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Abstract. We investigate the optimal investment and consumption

choice of individual investors with uncertain future labor income operat-

ing in a financial market with stochastic interest rates. Since the present

value of the individual’s future income is a main determinant of the opti-

mal behavior and this present value depends heavily on the interest rate

dynamics, the joint stochastics of income and interest rates will have con-

sequences beyond the separate effects of stochastic income and stochastic

interest rates. We study both the case where income risk is spanned and

there are no portfolio constraints and the case with non-spanned income

risk and a constraint ruling out borrowing against future income. For the

spanned, unconstrained problem we study a special case in which we ob-

tain closed-form expressions for the optimal policies. For the unspanned,

constrained problem we implement a numerical solution technique and

compare the solutions to the spanned, unconstrained problem. We also

allow for typical life-cycle variations in labor income.

Keywords. Portfolio management, labor income risk, interest rate risk,

hedging, borrowing constraints, life-cycle



Dynamic Asset Allocation with Stochastic Income and

Interest Rates

1 Introduction

The household participation in financial markets creates a demand and a need for compe-

tent investment advice. The optimal investment strategy for a given individual will depend

both on market characteristics, such as the dynamics of asset prices and interest rates, and

on personal characteristics, such as risk aversion, time preference, and labor income. In this

paper we will study the optimal strategies when both interest rates and the labor income

rate of the individual are stochastic. Stochastic interest rates is the main source of shifts in

the investment opportunity set, and the effect of interest rate uncertainty on the optimal

strategies of an investor without labor income is by now relatively well-studied in the liter-

ature. There are also a number of studies of the effects of labor income uncertainty on the

optimal strategies, but they all assume constant investment opportunities. (References are

given below.) We argue and demonstrate in this paper that allowing jointly for stochastic

interest rates and labor income will affect the optimal investment strategy beyond the sep-

arate effects of stochastic income and stochastic interest rates. In addition, the expected

income rate in the near future is likely to depend on the interest rate level, which serves as

a good proxy of the overall well-being of the economy. High interest rates typically reflect

high growth rates of the economy which may lead to an upward pressure on wages, higher

bonuses, fewer lay-offs, etc.

We first set up a quite general model of the financial market in which the interest rate

dynamics is given by a one-factor model and several risky assets (bonds and stocks) are

traded. The consumer-investor is assumed to have a time-additive utility for consumption

exhibiting constant relative risk aversion and a risky labor income stream, which is correlated

with both the interest rate and the risky asset prices. We calibrate the model to actual data

on income and financial returns.

For the special case of the model, where the income risk can be fully hedged by appro-

priate financial investments and there are no portfolio constraints, we are able to obtain

closed-form expressions for the value of the labor income stream (i.e. human wealth) and

the optimal consumption and investment strategies, which allows us to perform a detailed

analysis. While it is well-known from the literature that the labor income increases the

optimal speculative investments due to a wealth effect, we show that the relative allocation

to bonds and stocks can be significantly affected by the presence of uncertain labor income
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for several reasons. First, bonds and stocks can be differently correlated with labor income

shocks so that bonds may be better for hedging income rate shocks than stocks or vice

versa. Second, risk-averse investors want to hedge total wealth against shifts in investment

opportunities. When the short-term interest rate captures the investment opportunities,

the appropriate asset for this hedging motive is the bond. Third, since human wealth is

defined as the discounted value of the future income stream, it will in general be sensitive

to the interest rate level like a bond and, hence, the income stream represents an implicit

investment in a bond, so that the explicit bond investment is reduced. As explained above,

the expected growth of labor income may itself be sensitive to the level of interest rates,

which will also affect hedging demand. We also give a detailed numerical analysis of this

special case, illustrating the sign and magnitudes of various portfolio components and their

sensitivity to key parameters. The optimal strategies will often involve extremely large posi-

tions in bonds and stocks and an extreme level of borrowing. In this unconstrained case, the

investor is even allowed to borrow against future labor income so that his financial wealth

in some situations will be negative.

The assumptions of spanned income and no portfolio constraints are certainly question-

able. It is generally believed that labor income risk is not fully insurable and, due to moral

hazard and adverse selection considerations, investors can only to a very limited extent bor-

row money using future income as implicit collateral. Introducing non-spanned income risk

and portfolio constraints, we must solve the utility-maximization problem by a numerical

method. We solve the dynamic programming equation associated with the problem with

a finite difference technique. We show in numerical examples that imposing the constraint

that financial wealth has to stay non-negative at all times reduces risk-taking considerably

but will still involve a high degree of borrowing and large positions in the bond and stock.

When we, in addition, prevent the individual from taking short positions (and hence from

borrowing at all), we see that the optimal portfolio will often consist of 100% in the stock,

but this result is sensitive to correlation parameters, the degree of risk aversion, and the

investment horizon.

Let us briefly review the relevant literature for this study. As first noted by Merton

(1971), long-term investors will generally hedge stochastic variations in the investment op-

portunity set, e.g. interest rates, excess returns, and volatilities. Several recent papers study

optimal investments in concrete settings with interest rate uncertainty. Sørensen (1999) and

Brennan and Xia (2000) consider interest rate dynamics as in the Vasicek (1977) model

and assume complete financial markets and constant market prices of both interest rate risk

and stock market risk. They find that the optimal investment strategy of an investor with

power utility of terminal wealth only is a simple combination of the mean-variance optimal

portfolio, i.e. the optimal portfolio assuming investment opportunities do not change, and
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the zero-coupon bond maturing at the end of the investment horizon. Liu (1999) provides

similar insight using the one-factor square-root model of Cox, Ingersoll and Ross (1985).

Furthermore, Liu shows that in a complete and “affine” market the appropriate interest

rate hedge instrument for an investor with a time-additive power utility of consumption is

some sort of coupon bond rather than a zero-coupon bond. Other studies of portfolio choice

with uncertain interest rates include Brennan, Schwartz, and Lagnado (1997), Campbell and

Viceira (2001), Detemple, Garcia, and Rindisbacher (2003), and Munk and Sørensen (2004).

None of these papers take into account a labor income stream of the investor, although labor

income is the main source of funds for most individuals.

On the other hand, several papers discuss how the presence of a labor income process af-

fects the consumption and investment decisions of individual investors, but all in the context

of constant financial investment opportunities. A deterministic income stream is equivalent

to an implicit investment in the riskless asset and, hence, it is optimal to invest a higher

fraction of financial wealth in the risky assets than in the no-income case; cf., e.g., Hakans-

son (1970) and Merton (1971). With stochastic income, but fully hedgeable income risk,

the optimal unconstrained strategies can be deduced from the optimal strategies without

labor income; see, e.g., Bodie, Merton, and Samuelson (1992). Duffie, Fleming, Soner, and

Zariphopoulou (1997), Koo (1998), and Munk (2000) study (mostly by use of numerical

methods) the valuation of income and the optimal consumption and investment strategies

of an infinite-horizon, liquidity constrained power utility investor with non-spanned income

risk. The presence of liquidity constraints can significantly decrease the individual’s im-

plicit valuation of the future income stream and, hence, dampen the quantitative effects of

income on portfolio choice. Other recent papers on consumption and portfolio choice with

stochastic income include Cocco, Gomes, and Maenhout (2005), Constantinides, Donaldson,

and Mehra (2002), El Karoui and Jeanblanc-Picqué (1998), He and Pagès (1993), Heaton

and Lucas (1997), and Viceira (2001). Besides working with constant investment oppor-

tunities, the concrete models with stochastic income in these papers assume a single risky

asset, interpreted as the stock market index. Since different risky assets will have different

correlations with the labor income of a given individual, this assumption is not without loss

of generality. In our numerical examples, we will have two risky assets, namely a stock and

a bond.

The outline of the rest of the paper is as follows. In Section 2 we set up the general

model of the financial market and specify the preferences and income of the individual.

Section 3 discusses the calibration of the model and the choice of benchmark parameter

values. Section 4 focuses on the case with spanned income uncertainty and unconstrained

investment strategies, where we derive, illustrate, and discuss the explicit solution to the

decision problem of an investor with constant relative risk aversion. In Section 5 we then turn
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to the case with unspanned income uncertainty and liquidity constraints on the investment

strategy, where again we provide relevant numerical examples. In Section 6 we study the

effects of introducing a realistic life-cycle pattern in expected income growth. Section 7 gives

some concluding remarks. The appendices contain proofs of propositions and lemmas and

also a detailed description of the numerical method applied in the solution of the problem

with unspanned income and liquidity constraints.

2 Description of the model

We model the intertemporal consumption and investment choice of a price-taking indi-

vidual who can trade in stocks and bonds and receives a stochastic stream of income from

non-financial sources, say labor income. We assume that the economy has a single perishable

consumption good which serves as a numeraire so that all asset prices, interest rates, and

income rates are specified in units of this good, i.e. in real terms.

2.1 Financial assets

We assume that the real short-term interest rate follows the Vasicek (1977) model,

drt = κ (r̄ − rt) dt− σr dzrt, (1)

where κ, r̄, and σr are positive constants, and zr = (zrt)t≥0 is a standard Brownian motion.

We also assume that the market prices of interest rate risk, λr, is constant. The price of a

zero-coupon bond paying one unit of account at some time T̄ is then given by

BT̄
t ≡ BT̄ (rt, t) = e−a(T̄−t)−b(T̄−t)rt , (2)

where

b(τ) =
1

κ

(

1 − e−κτ
)

, (3)

a(τ) = y∞[τ − b(τ)] +
σ2

r

4κ
b(τ)2, (4)

y∞ = r̄ +
σrλr

κ
− σ2

r

2κ2
. (5)

Here y∞ is the limit of the yield of a zero-coupon bond as maturity goes to infinity, i.e. the

asymptotic long rate.

Any desired interest rate exposure can be obtained by combining deposits/loans at the

short-term interest rate (interpreted as cash or the bank account) and a single default-free
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real bond.1 The dynamics of the price Bt of such a bond is given by

dBt = Bt [(rt + σB(rt, t)λr) dt+ σB(rt, t) dzrt] , (6)

where σB(rt, t) > 0 is the bond price volatility, which will generally depend on both the

interest rate level and the time-to-maturity and hence on time. However, for a zero-coupon

bond the volatility is σrb(T̄ − t), which depends on the time-to-maturity T̄ − t, but not on

the interest rate level. The bond price has a perfectly negative (instantaneous) correlation

with the interest rate, ρBr = −1.

In addition to the bond, we assume that agents can invest in stocks. In the general

analysis we will allow agents to trade in n stocks. The price of stock i at time t is denoted

by Sit and is assumed to evolve as

dSit = Sit



(rt + ψi) dt+ σi



ρiB dzrt +

i
∑

j=1

kij dzjt







 , i = 1, . . . , n, (7)

where zSt = (z1t, . . . , znt)
⊤ is an n-dimensional standard Brownian motion independent of

zrt, ψi is the constant expected excess return, σi is the constant volatility, and ρiB = −ρir

is the constant correlation between stock i and the bond. Finally, the constants kij will

determine the correlations between the n stocks.2 We gather the dynamics of stock prices

in vector form as

dSt = diag(St) [(rt1n + ψ) dt+ diag(σS) {ρSB dzrt +K dzSt}] , (8)

where diag(x) means the diagonal matrix with the vector x along the diagonal, 1n is an

n-dimensional vector of ones, K is the lower triangular matrix [kij ], and we have introduced

the vectors ψ = (ψ1, . . . , ψn)⊤, σS = (σ1, . . . , σn)⊤, and ρSB = (ρ1B , . . . , ρnB)
⊤

. Note that

in order to focus on the effects of combining stochastic labor income and stochastic interest

rates, we have chosen to assume constant expected excess returns and volatilities on the

stocks, despite ample evidence that these quantities vary over the business cycle.

To simplify some of the following expressions, we introduce the vector Pt = (Bt, St)
⊤ of

prices of all n+ 1 risky assets. By combining the dynamics of Bt and St, we get

dPt = diag(Pt) [(rt1n+1 + Σ(rt, t)λ) dt+ Σ(rt, t) dzt] , (9)

1We assume that real, i.e. inflation-indexed, bonds are traded. Brennan and Xia (2002) and Munk,

Sørensen, and Vinther (2004) study how real interest rate risk affects optimal investments when the traded

bonds are nominal.

2The correlation between stock i and stock l (with i ≤ l) is ρil = ρiBρlB +
∑i

j=1
kijklj . Since ρ11 = 1, we

must have k11 =
√

1 − ρ2
1B

. We have ρ12 = ρ1Bρ2B+k11k21 implying that k21 = (ρ12−ρ1Bρ2B)/
√

1 − ρ2
1B

.

Since 1 = ρ22 = ρ2
2B

+ k2

21
+ k2

22
, we can then conclude that k22 =

√

1 − ρ2
2B

− k2

21
. Continuing this way,

we can express all the kij constants in terms of the correlations between the individual stocks and the

correlations between the stocks and the bond.
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where z = (zr, zS)⊤ and Σ(rt, t) is the (n+ 1) × (n+ 1) matrix

Σ(rt, t) =





σB(rt, t) 0

diag(σS)ρSB diag(σS)K



 .

Furthermore, λ = (λr, λS)⊤ where λS = (λ1, . . . , λn)⊤ is the n-dimensional vector

λS = K−1
[

diag(σS)−1ψ − ρSBλr

]

.

The vector λ has the interpretation as the market price of risk vector. For example, λi is

the excess expected return per unit volatility on an asset which is only sensitive to zi and

not to any other random shocks.

2.2 The preferences and labor income of the individual

We assume throughout the paper that the individual has a time-additive utility function

of consumption ct and possibly terminal wealth WT and seeks to maximize

E

[

∫ T

0

e−δtU(ct) dt+ εe−δTU(WT )

]

,

where T is the time of death, assumed non-random, and ε is a 0-1 parameter indicating

whether or not the individual has utility from leaving wealth to her heirs. Throughout the

paper we use a power utility function

U(c) =
1

1 − γ
c1−γ ,

where γ > 0 is the constant relative risk aversion.

We set up a relatively simple model of income that is tractable and allows us to focus on

the interaction between stochastic income and stochastic interest rates. We assume that the

individual receives a continuous stream of non-negative income from non-financial sources

throughout her life. The income rate at time t is denoted by yt. We assume that yt evolves

as3

dyt = yt

[

(ξ0(t) + ξ1rt) dt+ σy(t)

{

ρ⊤

yP dzt +
√

1 − ‖ρyP ‖2 dzyt

}]

, (10)

where zy = (zyt) is a one-dimensional standard Brownian motion independent of zr and zS .

The constant vector ρyP is defined as (ρyB , ρ̂yS)⊤, where ρyB = −ρyr is the instantaneous

correlation between the income rate and the bond price, and the vector ρ̂yS is given by

ρ̂yS = K−1 (ρyS − ρSBρyB), where ρyS is the vector of correlations between the income rate

and the stocks and the other terms have been defined above. If ‖ρyP ‖2 = 1, the income rate

3As most authors, we have modeled the income stream as an exogenously given process. Of course, in

real life the individual can affect her labor income to some extent by choice of education and effort. To avoid

further complications of the model we do not endogenize the labor supply decision. We refer the reader to

Bodie, Merton, and Samuelson (1992) and Chan and Viceira (2000).
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is spanned, i.e. only sensitive to the traded risks represented by z. If that is the case, and

there are no portfolio constraints, the income process can be replicated by some dynamic

trading strategy of the traded assets and hence valued as a traded asset.

The income process have the following features:

• The percentage drift ξ0(t) + ξ1rt and volatility σy(t) are allowed to depend on time

in order to reflect the empirically relevant variations in expected income growth and

uncertainty over the life of an individual, cf. e.g. Hubbard, Skinner, and Zeldes (1995)

and Cocco, Gomes, and Maenhout (2005).

• In contrast to other studies, we allow the drift to depend on the interest rate in order to

incorporate the plausible link between the expected growth in income and the overall

well-being of the economy.

• For simplicity, we ignore retirement and assume that y describes the income rate until

time T .

• Our model does not allow for jumps in income, although jumps reflecting for example

lay-offs may be relevant. Results of Cocco, Gomes, and Maenhout (2005) indicate that

even a small probability of a large sudden income reduction may substantially affect

portfolio choice. However, for many individuals the possible unemployment periods

are likely to be rather short and in many countries individuals can partly insure against

temporary income losses due to unemployment. Hence, it may not be that important

to explicitly allow for large drops in income.

• Several empirical studies suggest a link between expected excess stock returns and

the expected growth and riskiness of labor income (see for example Jagannathan and

Wang (1996), Julliard (2004), and Storesletten, Telmer, and Yaron (2004)), but we

will not address the potential implications for portfolio choice in this paper.

2.3 Optimal strategies

The individual is to choose a consumption strategy c = (ct) and an investment strategy

θ = (θt). Here ct is the rate at which goods are consumed at time t with the natural

requirement that ct ≥ 0 at all times and in all states of the economy. Furthermore, θt is

a vector (θBt, θSt)
⊤ of the amounts (i.e. units of the consumption good) invested at time t

in the bond and the n stocks. With Wt denoting the financial wealth of the investor at

time t, the amount invested in the bank account (held in “cash”) is residually determined

as θ0t = Wt − θBt − θ⊤

St1n. Given a consumption strategy c and an investment strategy θ,

the financial wealth of the individual Wt evolves as

dWt = (rtWt + θ⊤

t Σ(rt, t)λ− ct + yt) dt+ θ⊤

t Σ(rt, t) dzt. (11)
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The consumption and investment strategies must satisfy some technical conditions for the

wealth process to be well-defined. If there are no other restrictions on the strategies (except

ct ≥ 0) we denote by Aunc
t the set of admissible consumption and investment strategies (c, θ)

over the time interval [t, T ]. We will also consider the case where it is not possible for the

individual to borrow funds using future income as collateral so that her financial wealth Wt

must stay non-negative at all times and in all states of the world.4 In a continuous-time

setting this is implemented by requiring that whenever the financial wealth hits zero, the

investor must eliminate her positions in bonds and stocks. After she have received labor

income, she may again enter the markets for risky securities. We denote the set of admissible

strategies with this constraint by Acon
t .

The indirect utility function of the individual is defined as

J(W, r, y, t) = sup
(c,θ)∈At

Et

[

∫ T

t

e−δ(s−t)U(cs) ds+ εe−δ(T−t)U(WT )

]

, (12)

where the expectation is computed given the values of W, r, y at time t and given the strategy

(c, θ). The set At is either equal to Aunc
t or Acon

t . With the assumed CRRA utility function

the marginal utility is infinite at zero consumption so that the non-negativity constraint on

consumption is not binding. The Hamilton-Jacobi-Bellman (HJB) equation associated with

this dynamic optimization problem is

δJ = sup
c,θ

{

U(c) + Jt + JW (rW + θ⊤Σλ− c+ y) +
1

2
JWW θ⊤ΣΣ⊤θ

+ Jrκ[r̄ − r] +
1

2
Jrrσ

2
r + Jyy(ξ0 + ξ1r) +

1

2
Jyyy

2σ2
y

− JWrθ
⊤Σe1σr + JWyyσyθ

⊤ΣρyP + Jryyρyrσyσr

}

,

(13)

where e1 = (1,0n)⊤, subscripts on J denote partial derivatives, and we have suppressed the

arguments of the functions for notational simplicity. The terminal condition is J(W, r, y, T ) =

εU(W ) = εW 1−γ/(1 − γ).

The first-order condition for consumption is the standard envelope condition

U ′(ct) = JW (Wt, rt, yt, t) ⇒ ct = [JW (Wt, rt, yt, t)]
−1/γ

. (14)

For the unrestricted investment case the first-order condition for the portfolio θ implies that

θt = − JW

JWW
(Σ(rt, t)

⊤)
−1
λ− JWy

JWW
yσy(t) (Σ(rt, t)

⊤)
−1
ρyP +

JWr

JWW

σr

σB(rt, t)
e1. (15)

The first part corresponds to the standard mean-variance optimal portfolio, the second part

is a hedge against changes in the income rate, while the third part is a hedge against changes

4This “hard” borrowing constraint is standard in the literature. A recent paper by Davis, Kubler, and

Willen (2003) studies the portfolio choice under a “soft” borrowing constraint that allows individuals to

borrow even with a negative current wealth although at a rate higher than the riskless interest rate. Their

study assumes constant interest rates. To focus on the interaction between stochastic interest rates and

stochastic labor income we stick to the “hard” borrowing constraint, which is easier to handle.
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in the interest rate. The income hedge term reflects a position in the portfolio with relative

weights given by (Σ(rt, t)
⊤)

−1
ρyP /1

⊤

n+1 (Σ(rt, t)
⊤)

−1
ρyP . This is the portfolio with the

maximal absolute correlation with the income rate of the individual, cf. Ingersoll (1987,

Ch. 13). This maximal correlation equals ‖ρyP ‖ so if the income rate is spanned, this

correlation will equal 1. Since the bond price is perfectly negatively correlated with the

interest rate, the interest rate is hedged by a position in the bond only. In contrast, the

income hedge and the mean-variance terms generally involve all risky assets. The remaining

wealth, Wt − θ⊤

t 1n+1, is invested in the bank account. In Section 4 we consider the case

where the income rate is spanned, which – given our other assumptions – allows the optimal

strategies to be computed in closed form.

3 Calibration of parameters

In the calibration of income parameters, we apply modeling ideas from the discrete-

time settings of Cocco, Gomes, and Maenhout (2005) and Campbell and Viceira (2002) and

decompose log-income into a personal component and a common component, so that the

income of individuals with characteristics i is given by

log yi
t = P i(t) + log yc

t (16)

where the personal component P i(t) reflects the expected life-cycle income of individuals

with characteristics i. The dynamics of the common income component are described by an

income process of the form in (10), but with constant parameters, ξ0(t) = ξ̄0 and σy(t) = σy.

In order to adopt estimation results from Cocco, Gomes, and Maenhout (2005) and

Campbell and Viceira (2002), we will in our calibration approach assume that the personal

income component P i(t) is deterministic and described by a third-order polynomial in time

(age),

P i(t) = ai + bit+ cit2 + dit3

where ai, bi, ci, and di are constant parameters. The polynomial form of P i(t) only applies

for age 20 until 65 (years). In the discrete-time framework of Cocco, Gomes, and Maen-

hout (2005), it is thus assumed that the retirement income level for age 66 and higher is

proportional to the income level at age 65 with a replacement rate, P̄ i. We will adopt this

form, and in our continuous-time setting we simply linearly interpolate the income level

in the one-year period between age 65 and age 66. Cocco, Gomes, and Maenhout (2005)

use Panel Study on Income Dynamics (PSID) data to estimate labor income as a function

of age and other characteristics. In our numerical analysis of life-cycle allocations, we will

adopt their estimated third-order polynomial structures and replacement rates for groups

characterized by three different educational backgrounds: “No High school”, “High school”,

and “College”. The polynomial life-cycle income profiles are illustrated in Figure 1, and the
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polynomial coefficients used in the figure are reproduced from Cocco, Gomes, and Maenhout

(2005) in Table 1.

[Figure 1 about here.]

[Table 1 about here.]

With the above decomposition and assumptions, it can be inferred (by an application of

Ito’s lemma) that the individual income process is of the form in (10) with,

ξ0(t) = ξ̄0 +
dP i(t)

dt
= ξ̄0 +



















bi + 2cit+ 3dit2 if 20 ≤ t ≤ 65

−(1 − P̄ i) if 65 < t < 66

0 if t ≥ 66

(17)

We take the income rate volatility to be σy(t) = 0.10 for t ≤ 65 and σy(t) = 0 for t ≥ 65.

In order to estimate parameters of the common component of labor income as well as

correlations and parameters of real interest rates and stock prices, we consider the case with

only a single stock. The relevant dynamics are described by the real interest rate dynamics

in (1), the single-stock special case of (8), and an income process of the form in (10) with

ξt(t) = ξ̄0 and constant income volatility σy. Let Yt = (log yc
t , logSt, rt)

′, then the relevant

dynamics can be summarized by the linear stochastic differential equation,

dYt = (A+BYt)dt+ V dẑt (18)

where

A =











ξ̄0 − 1
2σ

2
y

ψ − 1
2σ

2
S

κr̄











, B =











0 0 ξ1

0 0 1

0 0 −κ











, V V ′ =











σ2
y ρySσyσS ρyrσyσr

ρySσyσS σ2
S ρSrσSσr

ρyrσyσr ρSrσSσr σ2
r











,

and ẑt is a three-dimensional standard Brownian motion. The discrete-time solution to the

linear stochastic differential equation in (18) is a discrete-time VAR(1)-model of the form

Yt+∆ = A(Ψ,∆) +B(Ψ,∆)Yt + ǫ̃t+∆, ǫ̃t+∆ ∼ N(0,Ω(Ψ,∆)) (19)

where Ψ = (ξ̄0, ξ1, ψ, κ, r̄, σy, σS , σr, ρyS , ρyr, ρSr) denotes the set of parameters to be esti-

mated. The functions A(Ψ,∆), B(Ψ,∆), and Ω(Ψ,∆) can be obtained in closed-form using

the general solution formula for linear stochastic differential equations (see, e.g., Karatzas

and Shreve (1988, pp. 354-357)).

The VAR(1)-model in (19) is estimated by maximum likelihood using quarterly US data

which span the period from 1951 until 2003.5 The total number of observation time points is

5The numerical maximum likelihood estimation is carried out using the software program GAUSS. How-

ever, in evaluating the relevant first and second order moments we used the analytical evaluation tools in

the software program Mathematica and pasted the relevant analytical results into the GAUSS program.
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208. The per capital income data was obtained from the Personal Income and Its Disposition

NIPA table of the National Economic Accounts. The income data is the per capita disposable

personal income after personal current taxes and subtracted personal income from financial

assets. The cum dividend stock returns are constructed using quarter-end values of the S&P

500 index over the period while the S&P 500 dividends and the CPI-index data are adopted

from Shiller (2000); the updated data were downloaded from Robert Shiller’s homepage. All

income and stock prices are in real terms (using the CPI-index as deflator). Real interest

rates are constructed by subtracting an estimate of the inflation rate from the 3-month

nominal interest rate. The subtracted inflation rate is obtained as the average realized

inflation rate in the last four quarters relative to the same quarters one year earlier. The

applied data is illustrated in Figure 1 where the income index and the stock index are scaled

so that they start out in one in 1951 (and zero for the logarithmic value).

[Figure 2 about here.]

The estimated parameters values are displayed in Table 2 together with our chosen

benchmark parameters for the subsequent numerical analysis. Our benchmark parameters

are chosen close to the estimated values (in most cases the benchmark parameters are just

rounded off). Some parameters are chosen to be similar or comparable to those applied by,

e.g., Campbell and Viceira (2002) who use ψ = 4% and a real interest rate level of 2%. The

volatility in the per capita log-income process is estimated at 2.08%, but our benchmark

parameter value is set significantly higher at 10%. This choice is motivated by results based

on household level data that indicate that individual income volatility is at least at this

level.6

Individual income may be more or less correlated with basic macro economic values such

as real interest rates and stock returns, but we choose correlations close to the estimated

values for per capita income as our benchmark parameter values. Other authors have pre-

viously estimated correlations between labor income and stock market returns. Davis and

Willen (2000) find that – depending on the individuals sex, age, and educational level –

the correlation between aggregate stock market returns and labor income shocks is between

-0.25 and 0.3, while the correlation between industry-specific stock returns and labor income

shocks is between -0.4 and 0.1. Campbell and Viceira (2002) report that the correlation be-

tween aggregate stock market returns and labor income shocks is between 0.328 and 0.516.

Heaton and Lucas (2000) find that the labor income of entrepreneurs typically is more highly

correlated with the overall stock market (0.14) than with the labor income of ordinary wage

6For example, the estimates presented in Cocco, Gomes, and Maenhout (2005) and Campbell and Viceira

(2002), among others, suggest a permanent income volatility slightly above 10% (for all three educational

groups) as well as transitory income volatility components of the magnitude 25%. Our model of income

dynamics include basically only shocks of the permanent type.
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earners (-0.07). In all our numerical experiments we will assume that individuals invest in

only one stock, representing the stock market index. While a broad stock market index is

clearly less than perfectly correlated with individual labor income, it is to be expected that

a larger fraction of the income rate variations can be hedged using multiple risky assets,

but we have no information about the typical correlations between a labor income stream

and individual stocks–and hence we really do not know how large a fraction of the risk of a

typical labor income stream that can be hedged in the financial markets.7

Our estimation approach does not involve the risk premium on real interest rate risk, but

our benchmark parameter value is set to λr = 0. This value is not far from the about 1%

historical excess return on longer-term nominal bonds which is usually reported in empirical

studies; see, e.g., Dimson, Marsh, and Staunton (2002). The long-term yield is then 1.92%,

the yield curve is increasing if the current short rate is below 1.88%, decreasing if the current

short rate exceeds 2%, and humped for intermediary values. The steady state distribution

of r has a standard deviation of 0.02 (and a mean equal to r̄, of course). The interest rate

risk in our model can be hedged with a single bond, which in our numerical examples is

taken to be a 10-year (real) zero-coupon bond. With the benchmark parameters, this bond

will have an expected rate of return equal to the short-term interest rate and a volatility of

σB = 0.03973.

In many of our numerical experiments we will focus on issues that do not require life-cycle

income considerations. In these numerical examples, we take ξ1 = 0 as the benchmark and

choose the income parameter function ξ0(t) as a constant equal to 4%. This choice reflects a

general increase in real income of about 2% due to common real income growth (as reflected

in the estimated value of ξ̄0) and an about 2% expected increase in income for relatively

younger individuals due to getting working experience and competence (as reflected in the

slope of the life-cycle income profiles in Figure 1 for relatively young investors). However, it

may be noted that ξ1 is estimated with relatively large error and close to zero. ξ1 describes

how expected income growth is related to the real interest level, and there is thus no clear

empirical relationship in our framework. Our estimations, however, also indicated that the

parameter estimates of ξ1 and ρyr are negatively correlated. If, for example, ρyr is fixed

at zero, then ξ1 is estimated significantly positive at around 0.25. We will also provide

numerical examples with a non-zero ξ1 so that the income drift varies with the interest rate

7Allowing for multiple stocks may “help” as indicated by a small example. Assume n stocks that are

similar in the sense that they have identical expected rates of return ψi, identical volatilities σi, identical

correlations ρiB with the bond, identical correlations ρyi with the labor income rate, and all pairwise stock-

stock correlations are equal to ρ. Then the income process is spanned whenever

(ρyi − ρiBρyB)2 =
(

1 − ρ2yB

)

(

1 − ρ

n
+ ρ− ρ2iB

)

.

The value of ρyi for this equation to hold is decreasing in n, the number of stocks.
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level. For a given ξ1, we will then pick ξ0 so that the income drift will be 0.04 whenever

the interest rate is equal to its long-term level, i.e. we assume that ξ0 + ξ1r̄ = 0.04. For a

positive ξ1, this implies that the expected income growth rate is above [below] 4% for higher

[lower] than average interest rates. In Section 6 we study the effects of introducing a realistic

life-cycle pattern in expected income growth by allowing for time-dependence in ξ0.

[Table 2 about here.]

4 Spanned income and no investment constraints

In this section we assume that the income stream is fully spanned by the traded assets,

i.e. that ‖ρyP ‖ = 1, and that there are no other constraints on the optimal strategies of the

consumer-investor. In our numerical examples, we take the benchmark parameter values as

discussed in Section 3, except that we have to restrict ourselves to the case where the income

process is spanned by the financial assets. For a fixed value of the stock-bond correlation

ρSB , the combinations of the stock-income and the interest rate-income correlation which

ensures spanning satisfy the relation

ρyS + ρSBρyr = ±
√

(1 − ρ2
yr)(1 − ρ2

SB). (20)

With the benchmark value ρSB = 0, the points (ρyr, ρyS) satisfying (20) trace out the circle

shown in Figure 3. Clearly, any combination of correlations on the circle will be far from

the correlation values reported in Section 3. We consider different combinations where the

correlations have the same absolute values, which must then be 1/
√

2 ≈ 0.7071, and either

the same sign or opposite signs, i.e. ρyr, ρyS ∈ {−0.7071,+0.7071}.

[Figure 3 about here.]

4.1 Human wealth

Since the income process is spanned, it can be valued as the dividend stream from a

traded asset. The market value at time t of the income stream over the time period [t, T ] is

H(y, r, t) = EQ
t

[

∫ T

t

yse
−
∫

s

t
rv dv ds

]

, (21)

where Q denotes the unique risk-neutral probability measure. We can think of the individual

selling the remaining income stream for the amount H(y, r, t), her “human wealth.” As

described below the optimal strategies can in this case be derived from the optimal strategies

for the case without income but with a financial wealth of Wt +H(yt, rt, t) instead of just

Wt. Under our assumptions on the dynamics of the labor income rate and the short-term
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interest rate, we are able to derive an explicit expression of the human wealth as shown in

the following proposition. The proof is given in Appendix A.8

Proposition 1 Under the assumptions above, the human wealth is given by

H(y, r, t) = yM(r, t) ≡ y

∫ T

t

h(t, s) (Bs(r, t))
1−ξ1 ds, (22)

where

lnh(t, s) =

∫ s

t

(

ξ0(u) − σy(u)ρ⊤

yPλ− (ξ1 − 1)ρyBσrσy(u)b(s− u)
)

du

+ ξ1(ξ1 − 1)
σ2

r

2κ2

(

s− t− b(s− t) − κ

2
b(s− t)2

)

(23)

with the function b given by (3).

Due to the assumed income rate process, the human wealth is separated as the product

of the current income rate, y, and a multiplier, M(r, t), depending only on the interest rate

and time.

Figure 4 shows the income multiplier, M(r, 0), as a function of the time horizon, T , for

the four different combinations of the two income-asset correlation parameters.9 Firstly,

note the magnitude of the values of the multiplier. For young individuals, the current labor

income may be relatively small, but the present value of all future labor income can be 100

times higher so that the human wealth may very well be much, much higher than the current

financial wealth. This is certainly relevant to take into account when planning your life-cycle

consumption and investment strategies. Secondly, it is obvious that the value of the income

stream depends on the correlations with the traded financial assets. In particular, the human

wealth is considerably higher for an income stream which is negatively correlated with the

stock market, than for an income stream of a similar magnitude, but positively correlated

with the stock market. If the correlation is positive [negative], the future expected income

is discounted at a rate higher [lower] than the risk-free rate. With a positive correlation

between the short-term interest rate and the income rate, the income tends to be high when

the discount rate is high, which lowers the present value of the income.

[Figure 4 about here.]

Figure 5 illustrates the relation between the income multiplier, M(r, 0), and the current

interest rate, r, for an individual with a 30-year horizon for different combinations of the

income drift parameters (ξ0, ξ1) so that ξ0 + ξ1r̄ = 0.04. The graphs are generated using

8Given (2), the human wealth expression in (22) can also be written in the exponential-affine form

H(y, r, t) =
∫ T

t
exp{A0(t, s) + A1(t, s)r + A2(t, s) ln y} ds. This is the case in any setting where the risk-

neutral dynamics of rt and ln yt are affine; c.f., e.g., Duffie, Pan, and Singleton (2000). We focus on a

non-trivial case where the functions A0, A1, A2 can be stated in closed form (involving some simple integrals).

9Integrals are computed numerically using Romberg’s method of order 10.
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ρyr = ρys = 0.7071, but the picture is very similar for the other combinations of income-

asset correlations. As long as ξ1 < 1, human wealth is a decreasing, convex function of the

current short-term interest rate. We see that the human wealth varies considerably with the

interest rate except for the case where ξ1 = 1 for which the positive relation between the

income growth rate and the interest rate exactly offsets the discounting effect. We also see

that the exact decomposition of the expected income growth rate into a constant part and

an interest rate related part does affect the capitalized value of the income process. For the

case where ξ1 = 0 so that the income rate drift is independent of the interest rate level, we

see from (22) that the human wealth equals the value of a bond paying continuous coupons

of size h(t, s) at time s. Note that this coupon can be interpreted as an appropriately risk-

adjusted expected income rate at time s. For general ξ1, we can similarly interpret the

human wealth as the value of a sort of flexible-rate continuous coupon bond with the time s

coupon given by h(t, s)(Bs(r, t))−ξ1 , which is increasing in the interest rate as long as ξ1 is

positive. For interest rates around the long-term level of 2%, the human wealth is relatively

insensitive to the decomposition of expected income. This is partly due to the high value

of the mean reversion parameter κ, which implies that the interest rate is pulled quickly

towards the long-term level.

[Figure 5 about here.]

In a model with constant interest rates and a single risky asset whose price is perfectly

positively correlated with labor income, human wealth will be decreasing in the volatility

of the income rate. As we can see from (22), this can be different in our model with two

risky assets depending on the precise correlation parameters, the market prices of risk,

and also the value of the income growth parameter ξ1. Figure 6 illustrates the relation

between the 30-year income multiplier, M(r, 0), and the income rate volatility, σy, for the

four different combinations of the values of the two income-asset correlations. In the two

cases with a negative stock-income correlation, the human wealth is in fact positively related

to the income uncertainty, but this can also happen in cases with a positive stock-income

correlation. The figure also illustrates that the precise value of the income rate volatility

can be quite important for the human wealth.

[Figure 6 about here.]

15



4.2 Optimal strategies

4.2.1 Derivation

With time-additive CRRA utility it is well-known that indirect utility function with

wealth Wt and no income is then of the form

V (W, r, t) =
1

1 − γ
g(r, t)γW 1−γ ,

where g(r, t) is a function that depends on the remaining investment horizon (and hence on

time) and the risk aversion parameter γ; see, e.g., Ingersoll (1987, Ch. 13). With Vasicek

interest rate dynamics, the function g(r, t) can be computed explicitly, cf. Liu (1999) and

Sørensen (1999). With a spanned income rate and no portfolio constraints, we can think

of the individual having an initial financial wealth of Wt +H(yt, rt, t) and no labor income

instead of having initial wealth Wt and the income stream.10 Under the assumptions of this

section, we therefore have that the indirect utility function with labor income is given by

J(W, r, y, t) = V (W +H(y, r, t), r, t). (24)

From the value function the optimal consumption and investment strategies can be derived

from (14) and (15). We summarize the solution in the following proposition.

Proposition 2 Under the assumptions stated above, the indirect utility function is given by

J(W, r, y, t) =
1

1 − γ
g(r, t)γ (W +H(y, r, t))

1−γ
, (25)

where the function g(r, t) is defined by

g(r, t) =

∫ T

t

f(s− t) (Bs(r, t))
γ−1

γ ds+ εf(T − t)
(

BT (r, t)
)

γ−1

γ

with f(τ) defined by

ln f(τ) =

(

− δ

γ
+

1 − γ

2γ2
‖λ‖2

)

τ +
1 − γ

γ2

(

(r̄ − y∞) (τ − b(τ)) − σ2
r

4κ
b(τ)2

)

.

The optimal consumption rate is

ct =
Wt +H(yt, rt, t)

g(rt, t)
, (26)

while the optimal allocation of financial wealth is determined by

θt =
1

γ
(Wt +H(yt, rt, t)) (Σ(rt, t)

⊤)
−1
λ− ytHy(yt, rt, t)σy(t) (Σ(rt, t)

⊤)
−1
ρyP

+

(

Hr(yt, rt, t) −
gr(rt, t)

g(rt, t)
(Wt +H(yt, rt, t))

)

σr

σB(rt, t)
e1.

(27)

10Bodie, Merton, and Samuelson (1992) apply this idea in the case of constant investment opportunities.
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Note that there are two reasons to hedge changes in the interest rate, as reflected by the

two parts in the parenthesis in the last term of θt in (27). Firstly, interest rates determines

the future investment opportunity set leading to a hedge demand determined by the ratio

gr/g. Secondly, interest rates affect the capitalized value of future income, both through

discounting effects and through the possible dependence of the income rate process on the

interest rate. This is captured by the Hr part. The terms in the expression for θt that

involve H compensate exactly for the dynamics of the human wealth, since by Itô’s Lemma

dH(yt, rt, t) = . . . dt+Hy(yt, rt, t)ytσy(t)ρ⊤

yP dzt −Hr(yt, rt, t)σr dzrt.

The percentage volatility vector of the total wealth Wt +H(yt, rt, r) is therefore

1

γ
λ− gr(rt, t)

g(rt, t)
σre1,

just as for the case without income. The intuition is that a CRRA investor will deter-

mine her investment strategy in order to obtain a given percentage volatility vector of total

wealth. This desired volatility vector is independent of how the total wealth is comprised

by financial wealth and human wealth. In other words, the consumer-investor computes her

optimal investment of total wealth and then corrects the investment strategy for the implicit

investment that the income stream represents.

In the problem without labor income, the optimal strategies are such that wealth stays

positive with probability one. By analogy, the optimal strategies for the problem with labor

income ensure that total wealth stays positive with probability one. However, financial

wealth in itself may very well go negative in some situations. For positive values of financial

wealth it makes sense to talk of portfolio weights, i.e. the fractions of financial wealth invested

in the different assets. Investment strategies are usually stated in such portfolio weights.

We denote portfolio weights by π = θ/W . Using (22), we get from (27) that the optimal

portfolio weights are

πt =
1

γ

(

1 +
yt

Wt
M(rt, t)

)

(Σ(rt, t)
⊤)

−1
λ− yt

Wt
M(rt, t)σy(t) (Σ(rt, t)

⊤)
−1
ρyP

+

(

yt

Wt
Mr(rt, t) −

gr(rt, t)

g(rt, t)

(

1 +
yy

Wt
M(rt, t)

))

σr

σB(rt, t)
e1

=
1

γ

(

1 +
yt

Wt
M(rt, t)

)

(Σ(rt, t)
⊤)

−1
(λ− γσy(t)ρyP ) + σy(t) (Σ(rt, t))

−1
ρyP

+

(

yt

Wt
Mr(rt, t) −

gr(rt, t)

g(rt, t)

(

1 +
yy

Wt
M(rt, t)

))

σr

σB(rt, t)
e1.

(28)

It is now clear that the optimal portfolio weights do not depend on current financial wealth

and labor income separately but only through the wealth-to-income ratio.

Using (26), we see that the propensity to consume out of wealth and the propensity to

consume out of current income, respectively, are given by

ct
Wt

=
1 + yt

Wt
M(rt, t)

g(rt, t)
,

ct
yt

=

Wt

yt
+M(rt, t)

g(rt, t)
, (29)
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which also depend on the wealth-income ratio. As expected, the propensity to consume out

of income, ct/yt, is increasing in the wealth-income ratio and the expected income growth

rate and decreasing in the current income rate, while the dependence on the income volatility,

the risk aversion coefficient, the investment horizon, and the interest rate level is parameter

specific.

Below we study the optimal investment strategy in more detail. For notational simplicity

we assume that the individual has no utility from terminal wealth (i.e. ε = 0). After that

we will look at numerical examples.

4.2.2 Optimal bond allocation

Obviously, the optimal demand for bonds depends on the ratio gr/g. A straightforward

computation shows that
gr(r, t)

g(r, t)
=

1 − γ

γ
G(r, t), (30)

where the function G(r, t) is defined by

G(r, t) =

∫ T

t
b(s− t)f(s− t) (Bs(r, t))

γ−1

γ

∫ T

t
f(s− t) (Bs(r, t))

γ−1

γ ds
. (31)

Note that G(r, t) is positive so that the ratio gr/g is positive [negative] if the risk aversion

parameter γ is smaller [greater] than 1, the risk aversion parameter of a log utility investor.

The following lemma gives two additional characteristics of the function G which will be

important for the discussion of the optimal bond demand. Appendix B contains the proof.

Lemma 1 The function G(r, t) defined by (31) has the following properties:

(a) G(r, t) is increasing in T ,

(b) G(r, t) is decreasing in r if γ > 1 and increasing in r if γ < 1.

The optimal bond demand at time t can be decomposed as

θBt = θspec
Bt + θ

(1)
Bt + θ

(2)
Bt + θ

(3)
Bt , (32)

where

θspec
Bt =

1

γσB
(Wt +Ht)

[(

λr − ρ⊤

SBK
−1λS

)]

(33)

θ
(1)
Bt =

(

1 − 1

γ

)

σr

σB
(Wt +Ht)G(rt, t), (34)

θ
(2)
Bt = −Hσy(t)

σB

(

ρyB − ρ⊤

SBK
−1ρ̂yS

)

(35)

θ
(3)
Bt = (ξ1 − 1)

σr

σB
y

∫ T

t

b(s− t)h(t, s) (Bs)
1−ξ1 ds. (36)
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The bond demand consists of a speculative demand θspec
Bt and three hedge demands θ

(1)
Bt ,

θ
(2)
Bt , and θ

(3)
Bt . In the case with no income, the last two hedge demand terms disappear and

H = 0 in the speculative term and the first hedge term. The first hedge term represents

a hedge against the changes in the investment opportunity set generated by the varying

interest rates. This hedge demand is positive for a “conservative” investor (γ > 1), but

negative for an “aggressive” investor (0 < γ < 1). This effect is well-studied in the literature

cited in the introduction. The second hedge term shows the contribution of the bond in the

hedge of current shocks to the income rate. The sign of this term depends on the pairwise

correlations between income, bond, and stocks. For example, with only one stock we get

θ
(2)
Bt = −H σy(t)

σB

ρyB−ρySρSB

1−ρ2

SB

. If ρyB = −ρyr is sufficiently negative, the bond is an effective

hedge instrument against shocks to the income rate, inducing a larger investment in the

bond. The third hedge term is due to the interest rate sensitivity of the capitalized labor

income. Whenever ξ1 < 1, this term is negative implying a reduction in the bond demand.

If ξ1 < 1, the capitalized labor income is decreasing in the interest rate level, just as the

bond, so the capitalized labor income can partly substitute the bond investment. Hence,

the last term reinforces the negative hedge demand for the bond of an aggressive investor,

while for a conservative investor it will reduce the positive hedge demand for the bond.

Next, we investigate the relations between the optimal bond allocation and the interest

rate level, the time horizon, and the risk aversion of the individual. The derivative of θBt

with respect to T is

∂θBt

∂T
= −1 − γ

γ
(W +H)

σr

σB

∂G

∂T
+
yh(t, T )

σB

(

BT
)1−ξ1

[

1

γ

(

λr − ρ⊤

SBK
−1λS

)

− 1 − γ

γ
σrG− σy(t)

(

ρyB − ρ⊤

SBK
−1ρ̂yS

)

+ (ξ1 − 1)σrb(T − t)

]

Applying Lemma 1, we see from the first term that the optimal bond demand of a con-

servative investor with no labor income is increasing in the investment horizon. This is

inconsistent with the traditional advice of investing more in bonds as the horizon shrinks.

As discussed by Munk and Sørensen (2004), the hedge position in the traded bond is com-

bined with a short-term deposit or loan to mimic an investment in a specific coupon bond

reflecting the expected consumption stream of the investor. Other things equal, a longer

horizon will increase the duration and volatility of this desired coupon bond, which requires

a larger weight on the traded bond in the mimicking strategy. From the second term we

see that the presence of labor income can either reinforce, dampen, or reverse the horizon

effect, depending on the sign and magnitude of the term in the square brackets. Increasing

the investment horizon implies a larger human wealth and hence a larger wealth effect on

the optimal bond allocation. This is reflected by the first term in the square brackets in

the expression above. In addition, the total human wealth risk to be hedged increases as

reflected by the remaining terms in the brackets.
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In our Vasicek interest rate model, the volatilities of zero-coupon bonds are independent

of the interest rate level, but for coupon bonds and other fixed-income securities this is not

true. Nevertheless, in our investigation of the effects of interest rate changes on the optimal

bond allocation, we choose to fix the volatility of the traded bond. Then we obtain

∂θBt

∂r
= −1 − γ

γ

σr

σB

∂G

∂r
(W +H) + (ξ1 − 1)2

σr

σB
y

∫ T

t

b(s− t)2h(t, s) (Bs(r, t))
1−ξ1 ds

+
(ξ1 − 1)y

σB

(

∫ T

t

b(s− t)h(t, s) (Bs)
1−ξ1 ds

)[

1

γ

(

λr − ρ⊤

SBK
−1λS

)

− 1 − γ

γ
σrG− σy(t)

(

ρyB − ρ⊤

SBK
−1ρ̂yS

)

]

.

From Lemma 1, −(1 − γ)∂G
∂r is negative so in absence of labor income, the optimal bond

allocation is a decreasing function of the interest rate level. Clearly, the second term is

always positive, while the last term may be either positive or negative, depending on the

risk aversion, risk premia, correlation coefficients, and the sign of ξ1−1. With labor income,

the optimal bond allocation may therefore respond very differently to interest rate changes.

The dependence of the optimal bond allocation on the risk aversion level is not quali-

tatively different with labor income than without since the last two terms in (32) do not

involve γ. With utility of terminal wealth only, G is also independent of γ and it can be

shown that the bond allocation increases with γ, at least in the range γ ∈ (1,∞). With

utility of consumption, G depends on γ in a complicated way, and the bond allocation may

then depend on γ in a non-monotonic way.

4.2.3 Optimal stock allocation

The optimal investment in the stocks is the sum of a speculative demand and a hedge

demand, θSt = θspec
St + θhdg

St , where

θspec
St =

1

γ
(W +H) [diag(σS)]

−1
K−1λS , (37)

θhdg
St = −Hσy(t) [diag(σS)]

−1
K−1ρ̂yS . (38)

The presence of labor income magnifies the optimal investment in the different stocks due to

a wealth effect, i.e. increases both long and short positions. However, the hedge effect may

change this conclusion. The sign of the hedge demand depends on the correlation structure.

With a single stock, which is uncorrelated with the bond, the hedge demand is positive

[negative] if the income-stock correlation is negative [positive].

We can combine the income-related terms in the speculative and the hedge demand and

rewrite the total stock demand as

θSt =
1

γ
W [diag(σS)]

−1
K−1λS +H [diag(σS)]

−1
K−1

[

1

γ
λS − σy(t)ρ̂yS

]

. (39)
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The total effect of income on the demand of the different stocks depends on the sign of the

components in the vector K−1ρ̂yS . Since H is increasing in T , this sign will also determine

how the optimal stock demand varies with the investment horizon. For stocks in positive

demand the popular advice to decrease the fraction of wealth invested in stocks over the

life cycle so that θSt increases with T is true for a riskless income stream, but with income

uncertainty the validity of this advice is highly dependent on risk aversion, risk premia, and

the correlation coefficients. For ξ1 < 1, the human wealth is decreasing in the interest rate

level, and hence the optimal stock demand will be decreasing [increasing] in r if the last

term in the second expression above is positive [negative]. Intuitively, a higher interest rate

lowers the present value of future labor income and hence total wealth today. This reduces

the demand for stocks. Without labor income the optimal stock demand is independent of

the interest rate level. Higher risk aversion has a dampening effect on stock demand with

or without labor income.

4.2.4 Optimal cash position

The optimal position in the bank account, i.e. in “cash”, is

θ0t = Wt − θBt − θ⊤

St1n.

From the discussion above it is clear that the dependence of this ratio on risk aversion

and investment horizon is ambiguous and determined by the precise parameter values as

well as the current income and financial wealth. That the cash position is not uniformly

increasing in risk aversion may seem surprising at first, but note that a cash position is only

riskfree over the next instant. For an investor with utility from terminal wealth only, the

true riskfree asset is the zero-coupon bond maturing at the end of the investment horizon.

For an investor with utility from intermediate consumption, the true riskfree asset is more

like a coupon bond, cf. Munk and Sørensen (2004).

4.3 Numerical illustrations of the optimal strategies

In the following illustrations we use the benchmark parameter values listed in Section 3

and assume that the current short-term interest rate is equal to the long-term level of

2% unless otherwise mentioned. We first assume that the expected growth rate of income

is constant and equal to 4% (ξ0 = 0.04, ξ1 = 0). We consider an investor with a time

preference rate δ of 0.03 and a relative risk aversion γ equal to 2. Given that both the

stock-bond correlation and the risk premium on the bond are zero, there is no speculative

demand for the bond. In fact, with the parameters given, the optimal speculative position in

absence of labor income will be 100% in the stock. Due to the demand for hedging changes

in the investment opportunity set, the optimal portfolio of the investor without labor income
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will be 50% in the stock, 39.4% in the (10-year) bond, and 10.6% in cash.

In Tables 3 and 4 we report information on the optimal strategies for various wealth-to-

income ratios (all positive) and four different combinations of the two income-asset correla-

tion coefficients. The results in Table 3 are for a consumer-investor with a 10-year horizon,

while the results in Table 4 are for a 30-year horizon. We provide portfolio weights for the

bond, the stock, and cash and the consumption-income ratio. The portfolio weights for the

bond and the stock are decomposed into the different components. First, note the magni-

tude of the portfolio weights. For a consumer-investor with a 30-year horizon and a current

wealth equal to 20% of current annual income, the total human wealth may be more than

250 times current financial wealth! It is thus clear that the optimal investments as a fraction

of current financial wealth can be extreme. In the tables we see several portfolio weights

of over 100, i.e. over 10,000 percent of financial wealth! Even with a current wealth-income

ratio of 5, the human wealth of the consumer-investor with a 10-year horizon is in all four

cases more than double the current wealth, and therefore the optimal strategies taken labor

income to account are far from the optimal strategies ignoring the value of future labor in-

come. We can also see that in all cases, the optimal consumption rate is higher than current

income. For low current wealth the optimal consumption per year can even exceed the sum

of current wealth and current income, i.e. consumption is financed in part by borrowing. Of

course, this is due to the desire of the individual to smooth consumption over the life-cycle.

[Table 3 about here.]

[Table 4 about here.]

The combination of correlation coefficients closest to the estimates obtained in the cali-

bration in Section 3 is in the top panel of the tables. For that case we see that the optimal

strategies involve extensive borrowing, which is clearly unrealistic as discussed earlier in this

paper. In Section 5, we look at the effects of imposing limits to borrowing. Also note, that

in the top panel of the two tables, the bond position is far more extreme than the stock

position.

Let us look at the different components of the optimal asset demands in Tables 3 and 4.

The size of the speculative demands for stocks (and bonds, if there was any speculative

demand) is only affected through the size of the human wealth which varies relatively little

over the different combinations of correlations with a 10-year horizon, but significantly more

with a 30-year horizon. The first hedge term in the bond demand basically hedges total

wealth against changes in investment opportunities and is therefore also affected through

the size of human wealth. These terms in the optimal portfolios are therefore of the same

sign for all correlation pairs considered. The sign of the second hedge term in the bond

demand and the (only) hedge term in the stock demand is determined by the sign of the
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correlation of the bond and the stock, respectively, with the income rate, since these terms

reflect hedging against current income rate shocks. The magnitudes of these terms are

determined by the human wealth, but also the volatilities of the assets relatively to the

volatility of income. Since the bond price is less volatile than the stock price, it takes a

larger bond position than stock position to “undo” the income rate risk. Therefore, the

magnitude of this hedge term is larger for the bond than for the stock. Finally, the third

hedge term in the bond demand represents a hedge of the present value of future income

against interest rate risk. The human capital is like a bond investment, where the income

rate plays the role of the coupon payments. As long as the parameter ξ1 is smaller than one,

the human capital is decreasing in the interest rate and thus is like an implicit investment in

the bond. The explicit investment in the bond is therefore reduced as indicated by a quite

substantial negative third hedge demand.

The results discussed above are for a fixed expected income growth rate of 4%. In

Table 5, we study how the results with a 10-year horizon are affected if the expected growth

rate is related to the interest rate. We look at four values of ξ1, namely -0.25, 0.25, 0.75,

and 1.25. In each case, the parameter ξ0 is then fixed so that ξ0 + ξ1r̄ = 0.04. The results

in the table are for the case, where both the income-interest rate and the income-stock

correlation are given by 0.7071, but the effects of varying (ξ0, ξ1) are very similar for the

other correlation pairs. As illustrated in Section 4.1, the size of the human wealth is affected

by the decomposition of expected income growth rate and this will influence the optimal

strategies. With the 10-year horizon considered here, this effect is minor, but it will be

more dramatic for longer-term horizons, i.e. for young consumer-investors. In addition, ξ1

is directly influencing the third hedge term of the bond (and, consequently, also the demand

for cash) as already indicated in the discussion above. As we can see from the table, this

effect can be quite substantial and emphasizes the need to understand the behavior of labor

income over the business cycle.

[Table 5 about here.]

Finally, we study in Table 6 the sensitivity of results to the level of interest rates. The

current interest rate has some effect on the value of human wealth through the discounting

of future income as discussed in Section 4.1, and this will affect all the components of the

optimal portfolios. In addition, the interest rate level affects the hedge of wealth against

changes in investment opportunities, i.e. the first hedge term for the bond, but this effect

seems rather insignificant. In total, the optimal strategies are relatively insensitive to small

variations in interest rates around the long-term level.

[Table 6 about here.]
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5 Unspanned income uncertainty and liquidity constraints

5.1 Computational approach

We continue to use the set-up of Section 2, but now consider the case where ‖ρyP ‖ < 1

implying that the income uncertainty is unspanned, i.e. not perfectly hedgeable. In addition

we impose a liquidity constraint on the individual so that the financial wealth has to stay

non-negative at all points in time. We will also consider the effects of imposing stricter

constraints so that the investor is restricted to non-negative positions in both the bond, the

stock, and the bank account. Due to the unspanned income and the investment constraints,

it is no longer possible to derive a closed-form solution to the utility maximization problem,

so we have to resort to numerical solution techniques.

Our numerical method is based on a finite difference backwards iteration solution of

the HJB equation with an optimization over feasible consumption rates and portfolios at

each (time,state) node in the lattice. The original formulation of the problem has three

state variables (financial wealth, interest rate, and income rate). In order to simplify the

implementation of the numerical solution algorithm, we will use a homogeneity property

to reduce the number of state variable by one. It follows from the linearity of the wealth

dynamics in (11) and the income dynamics in (10) that if the consumption and investment

strategy (c, θ) is optimal with initial wealth and income (W, y), then (kc, kθ) is optimal with

initial wealth and income (kW, ky). The assumed power utility function implies that the

value function is homogeneous of degree 1 − γ in (W, y), i.e.

J(kW, r, ky, t) = k1−γJ(W, r, y, t),

from which it follows that

J(W, r, y, t) = y1−γF

(

W

y
, r, t

)

, (40)

where we have defined F (x, r, t) = J(x, r, 1, t). Of course, this is also true in the complete

market case studied previously. There we have

F

(

W

y
, r, t

)

=
1

1 − γ
g(r, t)γ

(

W

y
+M(r, t)

)1−γ

, (41)

where M(r, t) is given in Proposition 1. By substitution of (40) into the HJB equation (13)
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we get that F = F (x, r, t) solves the nonlinear partial differential equation (PDE)

δ̂(r, t)F = sup
ĉ,π

{

ĉ1−γ

1 − γ
+ Ft + Fr (κ[r̄ − r] + (1 − γ)ρyrσy(t)σr)

+ Fx

(

1 − ĉ+ x
[

(1 − ξ1)r − ξ0(t) + γσy(t)2 + π⊤Σ(λ− γσy(t)ρyP )
])

+
1

2
x2Fxx

(

π⊤ΣΣ⊤π + σy(t)2 − 2σy(t)π⊤ΣρyP

)

+
1

2
σ2

rFrr − xFxrσr (π⊤Σe1 + ρyrσy(t))

}

,

(42)

where we have introduced

δ̂(r, t) = δ − (1 − γ)(ξ0(t) + ξ1r) +
1

2
γ(1 − γ)σy(t)2

and ĉt = ct/yt is the consumption-to-income ratio and πt = θt/Wt is the vector of portfolio

weights. The terminal condition on F is F (x, r, T ) = εx1−γ/(1 − γ).

We set up a lattice in (x, r, t) and solve the PDE (42) numerically using a backward

iterative procedure starting from the terminal date T . At each time tn in the lattice we first

guess on the optimal controls ĉ(xi, rj , tn), π(xi, rj , tn) and solve (42) using finite difference

techniques for F (xi, rj , tn), which is then a guess on the value function at time tn. Using

that in the first-order conditions for the maximization in (42), we can derive a new guess

on the optimal controls, which can again be used to find a new guess on the value function.

We continue these iterations until the guess on the value function at tn seems stable, and

we can then move on to the previous time step tn−1. Our solution technique is basically the

same as that applied by Brennan, Schwartz, and Lagnado (1997) and is closely related to

the well-documented Markov Chain Approximation Approach, which has previously been

used to study various consumption/investment problems, cf. Fitzpatrick and Fleming (1991),

Hindy, Huang, and Zhu (1997), and Munk (1999, 2000). Details on the numerical procedure

can be found in Appendix C.

We ensure that financial wealth W , and hence the wealth-income ratio x = W/y, stay

non-negative by restricting the individuals choice of consumption and portfolio whenever

x = 0 to a zero investment in the risky assets and to a consumption level which is smaller

than the current income, i.e. ĉ ≤ 1. If we do not further restrict the consumption and

portfolio choice, the optimal choice for a strictly positive values of x is given by the first-

order conditions from (42), i.e.

ĉt = (Fx)
−1/γ

, (43)

πt = − Fx

xFxx
(Σ⊤)

−1
(λ− γσy(t)ρyP ) +

Fxr

xFxx
σr (Σ⊤)

−1
e1 + σy(t) (Σ⊤)

−1
ρyP . (44)

Note that if we substitute the expression (41) for F in the complete market case into (44), we

get Equation (28). Imposing the liquidity constraint makes lower levels of financial wealth
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worse. Without the liquidity constraint, a consumer-investor with a large human wealth is

not that concerned with a fall in financial wealth from a low level to zero, in fact the financial

wealth can go negative. With the liquidity constraint, the consequences of losing financial

wealth from a low level are more severe. If you end up at a zero financial wealth, you have to

stay away from the risky assets and keep consumption below current labor income. You can

only return to strictly positive wealth and risky positions if you consume strictly less than

your income. We therefore expect significantly less risky positions at near-zero financial

wealth levels relative to the case without the liquidity constraint. To enhance numerical

stability we need to impose some, relatively wide constraints on the portfolio weights πBt

and πSt. In the numerical results discussed below we have restricted the portfolio weights

to the interval [−5, 10]. This constraints will be binding in some situations.

Imposing a strict no borrowing condition for all wealth levels, we must have πBt +πSt ≤
1. Of course, if the portfolio given by (44) satisfies this condition, it is still the optimal

portfolio, but if the constraint is binding, we maximize in (42) over portfolios (πBt, πSt)

with πBt + πSt = 1 and get

πBt =
1

σ2
B + σ2

S − 2ρSBσSσB

{

− Fx

xFxx
(σB [λr − γσy(t)ρyB ] − ψ + γσSσy(t)ρyS)

+
Fxr

xFxx
(σB − σSρSB)

+ σ2
S − ρSBσSσB + σy(t)[σBρyB − σSρyS ]

}

and, of course, πSt = 1−πBt. In a similar manner we can impose non-negativity constraints

on the portfolio weights.

Since the labor income stream is not spanned by the financial assets and the investor

faces constraints on the use of future income, we can no longer value the income stream

as the dividends from a financial assets. The value of the future income stream will now

be investor-specific. We can assess the value of the income stream to the investor by the

additional initial wealth, H̄(W, y, r, t), needed to exactly compensate for the utility loss from

not receiving income:

y1−γF

(

W

y
, r, t

)

=
1

1 − γ
g(r, t)γ

(

W + H̄(W, y, r, t)
)1−γ

, (45)

implying that

H̄(W, y, r, t) = (1 − γ)1/(1−γ)yF

(

W

y
, r, t

)1/(1−γ)

g(r, t)−γ/(1−γ) −W. (46)

As in the complete market case, we can write this as the product of the current income rate

and a present value multiplier, H̄(W, y, r, t) = yM̄(W/y, r, t), where the multiplier is given

by

M̄(x, r, t) = (1 − γ)1/(1−γ)F (x, r, t)
1/(1−γ)

g(r, t)−γ/(1−γ) − x. (47)
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We compare this with the value M(r, t) computed using (22). Since we are now in an

incomplete market, M(r, t) is to be interpreted as the present value multiplier of future

income assuming that the market price of the non-traded income risk (represented by zy) is

zero and that there are no portfolio constraints.

5.2 Numerical results

We use the benchmark parameter values of Section 3. The individuals are assumed to

have a time preference rate of δ = 0.03, a relative risk aversion of γ = 2, and a time horizon

of 30 years, unless otherwise mentioned. Table 7 illustrate the optimal strategies for different

values of the wealth-income ratio and different levels of the current short-term interest rate

for the case with the very wide constraints on the portfolio weights in the bond and the stock,

i.e. πBt, πSt ∈ [−5, 10]. We see that the optimal portfolio weights are dampened considerably

relative to the complete market case (compare for example with Table 4), in particular for

low wealth-income ratios where the liquidity constraint is “nearby.” Although less extreme,

the optimal investment strategies still involve large positions in the bond and the stock

financed by a large loan. We can see that the implicit present value multiplier on current

income is in all cases 20-25% smaller in the constrained case than in the unconstrained case

and that the multiplier increases with the wealth-income ratio since the liquidity constraint

is less important for high values of current wealth-to-income. The optimal consumption-

income ratio is much smaller for low wealth-income ratios in the constrained case than in

the unconstrained case.

Table 8 shows the optimal strategies if short-sales constraints on all assets are imposed

so that, in particular, borrowing is completely prohibited. For all the states considered in

the table, the optimal strategy consists of investing 100% in the stock. Although the bond is

desirable for different hedging motives, it does not enter the optimal constrained portfolio for

the states and parameters considered in this table. The stock is too attractive for speculative

motives. We see that the consumption-income ratio is higher in the constrained case for

low wealth-income ratios, basically because the risk of the investment strategy is reduced

considerably by the constraints and, hence, you do not need to save as larger a fraction

of your current income as a buffer. On the other hand, for large wealth-income ratios, the

consumption-income ratio is lower in the constrained case, which can be explained by the fact

the constrained investment strategies can finance a lower average level of consumption. The

implicit present value multiplier of income is naturally smaller in the case with short-sales

constraints, but the reduction is relatively small.

We also note that the optimal strategies both with and without short-sales constraints

are only little sensitive to the level of interest rates, exactly as we saw it in the complete

market analysis. In the following results we will therefore assume that the current short rate
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is equal to the long-term level of 2%.

[Table 7 about here.]

[Table 8 about here.]

In Table 9 we report results for relative risk aversions of 5 and 10. With a high enough risk

aversion, the motive for hedging total wealth against changes in investment opportunities is

so strong that the bond dominates the optimal portfolio even when short-sales constraints

are imposed. Also note that the implicit value of the future income decreases considerably

with the risk aversion of the agent.

[Table 9 about here.]

In Tables 10 and 11 we look at how the results are affected by the correlation ρyr between

shocks to labor income and shocks to the short-term interest rate. For the case with wide

constraints on the portfolio weights considered in Table 10, we see that the portfolio weight

in the stock is roughly independent of this correlation parameter. With a positive ρyr, the

bond will be negatively correlated with the income rate and hence provides a good hedge

against income shocks. Hence, other things equal, the bond weight will be increasing in ρyr.

When short-sales constraints are imposed, we see from Table 11 that the optimal portfolio

in all cases considered will be 100% in stocks, but for ρyr close to 1, the bond will start

entering the optimal portfolio.

[Table 10 about here.]

[Table 11 about here.]

In Table 12 we see the effects of varying the correlation ρyS between the labor income

rate and the stock returns. Again, the results are basically driven by the fact that the

correlation parameter determines how well the stock can hedge shocks to labor income.

With a negative ρyS , the optimal portfolio weight on the stock is thus significantly higher

than with a positive ρyS . The optimal bond demand is also affected since the bond is an

alternative hedging device. The benchmark value of ρyr is 0.25 so that the bond is a decent

hedge against income risk. If the value of ρyS is positive, the bond is a better instrument

for hedging income rate risk than the bond, which is reflected by a higher investment in

the bond. Table 13 provide similar information for the case where short-sales constraints

are imposed. The stock is so attractive for speculative motives that the optimal portfolio

consists only of stocks, except for high wealth-income ratios and high positive stock-income

correlations.

[Table 12 about here.]
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[Table 13 about here.]

In Tables 14 and 15 we study how the optimal strategies and the income multiplier

depend on the parameters ξ0, ξ1, i.e. on the variations in expected income growth rate over

the business cycle. In Table 14 we have impose the wide bounds [−5, 10] on the portfolio

weights, while Table 15 covers the case with no borrowing allowed at all. We see that the

portfolio weight of the bond increases with ξ1, while the portfolio weight of the stock is almost

independent of ξ1. This is exactly as we saw it in the complete markets case, cf. Table 5.

The implicit income multiplier M̄ seems to be slightly decreasing in ξ1. From Table 15 we

see once again that when short-sales constraints are imposed, the optimal portfolio consists

of 100% in stocks for all the ξ1-values considered.

[Table 14 about here.]

[Table 15 about here.]

6 Life-cycle variations in labor income

We will now consider the case where the expected income growth rate, ξ0(t), depends on

age as stated in (17). We will use ξ̄0 = 0.02 and the three sets of coefficients listed in Table 1

representing three different levels of education. We assume that the income rate volatility

is σy(t) is given by the benchmark value 0.10 up to age 65 and equal to zero after age 65.

For simplicity we continue to assume that the agent has a fixed terminal date, which we set

to age 80. We take the relative risk aversion to be 2 and the time preference rate to be 0.03

as in the previous numerical examples.

The Figures 7, 8, and 9 show how the optimal investment strategy for an individual with

the income profile of a high school graduate varies over the life for wealth-income ratios of 0.2,

1, and 5, respectively. All results are for an interest rate of 2%. For a given wealth-income

ratio the portfolio weights in the stock and the bond decrease up to the retirement, where

the future income becomes fully certain and thus replaces a bond investment. However, over

the life-cycle the wealth-income ratio of an individual will also vary. Typically, the wealth-

income ratio is low for young individuals, then the ratio increases since the individual wants

to save for retirement, and then it tends to decrease again towards and into retirement.

Of course, the precise path of optimal portfolios over the life-cycle will also depend on the

realized returns on the investments and the realized income.

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

29



In Figure 10 we have depicted the optimal portfolio weights in the bond and the stock

of individuals in the three different educational groups for the case of a wealth-income

ratio equal to 1. After retirement, the optimal portfolio weights are the same, but before

retirement we see substantial differences between the individuals. However, if we impose a

strict no borrowing constraint at all times, the optimal portfolios of all three individuals will

consist of 100% in stocks. As discussed earlier, this will be different for other levels of risk

aversion and other values of key parameters.

[Figure 10 about here.]

7 Concluding remarks

In this paper we have studied the optimal consumption and investment strategies of

individuals receiving a non-deterministic stream of labor income in a setting with varying

interest rates, which capture the business cycles of the underlying economy. We find the

optimal allocation of investments to bonds, stocks, and cash. While it is well-known from

the literature that the labor income increases the optimal speculative investments due to a

wealth effect, we have argued and demonstrated in this paper that the relative allocation

to bonds and stocks can be significantly affected by the presence of uncertain labor income

for several reasons. First, bonds and stocks can be differently correlated with labor income

shocks so that bonds may be better for hedging income rate shocks than stocks or vice

versa. Second, risk-averse investors want to hedge total wealth against shifts in investment

opportunities. In the set-up of our paper, investment opportunities are driven by the short-

term interest rate so that the bond is the appropriate asset for this hedging motive. Third,

since human wealth is defined as the discounted value of the future income stream, it will

in general be sensitive to the interest rate level like a bond and, hence, the income stream

represents an implicit investment in a bond, so that the explicit bond investment is reduced.

However, the level of labor income may itself be sensitive to the level of interest rates,

reflecting the intuition that wage increases are more frequent and larger in booming periods

(high interest rates) than in recessions (low interest rates).

We have solved explicitly for the optimal strategies assuming that the labor income

stream is perfectly spanned by traded assets and that no constraints are imposed on the

strategies, in particular the investors are allowed to borrow using future labor income as

implicit collateral. We have provided a detailed analytical and numerical analysis of this case,

illustrating various hedging demands and parameter sensitivities. The optimal strategies

will often involve extremely large positions in bonds and stocks and an extreme level of

borrowing.

We have also provided a detailed study of the optimal strategies for the more realistic
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case, where the labor income is not fully spanned by the financial assets and the individual

has to keep financial wealth non-negative at all times. As our results document, this reduces

risk-taking considerably but will still involve a high degree of borrowing and large positions

in the bond and stock. When we, in addition, prevent the individual from taking short

positions (and hence from borrowing at all), we see that the optimal portfolio will often

consist of 100% in the stock, but this result is sensitive to correlation parameters, the degree

of risk aversion, and the investment horizon.

Finally, we have illustrated the optimal strategies for reasonable variations in the income

process over the life-cycle. For more precise results on optimal strategies for different in-

dividuals, it will be important to identify the variations in the income rate volatility over

the life-cycle and also the relevant income-asset correlations and the extent to which they

change over the life-cycle.
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A Proof of Proposition 1

The process ẑ = (ẑr, ẑS)⊤ defined by

ẑt = zt + λt

is a standard (n+ 1)-dimensional Brownian motion under the risk-neutral probability mea-

sure. Therefore, the risk-neutral dynamics of the short-term interest rate is

drt =
(

φ̂− κrt

)

dt− σr dẑrt,

where φ̂ = κr̄ + σrλ1. This implies that

ru = e−κ[u−t]rt +
φ̂

κ

(

1 − e−κ[u−t]
)

−
∫ u

t

σre
−κ[u−v] dẑrv.

Applying the Fubini rule for interchanging the order of integration, we get

∫ s

t

ru du =

(

rt
κ

− φ̂

κ2

)

(

1 − e−κ[s−t]
)

+
φ̂

κ
(s− t) − σr

κ

∫ s

t

(

1 − e−κ[s−u]
)

dẑru. (48)

The income dynamics under the risk-neutral probability measure is

dyt = yt

[(

ξ̂0(t) + ξ1rt

)

dt+ σy(t)
{

ρyB dẑrt + ρ̂⊤

yS dẑSt

}

]

,

where ξ̂0(t) = ξ0(t) − σy(t)ρ⊤

yPλ and ẑt = zt + λt, and hence

ys = yt exp

{∫ s

t

(

ξ̂0(u) + ξ1ru − 1

2
σy(u)2

)

du

+

∫ s

t

σy(u)ρyB dẑru +

∫ s

t

σy(u)ρ̂⊤

yS dẑSu

}

.

(49)

Combining (48) and (49) we get

yse
−
∫

s

t
ru du = yt exp

{

∫ s

t

(

ξ̂0(u) −
1

2
σy(u)2

)

du+ (ξ1 − 1)

(

rt −
φ̂

κ

)

b(s− t)

+
φ̂

κ
(ξ1 − 1)(s− t) +

∫ s

t

σy(u)ρ̂⊤

yS dẑSu

+

∫ s

t

(σy(u)ρyB − (ξ1 − 1)σrb(s− u)) dẑru

}

.

(50)

The exponent on the right hand side is normally distributed and applying the standard rule

for expectations of exponentials of normal random variables we get

EQ
t

[

yse
−
∫

s

t
ru du

]

= yte
F (t,s)+(ξ1−1)b(s−t)rt

for some easily computed function F (t, s). Applying (2), we get

EQ
t

[

yse
−
∫

s

t
ru du

]

= yte
F (t,s)−(ξ1−1)a(s−t) (Bs(rt, t))

1−ξ1 .

Defining lnh(t, s) = F (t, s) − (ξ1 − 1)a(s− t) and integrating over s, we arrive at (22).
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B Proof of Lemma 1

In the proof we assume for notational simplicity that ε = 0 so that the individual has no

utility from terminal wealth.

(a) Computing the derivative ∂G
∂T , we can see that it will be positive whenever

b(T − t)

∫ T

t

f(s− t) (Bs(r, t))
γ−1

γ ds >

∫ T

t

b(s− t)f(s− t) (Bs(r, t))
γ−1

γ ds,

which is indeed the case since b is increasing.

(b) Computing the derivative ∂G
∂r , we see that it will be positive if and only if

(γ − 1)

[(

∫ T

t

f(s− t)b(s− t) (Bs(r, t))
γ−1

γ ds

)2

−
(

∫ T

t

b(s− t)2f(s− t) (Bs(r, t))
γ−1

γ ds

)(

∫ T

t

f(s− t) (Bs(r, t))
γ−1

γ ds

)]

> 0.

The term in the square brackets is negative due to the Cauchy-Schwarz Inequality:

(

∫ T

t

f(s− t)b(s− t) (Bs(r, t))
γ−1

γ ds

)2

=

(

∫ T

t

[

f(s− t)
1

2 (Bs(r, t))
γ−1

2γ

] [

b(s− t)f(s− t)
1

2 (Bs(r, t))
γ−1

2γ

]

ds

)2

≤
(

∫ T

t

f(s− t) (Bs(r, t))
γ−1

γ ds

)(

∫ T

t

b(s− t)2f(s− t) (Bs(r, t))
γ−1

γ ds

)

.

Consequently, ∂G
∂r is positive if γ < 1 and negative if γ > 1.

C Details on the numerical solution method

We solve the highly non-linear PDE (42) in the following way. We set up an equally

spaced lattice in (x, r, t)-space defined by the grid points

{(xi, rj , tn) | i = 0, 1, . . . , I; j = 0, 1, . . . , J ; n = 0, 1, . . . , N},

where xi = i∆x, rj = r0 + j∆r, and tn = n∆t for some fixed positive spacing parameters

∆x, ∆r, and ∆t. Since wealth and income are restricted to non-negative values x0 = 0 is a

natural lower bound for x = W/y, while the highest value xI is an artificial upper bound.

We place the long-term interest rate level r̄ in the middle of the grid, rJ/2 = r̄, and since

the model allows for interest rates of all real values, we introduce an artificial lower bound,

r0, and an artificial upper bound, rJ . Since the numerical approximation is likely to be

relatively imprecise near the artificial bounds, we pick the values of these bounds so that it

is highly unlikely that the state moves from the starting point (x, r), located near the center

of the grid, to one of the imposed bounds. We denote the approximated value function in
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the grid point (xi, rj , tn) by Fi,j,n and use similar notation for the controls (portfolio weights

and scaled consumption) and other state-dependent functions. We focus on the case with a

single stock.

We apply a backward iterative procedure starting at the terminal date T , where we first

set Fi,j,N = εx1−γ
i /(1−γ). At any earlier time tn, we know the approximated value function

at time tn+1, i.e. Fi,j,n+1 for all i = 0, 1, . . . , I and all j = 0, 1, . . . , J , and the optimal controls

at time tn+1, i.e. ĉi,j,n+1 and πi,j,n+1 for all i = 0, 1, . . . , I and all j = 0, 1, . . . , J . To find

the approximated value function and the optimal controls at time tn, we first make an initial

guess of the optimal controls ĉi,j,n and πi,j,n for all (i, j). Since optimal controls do not tend

to very dramatically over time, a good initial guess is ĉi,j,n = ĉi,j,n+1 and πi,j,n = πi,j,n+1.

In the PDE (42), we can remove the sup-term if we substitute the optimal controls into

the curly brackets, and then solve for the value function. Applying this idea we set up a

finite difference approximation of the PDE without the sup-operator. In the finite difference

approximation we use so-called “up-wind” approximations of the derivatives, which tends to

stabilize the approach. For each (i, j) in the interior of the grid we thus obtain the equation

δ̂j,nFi,j,n =
ĉ1−γ
i,j,n

1 − γ
+D+

t Fi,j,n +D+
r Fi,j,n

(

κ[r̄ − rj ]
+ − (1 − γ)ρ−yrσynσr

)

−D−
r Fi,j,n

(

κ[r̄ − rj ]
− − (1 − γ)ρ+

yrσynσr

)

+
1

2
σ2

rD
2
rFi,j,n

+D+
x Fi,j,n

{

(1 − ĉi,j,n)+ + xi

[

((1 − ξ1)rj)
+

+ ξ−0n + γσ2
yn

]

+ xiσB

(

πB
i,j,n(λr − γσynρyB)

)+
+ xiσS

(

πS
i,j,n

(

ψ

σS
− γρySσyn

))+
}

−D−
x Fi,j,n

{

(1 − ĉi,j,n)− + xi

[

((1 − ξ1)rj)
−

+ ξ+0n

]

+ xiσB

(

πB
i,j,n(λr − γσynρyB)

)−
+ xiσS

(

πS
i,j,n

(

ψ

σS
− γρySσyn

))−
}

+
1

2
x2

iD
2
xFi,j,n

(

π⊤

i,j,nΣΣ⊤πi,j,n + σ2
yn − 2σy(t)[πB

i,j,nσBρyB + πS
i,j,nσSρyS ]

)

+ xiσrD
+
xrFi,j,n

(

(πB
i,j,n)−σB + (πS

i,j,nρSB)−σS + ρ−yrσyn

)

− xiσrD
−
xrFi,j,n

(

(πB
i,j,n)+σB + (πS

i,j,nρSB)+σS + ρ+
yrσyn

)

,

(51)
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where

D+
t Fi,j,n =

Fi,j,n+1 − Fi,j,n

∆t
,

D2
xFi,j,n =

Fi+1,j,n − 2Fi,j,n + Fi−1,j,n

(∆x)2
, D2

rFi,j,n =
Fi,j+1,n − 2Fi,j,n + Fi,j−1,n

(∆r)2
,

D+
x Fi,j,n =

Fi+1,j,n − Fi,j,n

∆x
, D−

x Fi,j,n =
Fi,j,n − Fi−1,j,n

∆x
,

D+
r Fi,j,n =

Fi,j+1,n − Fi,j,n

∆r
, D−

r Fi,j,n =
Fi,j,n − Fi,j−1,n

∆r
,

D+
xrFi,j,n =

1

2∆x∆r
(2Fi,j,n + Fi+1,j+1,n + Fi−1,j−1,n − Fi+1,j,n − Fi−1,j,n − Fi,j+1,n − Fi,j−1,n) ,

D−
xrFi,j,n = − 1

2∆x∆r
(2Fi,j,n + Fi+1,j−1,n + Fi−1,j+1,n − Fi+1,j,n − Fi−1,j,n − Fi,j+1,n − Fi,j−1,n) .

Adding similar equations for all points of the boundary of the grid, we get a system of

(I + 1)(J + 1) equations (one for each grid point) that we can solve for the (I + 1)(J + 1)

values Fi,j,n (more information on the solution of the equations is given below). Given that

solution we compute a new guess on the optimal controls ĉi,j,n, πi,j,n from the first-order

conditions from the maximization in the PDE (42), i.e. the Equations (43) and (44) in the

unrestricted case, again using finite difference approximations of the derivatives based on

the newly computed guess on the value function Fi,j,n. Given the new guess on the optimal

controls, we solve again the system of equations and obtain a new guess on the value function

at time tn. We continue these iterations until the largest relative change in the value function

over all (i, j) relative to the previous iteration is below some small threshold (we use 0.1%).

Then we continue to time tn−1. Typically, the solution requires 2-4 iterations at each time

step.

We can write the equation system that we need to solve in the form

MnFn = dn,

where Fn is the (I+1)(J+1)-dimensional vector of values Fi,j,n, Mn is a matrix of dimension

(I+1)(J+1)×(I+1)(J+1), and dn is an (I+1)(J+1)-dimensional vector of known values.

The matrix will be a band matrix so that the equation system can be solved relatively fast.

The width of the band depends on the way in which order the points (i, j) are taken in the

vector Fn. The two natural candidates are

(0, 0), (1, 0), (2, 0), . . . , (I, 0), (0, 1), (1, 1), (2, 1), . . . , (I, 1), . . . , (0, J), (1, J), (2, J), . . . , (I, J)

and

(0, 0), (0, 1), (0, 2), . . . , (0, J), (1, 0), (1, 1), (1, 2), . . . (1, J), . . . , (I, 0), (I, 1), (I, 2), . . . , (I, J).

The first results in a matrix with a band width of 2I + 5, whereas the band width is 2J + 5

using the second enumeration of points. In the complete market case we have observed that

the value function and the optimal strategies are more sensitive to wealth and income than
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to the interest rate, and since we expect the same in the incomplete market case, we will use

I > J . Therefore the second enumeration is more efficient, both in relation to the number

of non-zero values to store in the computer and in relation to the speed with which the

equation system can be solved.

The numerical results stated in Section 5 are based on an implementation of the above

procedure with I = 500, J = 40, and four time steps per year. The imposed bounds are

xI = 10, r0 = −0.03, and rJ = 0.07.
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Figure 1: Calibrated life-cycle income polynomials.
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Figure 2: Data series on income, stock index and real interest rates.
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Figure 3: Combinations of correlations with spanned labor income. The figure
shows the possible combinations of ρyS and ρyr in a complete market with ρSB = 0.
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high school education for a wealth-income ratio of 0.2.
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Figure 8: The optimal investment strategies over the life of an individual with

high school education for a wealth-income ratio of 1.
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high school education for a wealth-income ratio of 5.
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No High school High school College

ai -2.1361 -2.1700 -4.3148

bi 0.1684 0.1682 0.3194

ci -0.00353 -0.00323 -0.00577

di 0.000023 0.000020 0.000033

P̄ i 0.88983 0.68212 0.93887

Initial age 20 level 17,763 19,107 13,912
(in 2002 US dollar)

Table 1: Coefficients in the life-cycle income polynomials.
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Parameter Estimated parameter value Benchmark parameter value

ξ̄0 0.0181 –
(0.0031)

ξ0 – 0.04

ξ1 -0.0436 0.00
(0.0634)

ψ 0.0665 0.04
(0.0224)

κ 0.6407 0.50
(0.1684)

r̄ 0.0155 0.02
(0.0047)

σy 0.0208 0.10
(0.0010)

σS 0.1613 0.20
(0.0079)

σr 0.0218 0.02
(0.0012)

ρyS 0.1674 0.15
(0.0728)

ρyr 0.2628 0.25
(0.0650)

ρSr 0.0052 0.00
(0.0414)

λr – 0.00

Notes: Standard errors in parentheses.

Table 2: Estimated parameters and benchmark parameters.
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bond investment stock investment

W/y hedge1 hedge2 hedge3 total spec hedge total cash c/y

ρyr = 0.7071, ρyS = 0.7071, M = 10.22

0.2 20.53 90.96 -41.36 70.13 26.05 -18.07 7.984 -77.11 1.206

0.6 7.107 30.32 -13.79 23.64 9.018 -6.023 2.995 -25.63 1.252

1 4.422 18.19 -8.272 14.34 5.611 -3.614 1.997 -15.34 1.298

2 2.408 9.096 -4.136 7.368 3.055 -1.807 1.248 -7.616 1.414

5 1.2 3.638 -1.654 3.183 1.522 -0.7228 0.7994 -2.983 1.761

ρyr = 0.7071, ρyS = −0.7071, M = 11.82

0.2 23.69 105.2 -48.85 80.07 30.06 20.9 50.97 -130 1.391

0.6 8.16 35.08 -16.28 26.95 10.35 6.968 17.32 -43.27 1.437

1 5.054 21.05 -9.769 16.33 6.412 4.181 10.59 -25.92 1.484

2 2.724 10.52 -4.885 8.362 3.456 2.09 5.547 -12.91 1.599

5 1.326 4.209 -1.954 3.581 1.682 0.8361 2.519 -5.1 1.946

ρyr = −0.7071, ρyS = −0.7071, M = 12.07

0.2 24.18 -107.4 -50.02 -133.3 30.68 21.34 52.02 82.25 1.420

0.6 8.322 -35.81 -16.67 -44.16 10.56 7.113 17.67 27.49 1.466

1 5.151 -21.48 -10 -26.34 6.536 4.268 10.8 16.53 1.512

2 2.772 -10.74 -5.002 -12.97 3.518 2.134 5.652 8.32 1.628

5 1.345 -4.297 -2.001 -4.952 1.707 0.8536 2.561 3.392 1.975

ρyr = −0.7071, ρyS = 0.7071, M = 10.42

0.2 20.93 -92.75 -42.32 -114.1 26.56 -18.42 8.132 107 1.229

0.6 7.239 -30.92 -14.11 -37.78 9.185 -6.142 3.044 35.74 1.275

1 4.501 -18.55 -8.464 -22.51 5.711 -3.685 2.026 21.49 1.321

2 2.448 -9.275 -4.232 -11.06 3.106 -1.842 1.263 10.8 1.437

5 1.215 -3.71 -1.693 -4.187 1.542 -0.737 0.8053 4.382 1.781

Table 3: The sensitivity of the optimal strategies to income-asset correlations

for a 10-year horizon. The table shows how the components of optimal portfolios and
the consumption-income ratio depend on the decomposition of the expected income growth
rate. The investor has a 10-year horizon, a risk aversion of 2, and a time preference rate of
3%. The expected income growth rate is fixed at 4%.
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bond investment stock investment

W/y hedge1 hedge2 hedge3 total spec hedge total cash c/y

ρyr = 0.7071, ρyS = 0.7071, M = 31.89

0.2 73.08 283.8 -150.4 206.5 80.22 -56.37 23.85 -229.3 1.619

0.6 24.66 94.59 -50.12 69.13 27.07 -18.79 8.283 -76.42 1.639

1 14.98 56.75 -30.07 41.66 16.44 -11.27 5.17 -45.83 1.659

2 7.718 28.38 -15.04 21.06 8.472 -5.637 2.835 -22.89 1.710

5 3.36 11.35 -6.015 8.697 3.689 -2.255 1.434 -9.131 1.861

ρyr = 0.7071, ρyS = −0.7071, M = 50.62

0.2 115.7 450.5 -244.1 322.2 127.1 89.49 216.5 -537.7 2.564

0.6 38.88 150.2 -81.35 107.7 42.69 29.83 72.52 -179.2 2.584

1 23.51 90.1 -48.81 64.8 25.81 17.9 43.71 -107.5 2.604

2 11.98 45.05 -24.41 32.63 13.16 8.949 22.1 -53.73 2.655

5 5.067 18.02 -9.762 13.32 5.562 3.58 9.142 -21.47 2.800

ρyr = −0.7071, ρyS = −0.7071, M = 55.31

0.2 126.4 -492.2 -267.6 -633.4 138.8 97.78 236.6 397.8 2.801

0.6 42.44 -164.1 -89.19 -210.8 46.59 32.59 79.18 132.6 2.821

1 25.65 -98.44 -53.52 -126.3 28.16 19.56 47.71 79.6 2.841

2 13.05 -49.22 -26.76 -62.93 14.33 9.778 24.11 39.82 2.891

5 5.494 -19.69 -10.7 -24.9 6.031 3.911 9.942 15.96 3.043

ρyr = −0.7071, ρyS = 0.7071, M = 34.44

0.2 78.89 -306.5 -163.2 -390.8 86.61 -60.89 25.72 366 1.748

0.6 26.6 -102.2 -54.39 -130 29.2 -20.3 8.907 122 1.768

1 16.14 -61.3 -32.63 -77.79 17.72 -12.18 5.544 73.25 1.788

2 8.299 -30.65 -16.32 -38.67 9.111 -6.089 3.022 36.64 1.839

5 3.593 -12.26 -6.526 -15.19 3.944 -2.435 1.509 14.68 1.990

Table 4: The sensitivity of the optimal strategies to income-asset correlations

for a 30-year horizon. The table shows how the components of optimal portfolios and
the consumption-income ratio depend on the decomposition of the expected income growth
rate. The investor has a 30-year horizon, a risk aversion of 2, and a time preference rate of
3%. The expected income growth rate is fixed at 4%.
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bond investment stock investment

W/y hedge1 hedge2 hedge3 total spec hedge total cash c/y

ξ0 = 0.045, ξ1 = −0.25, M = 10.21

0.2 20.51 90.85 -51.63 59.73 26.02 -18.05 7.976 -66.7 1.204

0.6 7.099 30.28 -17.21 20.17 9.008 -6.016 2.992 -22.16 1.251

1 4.417 18.17 -10.33 12.26 5.605 -3.61 1.995 -13.26 1.297

2 2.405 9.085 -5.163 6.327 3.052 -1.805 1.248 -6.575 1.412

5 1.199 3.634 -2.065 2.767 1.521 -0.7219 0.799 -2.566 1.760

ξ0 = 0.035, ξ1 = 0.25, M = 10.24

0.2 20.56 91.09 -31.07 80.58 26.09 -18.1 7.996 -87.58 1.207

0.6 7.117 30.36 -10.36 27.12 9.03 -6.032 2.999 -29.12 1.254

1 4.428 18.22 -6.215 16.43 5.618 -3.619 1.999 -17.43 1.300

2 2.411 9.109 -3.107 8.413 3.059 -1.81 1.25 -8.662 1.416

5 1.201 3.644 -1.243 3.601 1.524 -0.7238 0.7998 -3.401 1.763

ξ0 = 0.025, ξ1 = 0.75, M = 10.28

0.2 20.64 91.44 -10.4 101.7 26.19 -18.16 8.024 -108.7 1.212

0.6 7.142 30.48 -3.468 34.15 9.063 -6.055 3.008 -36.16 1.258

1 4.443 18.29 -2.081 20.65 5.638 -3.633 2.005 -21.65 1.304

2 2.418 9.144 -1.04 10.52 3.069 -1.816 1.252 -10.77 1.420

5 1.204 3.657 -0.4162 4.445 1.528 -0.7266 0.801 -4.246 1.767

ξ0 = 0.015, ξ1 = 1.25, M = 10.33

0.2 20.74 91.88 10.46 123.1 26.31 -18.25 8.06 -130.1 1.218

0.6 7.175 30.63 3.488 41.29 9.104 -6.084 3.02 -43.31 1.264

1 4.463 18.38 2.093 24.93 5.663 -3.651 2.012 -25.94 1.310

2 2.428 9.188 1.046 12.66 3.081 -1.825 1.256 -12.92 1.426

5 1.208 3.675 0.4185 5.302 1.533 -0.7301 0.8024 -5.104 1.773

Table 5: The sensitivity of the optimal strategies to the decomposition of the

expected income growth rate. The table shows how the components of optimal portfolios
and the consumption-income ratio depend on the decomposition of the expected income
growth rate. The investor has a 10-year horizon, a risk aversion of 2, and a time preference
rate of 3%. The income-asset correlations are ρyr = ρyS =

√
2/2.
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bond investment stock investment

W/y hedge1 hedge2 hedge3 total spec hedge total cash c/y

r = 0.00, M = 10.56

0.2 21.23 93.94 -42.84 72.32 26.89 -18.66 8.229 -79.55 1.225

0.6 7.339 31.31 -14.28 24.37 9.297 -6.22 3.076 -26.45 1.271

1 4.561 18.79 -8.568 14.78 5.778 -3.732 2.046 -15.83 1.316

2 2.478 9.394 -4.284 7.587 3.139 -1.866 1.273 -7.86 1.43

5 1.228 3.757 -1.714 3.272 1.556 -0.7464 0.8092 -3.081 1.772

r = 0.01, M = 10.39

0.2 20.88 92.43 -42.09 71.22 26.47 -18.36 8.106 -78.32 1.215

0.6 7.222 30.81 -14.03 24 9.156 -6.121 3.035 -26.04 1.261

1 4.491 18.49 -8.419 14.56 5.694 -3.672 2.021 -15.58 1.307

2 2.443 9.243 -4.209 7.476 3.097 -1.836 1.261 -7.737 1.422

5 1.214 3.697 -1.684 3.227 1.539 -0.7345 0.8042 -3.031 1.766

r = 0.02, M = 10.22

0.2 20.53 90.96 -41.36 70.13 26.05 -18.07 7.984 -77.11 1.206

0.6 7.107 30.32 -13.79 23.64 9.018 -6.023 2.995 -25.63 1.252

1 4.422 18.19 -8.272 14.34 5.611 -3.614 1.997 -15.34 1.298

2 2.408 9.096 -4.136 7.368 3.055 -1.807 1.248 -7.616 1.414

5 1.2 3.638 -1.654 3.183 1.522 -0.7228 0.7994 -2.983 1.761

r = 0.03, M = 10.06

0.2 20.19 89.51 -40.64 69.06 25.65 -17.78 7.865 -75.93 1.196

0.6 6.994 29.84 -13.55 23.28 8.882 -5.927 2.955 -25.24 1.243

1 4.354 17.9 -8.128 14.13 5.529 -3.556 1.973 -15.1 1.289

2 2.374 8.951 -4.064 7.261 3.015 -1.778 1.237 -7.497 1.406

5 1.186 3.58 -1.626 3.14 1.506 -0.7112 0.7946 -2.935 1.756

r = 0.04, M = 9.898

0.2 19.86 88.08 -39.93 68.01 25.25 -17.5 7.748 -74.76 1.187

0.6 6.883 29.36 -13.31 22.93 8.749 -5.833 2.916 -24.85 1.234

1 4.287 17.62 -7.987 13.92 5.449 -3.5 1.95 -14.87 1.281

2 2.34 8.808 -3.993 7.155 2.975 -1.75 1.225 -7.38 1.398

5 1.172 3.523 -1.597 3.098 1.49 -0.6999 0.7899 -2.888 1.751

Table 6: The sensitivity of the optimal strategies to the current interest rate. The
table shows how the components of optimal portfolios and the consumption-income ratio
depend on the level of interest rates. The investor has a 10-year horizon, a risk aversion of
2, and a time preference rate of 3%. The income-asset correlations are ρyr = ρyS =

√
2/2.

The expected growth rate of income is fixed at 4%.

55



W/y πB πS π0 c/y M̄

r = 0, M = 40.50

0.2 5.067 6.746 -10.81 1.027 29.86

0.6 2.796 4.211 -6.007 1.121 30.25

1 2.102 3.362 -4.464 1.189 30.57

2 1.449 2.475 -2.924 1.32 31.2

5 0.9147 1.587 -1.502 1.618 32.46

r = 0.02, M = 38.99

0.2 5.06 6.793 -10.85 1.016 28.81

0.6 2.788 4.215 -6.003 1.109 29.19

1 2.09 3.353 -4.443 1.176 29.5

2 1.437 2.455 -2.892 1.306 30.12

5 0.903 1.558 -1.461 1.606 31.34

r = 0.04, M = 37.55

0.2 5.045 6.834 -10.88 1.005 27.79

0.6 2.779 4.217 -5.996 1.096 28.16

1 2.079 3.341 -4.42 1.163 28.46

2 1.425 2.434 -2.859 1.293 29.07

5 0.8914 1.529 -1.42 1.594 30.25

Table 7: The optimal strategies with wide portfolio constraints. The table shows
the optimal strategies for various combinations of the wealth-income ratio and the current
short-term interest rates. The investor has a time preference rate of 0.03, a relative risk
aversion of 2, and a 30-year horizon. The portfolio weights are constrained to the interval
[−5, 10].
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W/y πB πS π0 c/y M̄

r = 0, M = 40.50

0.2 0 1 0 1.096 29.54

0.6 0 1 0 1.165 29.83

1 0 1 0 1.217 30.09

2 0 1 0 1.323 30.63

5 0 1 0 1.582 31.85

r = 0.02, M = 38.99

0.2 0 1 0 1.083 28.49

0.6 0 1 0 1.15 28.78

1 0 1 0 1.201 29.03

2 0 1 0 1.307 29.56

5 0 1 0 1.569 30.75

r = 0.04, M = 37.55

0.2 0 1 0 1.07 27.48

0.6 0 1 0 1.135 27.76

1 0 1 0 1.186 28

2 0 1 0 1.291 28.53

5 0 1 0 1.556 29.69

Table 8: The optimal strategies with short-sales constraints. The table shows the
optimal strategies for various combinations of the wealth-income ratio and the current short-
term interest rates. The investor has a time preference rate of 0.03, a relative risk aversion
of 2, and a 30-year horizon. No borrowing or short sales are allowed.
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W/y πB πS π0 c/y M̄

γ = 5, M = 38.99, wide constraints

0.2 10 3.011 -12.01 1.05 25.61

0.6 6.604 1.783 -7.387 1.116 25.99

1 5.054 1.391 -5.446 1.165 26.29

2 3.531 0.9908 -3.522 1.26 26.85

5 2.209 0.6274 -1.836 1.482 27.95

γ = 5, M = 38.99, no short sales

0.2 0 1 0 1.066 25.53

0.6 0 1 0 1.121 25.86

1 0 1 0 1.165 26.12

2 0.116 0.884 0 1.257 26.65

5 0.4333 0.5667 0 1.471 27.7

γ = 10, M = 38.99, wide constraints

0.2 10 1.096 -10.1 0.8955 20.47

0.6 10 0.5416 -9.542 0.9331 20.72

1 7.529 0.4042 -6.933 0.9638 20.93

2 4.498 0.2679 -3.766 1.033 21.38

5 2.319 0.1693 -1.488 1.227 22.31

γ = 10, M = 38.99, no short sales

0.2 0.7312 0.2688 0 0.886 20.08

0.6 0.8382 0.1618 0 0.9158 20.3

1 0.8598 0.1402 0 0.9448 20.51

2 0.8762 0.1238 0 1.014 20.98

5 0.8876 0.1124 0 1.209 22

Table 9: The optimal strategies with different risk aversion coefficients. The table
shows the optimal strategies for investors with a relative risk aversion equal to 5 and 10,
both for the case where the portfolio weights are constrained to the interval [−5, 10] and the
case where no short sales are allowed. The investor has a time preference rate of 0.03 and a
30-year horizon.
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W/y πB πS π0 c/y M̄

ρyr = −0.5, M = 40.72

0.2 -5 6.886 -0.8857 0.9886 28.96

0.6 -5 4.109 1.891 1.08 29.39

1 -5 3.195 2.805 1.148 29.75

2 -5 2.278 3.722 1.285 30.47

5 -3.333 1.444 2.889 1.607 31.87

ρyr = 0, M = 39.56

0.2 -4.299 6.824 -1.525 1.013 28.81

0.6 -2.721 4.222 -0.5008 1.106 29.2

1 -2.132 3.351 -0.2191 1.173 29.51

2 -1.449 2.447 0.001899 1.304 30.14

5 -0.6514 1.548 0.1037 1.604 31.38

ρyr = 0.5, M = 38.44

0.2 10 6.555 -15.56 1.008 28.87

0.6 8.046 4.092 -11.14 1.104 29.26

1 6.16 3.271 -8.431 1.172 29.58

2 4.247 2.409 -5.656 1.306 30.21

5 2.426 1.535 -2.961 1.611 31.44

Table 10: The sensitivity of the optimal portfolio to the correlation between

income and interest rate with wide portfolio constraints. The table shows the
optimal strategies for three values of the correlation coefficient between the labor income
and the short-term interest rate. The investor has a time preference rate of 0.03, a relative
risk aversion of 2, and a 30-year horizon. The portfolio weights are constrained to the
interval [−5, 10].
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W/y πB πS π0 c/y M̄

ρyr = −0.5, M = 40.72

0.2 0 1 0 1.078 28.49

0.6 0 1 0 1.14 28.79

1 0 1 0 1.189 29.05

2 0 1 0 1.292 29.63

5 0 1 0 1.559 30.93

ρyr = 0, M = 39.56

0.2 0 1 0 1.082 28.49

0.6 0 1 0 1.147 28.78

1 0 1 0 1.197 29.03

2 0 1 0 1.302 29.58

5 0 1 0 1.566 30.81

ρyr = 0.5, M = 38.44

0.2 0 1 0 1.085 28.49

0.6 0 1 0 1.153 28.77

1 0 1 0 1.205 29.02

2 0 1 0 1.312 29.54

5 0 1 0 1.573 30.7

Table 11: The sensitivity of the optimal portfolio to the correlation between

income and interest rate with short-sales constraints. The table shows the optimal
strategies for three values of the correlation coefficient between the labor income and the
short-term interest rate. The investor has a time preference rate of 0.03, a relative risk
aversion of 2, and a 30-year horizon. No borrowing or short sales are allowed.
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W/y πB πS π0 c/y M̄

ρyS = −0.5, M = 48.47

0.2 4.182 9.007 -12.19 0.937 29.9

0.6 2.407 5.6 -7.007 1.047 30.47

1 1.844 4.428 -5.272 1.126 30.93

2 1.287 3.17 -3.457 1.282 31.83

5 0.7941 1.855 -1.649 1.653 33.49

ρyS = 0, M = 40.96

0.2 4.795 7.44 -11.24 0.9939 29

0.6 2.689 4.625 -6.314 1.09 29.42

1 2.028 3.668 -4.697 1.16 29.76

2 1.4 2.664 -3.063 1.296 30.45

5 0.8722 1.642 -1.515 1.611 31.79

ρyS = 0.5, M = 34.86

0.2 5.865 4.728 -9.593 1.07 28.54

0.6 3.019 2.943 -4.962 1.157 28.83

1 2.223 2.374 -3.597 1.22 29.07

2 1.511 1.796 -2.307 1.343 29.54

5 0.9811 1.262 -1.243 1.614 30.45

ρyS = 0.75, M = 32.26

0.2 6.429 2.745 -8.174 1.102 28.48

0.6 3.139 1.773 -3.912 1.188 28.74

1 2.279 1.476 -2.755 1.251 28.94

2 1.537 1.177 -1.713 1.372 29.33

5 1.01 0.9114 -0.9211 1.635 30.03

Table 12: The sensitivity of the optimal portfolio to the correlation between

income and stock with wide portfolio constraints. The table shows the optimal
strategies for four values of the correlation coefficient between the labor income and the
stock return. The investor has a time preference rate of 0.03, a relative risk aversion of 2,
and a 30-year horizon. The portfolio weights are constrained to the interval [−5, 10].
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W/y πB πS π0 c/y M̄

ρyS = −0.5, M = 48.47

0.2 0 1 0 1.032 28.52

0.6 0 1 0 1.081 28.89

1 0 1 0 1.127 29.24

2 0 1 0 1.233 30.01

5 0 1 0 1.54 31.76

ρyS = 0, M = 40.96

0.2 0 1 0 1.075 28.49

0.6 0 1 0 1.137 28.79

1 0 1 0 1.185 29.06

2 0 1 0 1.289 29.65

5 0 1 0 1.558 30.97

ρyS = 0.5, M = 34.86

0.2 0 1 0 1.1 28.48

0.6 0 1 0 1.176 28.74

1 0 1 0 1.233 28.96

2 0 1 0 1.347 29.4

5 0 1 0 1.605 30.29

ρyS = 0.75, M = 32.26

0.2 0 1 0 1.111 28.47

0.6 0 1 0 1.193 28.72

1 0 1 0 1.253 28.92

2 0 1 0 1.372 29.32

5 0.1223 0.8777 0 1.635 30

Table 13: The sensitivity of the optimal portfolio to the correlation between

income and stock with short-sales constraints. The table shows the optimal strategies
for four values of the correlation coefficient between the labor income and the stock return.
The investor has a time preference rate of 0.03, a relative risk aversion of 2, and a 30-year
horizon. No borrowing or short sales are allowed.
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W/y πB πS π0 c/y M̄

ξ0 = 0.045, ξ1 = −0.25 (M = 39.09)

0.2 2.727 6.808 -8.535 1.017 28.85

0.6 1.240 4.220 -4.460 1.110 29.23

1 0.8330 3.355 -3.188 1.177 29.55

2 0.5144 2.456 -1.971 1.308 30.17

5 0.3716 1.559 -0.931 1.607 31.39

ξ0 = 0.04, ξ1 = 0 (M = 38.99)

0.2 5.060 6.793 -10.85 1.016 28.81

0.6 2.788 4.215 -6.003 1.109 29.19

1 2.090 3.353 -4.443 1.176 29.50

2 1.437 2.455 -2.892 1.306 30.12

5 0.903 1.558 -1.461 1.606 31.34

ξ0 = 0.035, ξ1 = 0.25 (M = 38.95)

0.2 7.379 6.774 -13.15 1.013 28.74

0.6 4.330 4.207 -7.537 1.106 29.12

1 3.342 3.346 -5.688 1.173 29.43

2 2.354 2.449 -3.804 1.304 30.05

5 1.429 1.552 -1.981 1.604 31.27

ξ0 = 0.03, ξ1 = 0.5 (M = 38.96)

0.2 9.680 6.743 -15.42 1.009 28.66

0.6 5.861 4.194 -9.055 1.102 29.05

1 4.583 3.334 -6.917 1.169 29.36

2 3.259 2.439 -4.698 1.300 29.98

5 1.941 1.541 -2.482 1.601 31.20

ξ0 = 0.02, ξ1 = 1 (M = 39.13)

0.2 10 6.714 -15.71 0.997 28.46

0.6 8.851 4.143 -11.99 1.090 28.85

1 6.992 3.293 -9.285 1.157 29.17

2 4.997 2.402 -6.399 1.289 29.80

5 2.897 1.507 -3.404 1.594 31.03

Table 14: The sensitivity of the optimal portfolio to the decomposition of the

expected income growth rate with wide portfolio constraints. Risk aversion 2,
30-year horizon...
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W/y πB πS π0 c/y M̄

ξ0 = 0.045, ξ1 = −0.25 (M = 39.09)

0.2 0 1 0 1.083 28.54

0.6 0 1 0 1.150 28.83

1 0 1 0 1.201 29.09

2 0 1 0 1.307 29.63

5 0 1 0 1.571 30.83

ξ0 = 0.04, ξ1 = 0 (M = 38.99)

0.2 0 1 0 1.083 28.49

0.6 0 1 0 1.150 28.78

1 0 1 0 1.201 29.03

2 0 1 0 1.307 29.56

5 0 1 0 1.569 30.75

ξ0 = 0.035, ξ1 = 0.25 (M = 38.95)

0.2 0 1 0 1.084 28.41

0.6 0 1 0 1.149 28.70

1 0 1 0 1.200 28.94

2 0 1 0 1.305 29.47

5 0 1 0 1.567 30.65

ξ0 = 0.03, ξ1 = 0.5 (M = 38.96)

0.2 0 1 0 1.083 28.31

0.6 0 1 0 1.148 28.59

1 0 1 0 1.198 28.84

2 0 1 0 1.303 29.36

5 0 1 0 1.563 30.53

ξ0 = 0.02, ξ1 = 1 (M = 39.13)

0.2 0 1 0 1.080 28.04

0.6 0 1 0 1.143 28.31

1 0 1 0 1.191 28.55

2 0 1 0 1.293 29.07

5 0 1 0 1.552 30.22

Table 15: The sensitivity of the optimal portfolio to the decomposition of the

expected income growth rate with no borrowing. Risk aversion 2, 30-year horizon...
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