence for it in international

asset returns while Poon et al. (2004) reject it by applying a different test, its importance

for downside risk averse investors is large enough not to exclude it a priori.

Our procedure can be used to determine which copula should be used. If the Gaussian

copula fits the data well, the center is the dominating factor and the correlation matrix

suffices to describe dependence. If the Student’s t fits the data well and the Gaussian does

not, the Student’s t captures dependence in the tails accurately while the Gaussian copula

fails to do so. Since the Student’s t converges to the Gaussian copula if the degrees of

freedom parameter increases, a good fit of the Gaussian copula will necessarily imply a

good fit of the Student’s t copula for a sufficiently high value for the degrees of freedom

parameter. If the Gaussian copula fits the data well, it should be preferred to the Student’s

t copula, as it is more parsimonious. Finally, if the Gumbel copula fits the data well,

dependence in the tails is the dominating factor.

In the next subsection we introduce the data. We briefly discuss how the marginal

distributions for each return can be modelled. In the second subsection we test the fit of

the Gaussian, the Student’s t and the Gumbel copula. We compare the outcome of the

selection with the outcome from the selection method proposed by Poon et al. (2004). In

the last subsection we analyze the dependence in the tails in more detail and discuss its

implications for risk management.

3.1 Data and marginal models

We use indexes to proxy for the returns on stocks, bonds and real estate: Standard & Poor’s

500 Composite Index (stocks), JP Morgan’s US Government Bond Index (bonds) and the

NAREIT All Index (real estate). Because we think it is important to pay attention to
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dependence in the tails of the distribution, a reasonable number of tail observations should

be included. Therefore, we calculate daily total returns for all indexes. We collect data

from DataStream over the period January 1, 1999 to December 17, 2004. Excluding non-

trading days the sample consist of 1499 returns. Panel (a) in Table 1 presents summary

statistics on the returns in the sample. Our data exhibit the well-known stylized facts:

asymmetry as indicated by nonzero skewness and fat tails as indicated by excess kurtosis.

[Table 1 about here.]

We propose to model the marginal distributions by the semi-parametric method by

Dańıelsson and de Vries (2000), who model the center of the distribution by the empirical

distribution function and rely on univariate extreme value theory to model the tails. This

enables us to combine the good approximation to the center of the actual distribution

offered by the empirical distribution, and the statistical rigor from extreme value theory

to model the tails of the distribution. Central in extreme value theory is the tail index α,

which characterizes the limiting behavior of a density. A distribution is fat tailed if the

hypothesis 1/α = 0 is rejected in favor of the alternative 1/α > 0. In that case, the tail

of the distribution can be modelled by the Pareto distribution. Tail index estimation is

commonly based on the Hill-estimator (Hill, 1975). We use the modified Hill-estimator

developed by Huisman et al. (2001) because of its unbiasedness.13

Table 1(b) reports estimates for the left tail index (αl) and for the right tail index (αr),

and estimates for the tail indices under the assumption that the left and right tail index

are equal. The hypothesis 1/α = 0 is rejected in all cases. The hypothesis of equal left

and right tails cannot be rejected for stocks and bonds. For real estate, this hypothesis

is marginally rejected with a p-value of 0.088. We model the tails separately, the left tail

applying to cumulative probabilities below 0.01 and the right tail applying to cumulative

probabilities above 0.99.

13Other methods for tail index estimation can be found in Dańıelsson et al. (2001) and Drees and

Kaufmann (1998). Brooks et al. (2005) conclude that the modified Hill-estimator by Huisman et al. (2001)

outperforms other methods for tail index estimation when applied in Value-at-Risk calculations.

15



3.2 Selecting a copula

We use the procedure outlined in Section 2.3 to select from the Gaussian, Student’s t and

Gumbel copulas. The copula parameters are estimated following Joe (1997)’s IFM method,

with the marginal distributions based on the semi-parametric method of Dańıelsson and

de Vries (2000) and maximum likelihood estimation in the second step. We calculate the

distance measures and evaluate them by constructing their distributions under the null

hypothesis of an accurate fit by simulating 10,000 samples based on the parameters that

resulted from the estimation step.

The outcomes of this analysis are reported in Table 2. The parameter estimates in panel

(a) for the Gaussian copula reveal that the correlations are negative and close to zero for

stocks and bonds, and bonds and real estate, and moderate and positive for stocks and

real estate. For an investor these estimates offer an attractive perspective, as they indicate

large diversification possibilities. However, this conclusion is premature, since the test

statistics indicate that the Gaussian copula does not capture the actual dependence well.

For 3 out of 4 statistics, p-values are below 0.05, rejecting the hypothesis of an accurate

fit. These include the average Kolmogorov-Smirnov distance and the average Anderson-

Darling distance, which are less sensitive to outliers than the other two measures, and can

be considered more reliable.

[Table 2 about here.]

The Student’s t copula performs better as the p-values for the distance measures re-

ported in Table 2(b) are substantially above 0.05. Its estimates for the correlation coeffi-

cients are largely equal to the estimated correlation coefficients for the Gaussian copula, but

the degrees of freedom parameter is relatively low. This indicates that extreme events have

a stronger tendency to occur jointly than captured by the Gaussian copula. Consequently,

the different categories stocks, bonds and real estate still offer ample diversification op-

portunities, but because of the dependence in the tails diversifying downside risk becomes

more difficult. The latter effect will be stronger for investors with a stronger aversion to

downside risk.
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The results for the Gumbel copula in panel (c) show that basing a dependence model

on tail dependence does not lead to good results. We use Bouyé (2002)’s extension of

the standard Gumbel copula, which makes the ordering of the variables important. To

determine that order, we estimate a bivariate copula for the three possible combinations.

We put the two variables with the highest α estimate first (being stocks and real estate)

and the remaining one last (bonds). Since we focus on downside risk, we use the survival

copula in order to allow for lower tail dependence. The estimate for α1 shows dependence

and lower tail dependence between stocks and real estate, but the α2 estimate being equal

to one indicates independence of bond returns from the returns on stocks and real estate.

Three out of four tests (including the average Kolomogorov-Smirnov and average Anderson-

Darling statistic) provide evidence against the Gumbel copula.

We conclude that the followed procedure provides a clear positive advise for selecting

the Student’s t copula. None of the four distance measures indicates rejection, while

both for the Gaussian and the Gumbel copula three out of four distance measures lead

to a negative advice. Both the parameter estimates and the test results indicate that

dependence in the tails is not accurately captured by the Gaussian copula. However, the

Gumbel copula fails to capture the dependence in the center. The likelihood ratio test

proposed by Mashal et al. (2003) and Mashal and Zeevi (2002) confirms the preference for

the Student’s t copula over the Gaussian copula, but the outcome of their test alone does

not indicate that the Student’s t copula fits the data well.14 A selection based on AIC or

BIC also leads to a preference of the Student’s t copula, but again, this does not imply by

itself a good fit for the Student’s t copula.15

14Because the Student’s t copula converges to the normal copula for ν →∞, a likelihood ratio test for the

restriction that degrees of freedom is high (say ν = 10, 000) can be used to test the Gaussian copula versus

the Student’s t copula. We estimate a log likelihood value of 218.47 for a Student’s t copula with ν = 10, 000

degrees of freedom, which results in an adjusted likelihood ratio statistic of −2 · (218.47− 230.47)/2 = 12.

The original statistic is halved to take the estimation of the parameters of the marginal models into account

when comparing with the usual critical value. The p-value of 0.00053 leads to rejection.
15Using the value for the log likelihood function in Table 2, we find for the AIC values 430.88 (Gaussian),

452.94 (Student’s t ) and 363.10 (Gumbel); and for BIC 196.50 (Gaussian), 201.22 (Student’s t ) and 168.92
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3.3 Using tail dependence to select a copula

In the literature, alternative procedures have been proposed to select copulas. Because

of the problems with the correction for biases in the size-conditional correlation approach

pointed out by Corsetti et al. (2005), selection based on tail dependence seems most promis-

ing. If tail dependence is found, all copulas exhibiting tail independence can be eliminated,

and vice versa. In a two dimensional setting this approach is appealing, but for realistic

problems with more dimensions, basing a selection on tail dependence becomes problem-

atic, since different forms of tail dependence can be defined (see Schmidt and Stadmüller,

2003). One approach would be to base the decision on pairwise comparisons. Another

drawback is that only choices between a copula with and a copula without tail dependence

can be made.

To compare the outcome of a selection based on tail dependence with the outcomes

of the previous subsection, we apply the method proposed by Poon et al. (2004). In

a bivariate setting, measures for tail dependence are derived from the limiting behavior

of one random variable, conditional on the other being more and more extreme. Coles

et al. (1999) construct two tail dependence parameters, either describing the behavior of

two asymptotic dependent random variables, or of two asymptotic independent random

variables. Both dependence parameters can be estimated directly and used to test for

dependence or independence, but Ledford and Tawn (1996) show that tests based on the

parameter estimate that describes the behavior of asymptotic dependent random variables

are biased towards rejecting independence, which is why Poon et al. (2004) use the second

measure.

Poon et al. (2004) define the tail dependence measure χ̄, describing the behavior of

asymptotically independent random variables X1 and X2 as:

χ̄ = lim
s→∞

2 log Pr(S2 > s)

log Pr(S1 > s, S2 > s)
− 1, (13)

where Si = −1/ log Fi(Xi), and Fi is the marginal cdf for Xi. By construction, −1 ≤ χ̄ ≤ 1,

while χ̄ = 1 indicates that the two variables are asymptotically dependent. Rejection of the

(Gumbel).
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hypothesis χ̄ = 1 leads to copulas exhibiting tail independence, and failure to reject it leads

to copulas exhibiting tail dependence. Poon et al. construct their estimate for χ̄ based on

the estimated (right) tail index α for the variable Smin = min(S1, S2) by χ̄ = 2/α− 1.16

One way to extend their approach to a setting with more than two dimensions, is to

apply it to each possible bivariate combination of the random variables. This results in

three analyses. For consistency we construct the marginal distributions in the same way as

for the estimation of the copula parameters. We measure tail dependence both for the left

tails and for the right tails of the distribution. The results in Table 3 are mixed, however:

for three combinations of stock, bond and real estate returns, tail dependence is clearly

rejected, for two combinations, the tests clearly fail to reject, and for one combination

(right tail-independence for bond and real estate returns) the hypothesis is rejected at the

5% level but not at the 2.5% level. Based on these results, we cannot decide which copula

to use.

[Table 3 about here.]

The tests that we propose consider directly the fit of the copulas on the observed data,

instead of being based on pairwise analyses. Moreover, they yielded a clear preference for

the Student’s t copula. As a trivariate Student’s t copula implies bivariate Student’s t

copulas for each combination of two out of the three variables, the results of Poon et al.’s

approach lead to different conclusions than our results. However, as their approach consid-

ers variables two by two, it is less efficient, which can influence the outcomes, in particular

for dependence models. Furthermore, Coles et al. (1999) remark that the estimation of

χ̄ can also be subject to biases. Finally, contrary to the tests we apply Poon et al.’s ap-

proach is based on asymptotic theory; its finite finite sample behavior is not known. To

get more insight in the actual tail behavior we investigate the tails in more detail in the

next subsection.

16This approach is based on Ledford and Tawn (1996, 1998).
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3.4 Tail behavior

Figure 1 presents the tail behavior of the return series and of the Gaussian, Student’s

t and Gumbel copula for the parameter estimates. As a starting point we take returns

with a marginal cumulative probability of 0.10, which gives -1.54% for stocks, -0.40% for

bonds and -0.81% for real estate. We can use the different copulas to calculate the joint

(cumulative) probability of these returns. Under the assumption of independence, the joint

probability of three returns with a marginal cumulative probability of 0.10 simply equals

0.103 = 0.001 or one day per 48 months. Using the Gaussian copula, this probability

becomes 0.0015 (one day per 30 months), for the Student’s t copula it increases to 0.0024

(one day per 20 months), while it equals 0.0042 (one day per 11 months) for the Gumbel

copula.

In Figure 1(a) we show how the joint probability of the returns changes, if the return for

stocks is reduced, while the returns for bonds and real estate remain at the 10% marginal

probability level of -0.40% and -0.81%. In Figure 1(b) we present the effect of reducing the

returns for bonds while keeping the other two unchanged, while Figure 1(c) does this for

real estate. The choice between the copulas has a large impact on the joint probabilities.

If the events get more extreme (i.e. the returns are reduced), the probabilities implied by

the Gaussian copula decrease much faster than those implied by the Student’s t or Gumbel

copula, and consequently, the average waiting periods implied by the Gaussian copula

increase much faster. Because the Student’s t copula and Gumbel copula both exhibit tail

dependence, their decrease is comparable, though the Gumbel copula always deems the

joint downward movements more likely than the Student’s t copula.

[Figure 1 about here.]

[Figure 2 about here.]

To show the significance of the difference between the probabilities from the different

copulas, we graph 95%-confidence intervals based on the estimated variance of the parame-

ter estimates. Because the confidence intervals are (mostly) non-overlapping, we conclude
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that those difference are significant. Because the probabilities implied by the empirical

copula fall largely in the confidence interval for the Student’s t probabilities, this shows

once again that the Gaussian and Gumbel copulas differ significantly from the empirical

dependence patterns, while the Student’s t copula does not, exactly what our procedure

indicated. The Student’s t copula provides an accurate estimate of the risk of joint down-

side movements. On the contrary, the Gaussian copula significantly underestimates this

risk, while the Gumbel copula overestimates it.

This analysis can be linked directly to stress tests for risk management. In a stress test,

a risk manager analyzes a portfolio of assets for extreme events taking place (see Longin,

2000; Kupiec, 1998). Berkowitz (2000) argues that the probability for those extreme events

should be included in the evaluation of the results of the stress tests to retain consistency

with other elements of the risk management system. A stress test for a portfolio for which

the prices of stocks, bonds and real estate are the risk factors would hence consist of

specifying extreme events, i.e. returns below a threshold, calculating the probability of

the event and analyzing the impact on the portfolio. Our analysis shows that the weight

given to a stress test is largely influenced by the chosen copula, as extreme events have

considerably different probabilities of occurrence depending on which copula is used.

4 Conclusions

In this paper we have considered copula selection. Because accurately modelling depen-

dence is crucial to many fields in finance, a dependence model should be selected prudently.

Both recent theoretical and empirical evidence have cast doubt on the accuracy of the

Gaussian copula that is implied by using correlations. We have discussed how traditional

tests for distributional assumptions, being the Kolmogorov-Smirnov and Anderson-Darling

tests, can be implemented to determine the accuracy of the Gaussian and alternative copu-

las, such as the Student’s t and Gumbel copula. These tests are preferable to existing tests

in the literature, as they compare directly the fit of the copula on observed dependence,

while the existing tests only use indirect comparisons. Moreover, they can be applied more
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generally, while several existing tests can only be used in bivariate cases or for elliptical

copulas. Finally, while the choice of test leaves some flexibility - the Kolmogorov-Smirnov-

based tests are more sensitive to fit in the center and the Anderson-Darling-based tests

more to fit in the tails - the complete dependence pattern is taken into account, contrary

to approaches that focus exclusively on dependence of extreme returns.

We have applied the tests to choose between the Gaussian, Student’s t and Gumbel

copula to model the dependence between three broad indexes for stocks, bonds and real

estate. Since investors are typically averse to downside risk, the dependence model that

they use should not only capture dependence in the center, but also the dependence in

the tails, to accurately incorporate the risk of joint downside movements. The Gaussian

copula, which focuses on dependence in the center and exhibits tail independence, and

the Gumbel copula, which focuses mostly on dependence in the tails, are clearly rejected,

while the Student’s t copula, which can capture both central and tail dependence is not.

In contrast, we show that the selection procedure proposed by Poon et al. (2004) does

not lead to unambiguous results. As this procedure is based on bivariate tail dependence,

this comparison demonstrates the disadvantages of using a procedure based on an analysis

of pairwise dependence. In a detailed inspection of the tails we have found that the

Student’s t copula captures the empirical tail behavior accurately, while the Gaussian

copula underestimates the risk of joint downward movements and the Gumbel copula

overestimates this risk. While this result has a direct impact on stress tests in a risk

management system, it can also influence investor’s optimal allocation, in particular when

downside risk aversion is taken into account.
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(a) Summary statistics

stocks bonds real estate

mean 0.012 0.022 0.065

volatility 1.26 0.34 0.81

skewness 0.18 -0.34 -0.33

kurtosis 4.60 3.83 7.34

minimum -5.83 -1.38 -5.19

maximum 5.73 1.08 4.68

(b) Tail indices

αl 5.31 4.62 2.60

αr 4.44 4.96 4.23

αl = αr 4.51 5.89 3.27

Table 1: Summary statistics and tail indices. Panel (a) reports summary statistics for the

three index return series (in %) in our sample: S&P 500 Composite Index (stocks), JP Morgan

Government Bond Index (bonds) and NAREIT All Index (real estate). The series consist of 1499

returns from January 1, 1999 to December 17, 2004. Panel (b) reports estimates for the left and

the right tail indices (αl and αr respectively) and the estimates for the tail indices under the

restriction that the left and right tail indices are equal (αl = αr). The tail indices are estimated

by Huisman et al. (2001)’s modified Hill-estimator, with the maximum number of observations

used (κ) equal to 149.
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(a) Gaussian copula (b) Student’s t copula (c) Gumbel copula

ρs,b -0.200 (0.024) ρs,b -0.195 (0.026) α1 1.42 (0.028)

ρs,r 0.471 (0.018) ρs,r 0.471 (0.020) α2 1.000 (0.038)∗

ρb,r -0.073 (0.026) ρb,r -0.074 (0.027)

ν 12.1 (2.76)

log L 218.44 log L 230.47 log L 183.55

d̂KS 0.026 [0.013] d̂KS 0.0095 [0.98] d̂KS 0.035 [< 5 · 10−5]

d̂KS 0.012 [0.0006] d̂KS 0.0024 [0.9980] d̂KS 0.0082 [0.0003]

d̂AD 0.058 [0.34] d̂AD 0.044 [0.69] d̂AD 0.28 [0.33]

d̂AD 0.030 [0.00073] d̂AD 0.0065 [0.9993] d̂AD 0.026 [0.0016]

Table 2: Estimation and test results for the Gaussian, Student’s t and Gumbel copula. Panels

(a) to (c) report the parameter estimates, log likelihood values and distance measures. The

copulas are estimated on daily returns from the S&P 500 Composite Index, the JP Morgan

Government Index and NAREIT All Index from January 1, 1999 to December 17, 2004 using the

IFM method (Joe, 1997). The marginal distributions are constructed using the semi-parametric

method by Dańıelsson and de Vries (2000), with cut-off probabilities 0.01 and 0.99 for the left and

right tail respectively, and tail indices estimated using the modified Hill-estimator by Huisman

et al. (2001) (see Table 1). For both the Gaussian and the Student’s t copula we report the

correlation coefficients for stocks and bonds (ρs,b), stocks and real estate (ρs,r) and bonds and

real estate (ρb,r). For the Student’s t copula we include the degrees of freedom parameter ν.

The parameters for the Gumbel copula refer to Bouyé (2002)’s extension of the standard Gumbel

copula, applied to the survival copula. Parameter α1 refers to the dependence between stocks

and real estate; α2 to the dependence between stocks and real estate on the one hand, and bonds

on the other. Standard errors are reported in parentheses. (In the estimation α2 = 1 + a2 is

used; the standard error marked with ∗ corresponds with a.) The lower part reports the distance

measures resulting from the test procedure. The values for the distance measures result from

the evaluation step, applying the transformation in Eq. (11) for the Gaussian copula and in Eq.

(12) for the Student’s t copula. The p-values, based on 10,000 simulations as described in the

simulation step, are reported in brackets.
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stocks and stocks and bonds and

bonds real estate real estate

χ̄l 0.0049 (0.19) 0.69 (0.32) 0.36 (0.26)

[< 10−3] [0.17] [0.007]

χ̄r 0.019 (0.20) 0.619 (0.31) 0.48 (0.29)

[< 10−3] [0.11] [0.035]

Table 3: Estimates for the asymptotic independence parameter χ̄. We report the estimated

asymptotic independence parameters for both the left tails and the right tails of the different

combinations of the returns on stock, bond and real estate indexes. The estimates are based on

the tail index estimate for the right tail resulting from Huisman et al. (2001)’s modified Hill-

estimator, which is applied to the series that results from taking the minimum of each couple of

transformed observations. The observations are the returns on the S&P 500 Composite Index,

the JP Morgan Government Index and NAREIT All Index from January 1, 1999 to December

17, 2004. All observations xi are transformed to −1/ log Fi(xi) for the left tail-independence

parameter and −1/ log (1− Fi(xi)) for the right tail-independence parameter. The marginal

distributions are constructed by the semi-parametric method by Dańıelsson and de Vries (2000)

(see Table 1). Standard errors are reported in parentheses. In brackets the p-values for the

hypothesis χ̄ = 1 are reported.
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Figure 1: Behavior of the Gaussian, Student’s t and empirical copula for extreme negative

returns. This figure presents the expected waiting time (in years) on the y-axis for the joint

occurrence of returns below thresholds (in %) on the x-axis. The expected waiting time is

calculated as the inverse of the joint probability. The basic thresholds are selected as those

returns with a marginal cumulative probability of 0.10, which gives -1.54% for stocks, -0.40% for

bonds and -0.81% for real estate. For each of the three categories, the corresponding subfigure

shows the expected waiting time if the corresponding threshold is reduced, while the others remain

at their basic level. We plot waiting times for the Gaussian (dotted), Student’s t (solid), Gumbel

(long dashed) and empirical (dashed, piecewise linear) copulas. The thick lines show the point

estimates, the thin lines show the 95% confidence intervals. The parameter estimates are reported

in Tables 1 and 2. The confidence intervals are based on 200 parameter drawings based on the

estimated Hessian matrix.
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