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Hedging Basket Options by Using a Subset of
Underlying Assets

Abstract

The purpose of this paper is to investigate the use of Principal Component Analysis in
finding the efficient subset of underlying assets for hedging European basket options. This
asset selection technique can be used together with other hedging strategies to enhance
the hedging performance. Meanwhile, it become practical and essential when some of the
underlying assets are illiquid or even not available to be traded. As an illustration, the
optimal subset of assets is combined with a static hedging strategy that super-replicates
a basket option with plain vanilla options on all the underlying assets with optimal strike
prices. Through the combination of this super-hedging strategy and the newly-developed
asset selection technique, we get a static hedging portfolio consisting of plain vanilla
options only on the subset of dominant assets with optimal strikes. The strikes are
chosen according to certain optimal criteria which depend on the risk attitude of investors
while hedging basket options. The first hedging strategy could be a super-replication to
eliminate all risks. Alternatively given a constraint on the investment into the hedge,
optimal strikes are computed by minimizing a particular risk measure, e.g., variance of the
hedging error or expected shortfall. Hence, the newly-developed static hedging portfolio
by a subset of underlying assets is indeed to gain a tradeoff between the reduced hedging
costs and the successful hedge. Through a numerical analysis, it is concluded that even
without considering transaction costs hedging by using only a subset of assets works well
particularly for in- and at-the-money basket options: a small hedging error is achieved
with a relatively low hedging cost.

Key words: basket options, Principal Component Analysis, super-replication, expected
shortfall.



1 Introduction

A basket option is an option whose payoff is linked to a portfolio or “basket” of underlying
assets. The basket can be any weighted sum of underlyings as long as the weights are
all positive. Various types of basket options have emerged in the market and become
popular as a key tool for reducing risks since the early 1990s. They are either sold
separately over-the-counter or sometimes issued as part of complex financial contracts,
for instance, as “equity-kickers” in bond-like structures.

The typical underlying of a basket option is a basket consisting of several stocks,
indices or currencies. Less frequently, interest rates are also possible. Several reasons
to trade basket options are reported in the literature. The main advantage of basket
options is that they tend to be cheaper than the corresponding portfolio of plain vanilla
options. On one hand, this is due to the fact that usually the underlying assets in
the basket are not perfectly correlated. On the other hand, a basket option minimizes
transaction costs because an investor has to buy only one option instead of several ones.
Thus, a basket option is considered as a cheaper alternative to hedge a risky position
consisting of several assets. In addition, basket options are also ideal for clients who
have a specific view of the market. They may be interested in diversified risk, or have a
view on a particular sector, best expressed by a portfolio of individual stocks. So, the
use of a basket of assets as an underlying allows products to be tailored to clients’ needs.
That’s why the most widespread underlying of a basket option is a basket of stocks that
represents a certain economy sector, industry or region.

The inherent challenge in pricing and hedging basket options stems primarily from
the lack of availability of the distribution of a weighted average of correlated lognormals
to find a closed-form pricing formula and then hedge ratios. An additional difficulty
in evaluating basket options is due to the correlation structure involved in the basket,
which is observed to be volatile over time as is the volatility. However, opposed to
the volatility, correlations are not available in the market and must be estimated from
sometimes scarce option data or from historical time series. Hence, the current common
practice is to assume it to be constant.

So far, several methods have been proposed for hedging basket options. Basically,
they could be classified into three categories. First, numerical methods such as Monte
Carlo simulations are used by Engelmann and Schwendner (2001) [8] to compute Greeks
with the assumption that the market is complete and basket options can be perfectly
replicated. However, the lack of knowledge of the underlying distribution and related
hedge parameters make it in general impossible to perfectly hedge basket options by
buying or selling a portfolio of options on the individual assets. In this context, some
researchers are endeavored to develop partial hedging strategies. For example, in the
second category, some static hedging strategies are found to minimize the variance of
the discrepancy between the final payoffs of the target basket option and the hedging
portfolio: Pellizzari (2004) [23] achieves this objective directly with the help of Monte
Carlo simulation and Ashraff, Tarczon and Wu (1995) [1] develop a variance-minimizing
hedging strategy based on gamma hedging which additionally considers the cross-gamma
effect. In the absence of a perfect hedge, in incomplete markets, the next best thing is the
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least expensive super-replicating strategy. For this purpose, many different methods are
tried: First, both d’Aspremont and El-Ghaoui (2003) [2] and Laurence and Wang (2003)
[18] treat the bound derivation as an optimization problem, in more detail a semi-definite
problem, and solve it through the corresponding dual problem. The obtained bounds in
their independent work are shown to be equivalent although with completely different
approaches. Cherubini and Luciano (2002) [4] derive the upper and lower bounds for
basket options by means of Fréchet bounds in the Copula framework. Furthermore,
Hobson, Laurence and Wang (2004) [13] suggest a super-replicating portfolio based on
Jensen’s inequality.

In this paper, we develop the idea of using only a subset of constituent assets in
hedging basket options. This is motivated by the fact that most of the new contracts are
often related to a large number of underlying assets. In this case, the usual idea of using
all the underlying assets to hedge basket options becomes a huge task. This is not only
computationally expensive, but also creates high transaction costs which greatly reduce
the hedging efficiency. Thus, it is desirable to find a strategy to hedge a basket option at
a reasonable cost. Furthermore, hedging with subset assets becomes more practical and
essential when some of the underlying assets are illiquid or even not available to be traded1.

The same idea is first introduced in Lamberton and Lapeyre (1992) [17]. They
assume that the market is complete such that all the assets including basket options can
be perfectly hedged by a self-financing portfolio. Then the optimal subset of assets is
achieved by minimizing the price difference between the self-financing portfolio and the
hedging portfolio with only a subset of assets. The minimization is in essence a regression
procedure. In turn, the selection of the subset of assets is equivalent to the selection of
variables of a multiple regression. Accordingly, the numerical methods, such as forward,
backward selection algorithms and stepwise regression methods, are recommended. Then,
they design a dynamic approximate hedging portfolio which consists of the plain vanilla
options on the optimal hedging assets. Alternatively, according to Nelken (1999) [15],
the selection of hedging assets is in practice simply due to the liquidity or exposure of
the assets in the basket.

This article is to introduce another approach, Principal Component Analysis (PCA)
to figure out the optimal assets for hedging basket options. PCA is one of the classical
data mining tools to reduce dimensions in multivariate data by choosing the most
effective orthogonal factors to explain the original multivariate variables. This objective
can be easily realized by decomposing the covariance matrix. Thus, this method is quite
easy to implement with almost instant calculation as well as a reasonable accuracy.
So far, this method is applied in finance mainly to identify the multiple risk factors in
portfolio management and to figure out the dominant factor components driving the term
structure movements of at-the-money (ATM) implied volatilities (cf. Fengler, Härdle and
Schmidt (2002) [9]). Furthermore, it is also applied to find a low-rank correlation matrix
nearest to a given correlation matrix. Particularly, Dahl and Benth (2002) [6] develop
a method combining PCA and Quasi Monte Carlo simulations for a fast evaluation of
Asian basket options. The idea is to capture the main or most of the information of the

1This is possible when the underlying is a mutual fund.
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noise term (the covariance structure), which is complicated with a rather large number
of dimensions in both time and asset, by considerably reduced dimensions. They call the
dimension reduction technique as Singular Value Decomposition, which is equivalent to
PCA when the covariance structure is studied. Similarly, PCA is adopted in the present
paper to find the most effective underlying factors that capture the main information of
the basket. Thereafter, one step further is taken to obtain the subset of the underlying
assets that are highly related to these selected factors.

The selection of a subset of assets can be combined with other hedging strategies. In
this paper, as an illustration, it is used together with a static super-hedging strategy.
The basic idea of this static super-hedging strategy is to find a portfolio of plain vanilla
options on the constituent assets of the basket with optimal strikes to super-replicate
the basket option at the lowest cost. Through the combination of this super-hedging
strategy and the newly-designed asset selection technique, we get a static hedging
portfolio consisting of the plain vanilla options on the dominant assets in the basket
in two steps: first find the appropriate set of hedging assets by means of PCA; and
then figure out the optimal strikes of the options on the chosen subset of underlying assets.

Surely, a subset could not perfectly tract the original underlying basket and could
leave some risk exposure uncovered. Hence, any hedging strategy with subset assets in
the basket is actually a hedging portfolio in an incomplete market. The incompleteness
is due to impracticability or impossibility of trading in all the underlying assets. In this
context, the above two-step hedge strategy is modified to satisfy different optimality
criteria by choosing strikes. The criterion depends on the risk attitude of investors
while hedging basket options. They may favor a super-replication hedging portfolio to
eliminate all risks. Alternatively with a constraint on the hedging cost at the initial date,
optimal strikes are computed by minimizing a particular risk measure, e.g., variance of
the hedging error or expected shortfall. In any case, one has an optimization problem
to solve. Due to the lack of the distribution of the underlying basket, all the hedging
strategies are numerically obtained through running Monte Carlo simulation. As shown
by the numerical results, hedging error (measured by expected shortfall) at the maturity
date decreases with the optimal strikes and hence the hedging cost. As a result, the
new-proposed static hedging portfolio by the subset of underlying assets is to gain a
tradeoff between the reduced hedging costs and the overall super-replication. In general,
the hedging performance is better for in- and at-the-money basket options such that a
small hedging error is achieved by investing a relatively lower hedging capital.

The remainder of the paper is organized as follows: Section 2 defines the assumptions
and notations. In Section 3 the multivariate statistical method, PCA, is applied to select
the optimal subset of assets for hedging basket options after a brief introduction of the
required knowledge on this method. Then a two-step static hedging strategy is developed
in Section 4 by combining a static super-hedging strategy with the optimal subset of
assets. Numerical results are reported in Section 5. Finally, Section 6 concludes the
paper.
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2 Assumptions and Notations

We consider a financial market with continuous trading where all trading takes place in
the finite time period [0, T ]. The market consists of N risky assets Si, i = 1, · · · , N and
a risk free asset denoted by B which is usually called bank account. The dynamics of
the bank account, which is continuously compounded with a constant positive risk free
interest rate r ≥ 0, are given by

dB(t) = rB(t)dt.

To model the N risky assets, we define the standard N -dimensional Wiener process
W = (W1(t), · · · , WN(t)) on the filtered probability space (Ω,Ft,Q), where Q is the risk-
neutral probability measure. As often assumed in the literature, the price process of each
risky asset Si, i = 1, · · · , N follows a geometric Brownian motion and one-dimensional
Brownian motions, Wi, i = 1, · · · , N , are correlated with each other according to a con-
stant parameter. More explicitly, under the risk-neutral probability measure Q we have

dSi(t) = (r − qi)Si(t)dt + σiSi(t)dWi(t) i = 1, · · · , N

ρijdt = dWi(t)dWj(t) i 6= j,

where σi and qi are the volatility and continuously compounded dividend yield of asset
i, respectively and ρi,j ∈ [−1, 1] denotes the constant correlation between assets i and j.
Additionally, the determinant of the corresponding correlation structure is assumed to
be unequal to 0 to ensure the completeness of the market.

In addition to the above-mentioned primary assets, there are also T -contingent claims,
such as plain vanilla calls on each risky asset Si with strike price k ∈ K(i), the set of all
strike prices traded in the market, and maturity date T

C
(i)
T (k) = (Si(T )− k)+, i = 1, · · · , N,

as well as a basket call option on all the N risky assets with the same maturity date T
and strike price K

BCT (K) =

(
N∑

i=1

ωiSi(T )−K

)+

,

where each risky asset is weighted by a positive constant ωi, i = 1, · · · , N . That is, if∑N
i=1 ωiSi(T ), the sum of asset prices Si weighted by positive constants ωi at date T , is

more than K, the payoff equals the difference; otherwise, the payoff is zero.

Assuming that the Black-Scholes (BS) model is valid, the price of each plain vanilla
call option on asset i is given by

C
(i)
0 (k) = e−qiT Si(0)Φ(d1)− e−rT kΦ(d2), i = 1, · · · , N

where d1 =
ln Si(0)

k
+ (r − qi + 1

2
σ2

i )T

σi

√
T

, d2 = d1 − σi

√
T and Φ(y) =

1√
2π

∫ y

−∞
e−

z2

2 dz

cumulative distribution function of the standard normal distribution.

5



In the present paper, only the hedging method on a basket call option is concerned.
However, as pointed out by Laurence and Wang (2003) [18] and Deelstra, Liinev and
Vanmaele (2004) [7], there is a put-call parity result for basket options, which is given by(

K −
N∑

i=1

ωiSi(T )

)+

=

(
N∑

i=1

ωiSi(T )−K

)+

+

(
K −

N∑
i=1

ωiSi(T )

)
.

Hence, a hedging strategy on a basket call option can be translated directly into one on
the corresponding basket put option.

To measure the effectiveness of a hedging portfolio (HP), the hedging cost (HC) is
defined as the price of the hedging portfolio at the initial date 0. Meanwhile, the hedging
error at the maturity date T is simply denoted as HE, giving the difference between the
payoffs of the basket option and the hedging portfolio, i.e., BCT (K)−HPT .

3 Optimal Asset Selection

In this section we are dealing with the selection of a subset of underlying assets to hedge
basket options. Given the multi-dimensional nature of basket options, the derived hedging
strategy is often composed of all the underlying assets. In practice, the underlyings in the
contract are differently weighted and sometimes some with pretty small weights. Thus,
one can simply hedge such basket options by neglecting those assets. However, it is rather
arbitrary and lacks a theoretical foundation for the general case. This paper is to offer a
criterion for assets selection. For this purpose, a method, Principal Component Analysis
(PCA), is introduced.

3.1 Principal Component Analysis and Application to Basket
Options Hedging

PCA is a popular method for dimensionality reduction in multivariate data analysis.
Thus, it is useful in visualizing multidimensional data, and most importantly, identifying
the underlying principal factors of the original variables. PCA is originated by Pearson
[21] and proposed later by Hotelling [14] for the specific adaptations to correlation
structure analysis. Its idea has been well described, among others, in Harman (1967)
[10], Härdle and Simar (2003) [11] and Srirastava and Khatri (1979) [25]. We follow here
the lines of Härdle and Simar (2003).

The main objective of PCA is to reduce the dimensionality of a data set without a
significant loss of information. This is achieved by decomposing the covariance matrix into
a vector of eigenvalues ordered by importance and eigenvectors. To be precise, consider
the asset prices vector S = (S1, · · · , SN)T with

E(S) = µ and V ar(S) = Σ = E
[
(S − µ)(S − µ)T

]
.

PCA is to decompose the covariance matrix into its eigenvalues and eigenvectors as

Σ = ΓΛΓT , (1)
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where Λ = diag(λ1, · · · , λN) is the diagonal eigenvalue matrix with λ1 > · · · > λN and Γ
the matrix of corresponding eigenvectors

Γ =


γ11 γ12 · · · γ1N

γ21 γ22 · · · γ2N
...

...
. . .

...
γN1 γN2 · · · γNN


or simply (γ1, · · · , γN) given by the columns of the matrix. Principal Components trans-
formation is then defined as the product of the eigenvectors and the original matrix less
mean vector

P = ΓT (S − µ). (2)

That is, the PC transformation is a linear transformation of the underlying assets. Its
elements P1, · · · , PN are named as i-th Principal Components (PCs) since they can be
considered as the underlying factors that influence the underlying assets with decreasing
significance as measured by the size of the corresponding eigenvalues.

The ability of the first N1 (N1 < N) PCs to explain the variation in data is measured
by the relative proportion of the cumulated sum of eigenvalues

πN1 =

∑N1

j=1 λj∑N
j=1 λj

.

If a satisfactory percentage of the total variance has been accounted for the first few
components, the remaining PCs can be ignored as the assets are already well represented
without significant loss of information. The usual practice is to choose the first N1 PCs
that account for over 75% of the variance or simply identify N1 = 3 for the convenience
of visualizing the data.

The weighting of the PCs, or simply the element of each eigenvector, describes how the
original variables are interpreted by the factors. This could be validated by considering
the covariance between the PC vector P and the original vector S

Cov(S, P ) = E(SP T )− ESEP T (3)

= E(SST Γ)− µµT Γ

= ΣΓ

= ΓΛΓT Γ

= ΓΛ.

It implies that the correlation rij = ρSi,Pj
between the variable Si and the PC Pj is2

rij =
γijλj

(σ2
Si

λj)1/2
= γij

(
λj

σ2
i

)1/2

.

Clearly, γij is proportional to the covariance of asset Si and Pj. The higher it is, the
more related is the i-th asset to the j-th PC. Hence, γij are usually called as factor

2Note that V ar(Pj) = λj . For the detailed derivation please check the referred books.
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loadings, interpreting the relationship between the original variables Si, i = 1, · · · , N and
the derived factors, i.e., PCs Pj, j = 1, · · · , N1. The standard practice is to calculate
r2
ij and then take the value as the proportion of variance of Si explained by Pj. This is

verified by first
N∑

j=1

λjγ
2
ij = γT

i Λγi

the (i, i)-element of the matrix ΓΛΓT = Σ and indeed

N∑
j=1

r2
ij =

∑N
j=1 λjγ

2
ij

σ2
i

=
σ2

i

σ2
i

= 1.

It should be noted that the PCs are not scale invariant, e.g., the PCs derived from
the covariance matrix give different results when the variables take different scales.
Consequently, instead of the covariance matrix, the correlation matrix is recommended
to be decomposed.

Now based on the principle of PCA, asset selection could be completed in four steps
as follows:

• Step I: Find the covariance matrix of the underlying assets.

As assumed in Section 2, each underlying asset follows a geometric Brownian motion.
Written in matrix form, we have

dSt = d


S1(t)
S2(t)

...
SN (t)

 =


S1(t)
S2(t)

...
SN (t)

 rdt +


σ1S1(t)dW1(t)
σ2S2(t)dW2(t)

...
σNSN (t)dWN (t)


by assuming the dividend is zero3. And the covariance of weighted assets is given

by

Cov(dωS) =


ω2

1σ2
1S2

1(t) ω1ω2σ1σ2ρ12S1(t)S2(t) · · · ω1ωNσ1σNρ1NS1(t)SN (t)
ω1ω2σ1σ2ρ12S1(t)S2(t) ω2

2σ2
2S2

2(t) · · · ω2ωNσ2σNρ2NS2(t)SN (t)
...

...
. . .

...
ω1ωNσ1σNρ1NS1(t)SN (t) ω2ωNσ2σNρ2NS2(t)SN (t) · · · ω2

Nσ2
NS2

N (t)

 dt.

If this covariance is to be studied by PCA, that means we evaluate the covariance
of the change of the basket, instead of the basket. Indeed, it serves as a trick since
the covariance of the basket with multivariates of lognormal distribution is rather
complicated. Because of the properties of the geometric Brownian motion, the
procedure is simplified and the effects of the involved parameters on the basket
option price are maintained. However, one problem to be fixed here is what
non-anticipating value should be taken for Si(t).

3The calculation procedure is actually the same for the case with a constant continuous dividend rate
since dividends have no any effect on the covariance structure.
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The direct means is to consider the ratio of dωS
S such that asset prices Si(t) are

cancelled out in the covariance structure as below

Cov(
dωS
S

) =


ω2

1σ2
1 ω1ω2σ1σ2ρ12 · · · ω1ωNσ1σNρ1N

ω1ω2σ1σ2ρ12 ω2
2σ2

2 · · · ω2ωNσ2σNρ2N

...
...

. . .
...

ω1ωNσ1σNρ1N ω2ωNσ2σNρ2N · · · ω2
Nσ2

N

 dt.

This covariance structure should work well except for the case in which the spot
prices of the underlying assets differ significantly from one another, where the
underlying asset with the extremely high price should be considered in any case
(even with a relatively low volatility) due to its absolute dominant effect on the
basket option price.

Contrary to the usual practice of decomposing the correlation matrix as rec-
ommended in PCA text books, the modified covariance matrix is used in this
application. This is motivated by the fact that weights and individual asset
volatilities do have a great impact on the price of the basket option.

In practice, this step is done by first studying the time series of the asset price to
achieve the basic correlation structure and the (ATM) volatility of all the underlying
assets as those given above4. Then combine these structures further with weights
to obtain the modified covariance structure.

• Step II: Decompose the covariance matrix into the eigenvalue vector ordered by
importance and the corresponding eigenvectors. This evaluation procedure could
be easily done by many programs such as Matlab, Mathematica and C++ etc.

• Step III: Choose principal components according to the cumulative proportion of
the explained variance.

• Step IV: Select the optimal subset of N1 underlying assets by examining the cumu-
lative r2 for each asset with the principal components chosen in the previous step.
The selection can be done in two ways: First, if the number of hedging assets, N1,
is beforehand determined, the list of least important assets is checked out after a
comparison of cumulative r2. If there is no prior requirement on the number of
assets, a more careful study of the cumulative r2 has to be done to find the most
effective assets.

4 Combination of Asset Selection and a Static Super-

Hedging Strategy

The selection of the optimal subset of assets can be used together with other hedging
methods. Here in this paper, we are going to combine it with a static super-hedging
portfolio that is going to be developed in the next subsection.

4Due to the complexity of volatility, traders and analysts have developed rules of thumb: using ATM
volatility for each component asset to price basket options
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4.1 A Static Super-Hedging Strategy for Basket Options

This super-hedging portfolio, i.e., the least expensive super-replicating portfolio, consists
of plain vanilla call options on all the constituent assets traded in the market with optimal
strike price. This method is first derived in an idealized situation where all the option
prices on the constituent assets with a continuum of strikes are known. That is, K(i),
the set of all strike prices of options traded in the market on the underlying asset Si,
is a continuum interval. With this full information, the portfolio could be obtained by
simply solving a Lagrangian problem in the BS framework. However, calls are traded
only with a limited number of strikes in practice. The above obtained portfolio thus has
to be calibrated accordingly. The calibration procedure could be named as “convexity
correction”, approximating the option’s price with the optimal strike by two options with
two neighboring strikes.

4.1.1 Hedging with a Continuum of Strikes

The objective of this method is to find a super-hedging portfolio whose final payoff is
always larger than that of a basket call option. This idea is stimulated by Jensen’s
inequality for the final payoff of a basket call option:

BCT (K) =

(
N∑

i=1

ωiSi(T )−K

)+

=

[
N∑

i=1

ωi

(
Si(T )− bi

ωi

K

)]+

≤
N∑

i=1

ωi

(
Si(T )− bi

ωi

K

)+

.

The first transformation is to take ωi out of the bracket and this is fulfilled if and only if∑N
i=1 bi = 1 and the second one is due to Jensen’s inequality. That means, the payoff of

any portfolio consisting of N plain vanilla call options is larger or at least equal to that
of the corresponding basket call option. Moreover, as a consequence of the no-arbitrage
assumption, the price of a financial product is given by the discounted expected final
payoff under the risk-neutral measure. We could then find the corresponding relationship
between the price of a basket call option and that of the hedging portfolio

e−rT E

( N∑
i=1

ωiSi(T )−K

)+
 ≤ N∑

i=1

ωie
−rT E

[(
Si(T )− bi

ωi

K

)+
]

. (4)

For the purpose of hedging, we would like to look for a portfolio of plain vanilla
call options with the optimal strike prices which depend on the choice of the bi’s such
that it is the cheapest hedging strategy to dominate the final payoff of a basket call option.

Hence, we now have a minimization problem to solve: minimize the price of a weighted
portfolio of standard options with respect to bi’s subject to the condition that the sum of
bi’s is equal to 1.

min
bi

N∑
i=1

ωie
−rT E

[(
Si(T )− bi

ωi

K

)+
]

(5)

s.t.
N∑

i=1

bi = 1.
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Its solution, i.e., the optimal sequence of weights b∗i , is given by the following proposition5.

Proposition 4.1. Suppose the underlying assets of a basket option follow geometric
Brownian motions and the Black-Scholes model is valid, then the optimal b∗i ’s satisfy-
ing

BC0(K) ≤
N∑

i=1

ωie
−rT E

[(
Si(T )− b∗i

ωi

K

)+
]

are uniquely obtained by solving a set of equations:

bi =
ωiSi

K

(
b1K

ω1S1

) σi
σ1

exp

{
T

[(
1− σi

σ1

)(
r +

1

2
σ1σi

)
+

(
σi

σ1

q1 − qi

)]}
(6)

N∑
i=1

bi = 1.

4.1.2 Hedging with a Discrete Set of Strikes

In practice, K(i), the set of all strike prices of options traded in the market on the underly-
ing asset Si, is often not a continuum range or interval, but a discrete set. Hence, a direct
impact on the hedging portfolio is caused since the optimal hedging product may not exist.

Recall that one of the properties of a convex function is that for any c ∈ (a, b) such
that c = β ∗ a + (1− β) ∗ b where β ∈ [0, 1], the following holds

ϕ(c) ≤ βϕ(a) + (1− β)ϕ(b),

where ϕ(.) is a convex function. That is, the value of the convex function at a particular
point is bounded from above by a linear interpolation of the two neighboring values. This
could be used to maintain the super-replication feature of the desired hedging portfolio
since the Black-Scholes call option price is well-known to be convex with respect to the
strike price.

To illustrate it in our case, we define K(i) = (k
(i)
0 , k

(i)
1 , · · · , k

(i)
m ) the set of the traded

m + 1 strikes in increasing order, i.e., k
(i)
j < k

(i)
j+1 for j + 1 ≤ m and k

(i)
0 = 0, i.e., the

least possible strike is such that the call option is the asset itself. Assume the former
achieved optimal strikes are not always traded in the market. For those assets whose call
options with strike price k

(i)
optimal =

b∗i
ωi

K are not traded, one can replace them by a linear

combination of two call option prices with the neighboring strikes k
(i)
j and k

(i)
j+1 such that

C(i)(k
(i)
optimal) ≤ β∗C(i)(k

(i)
j ) + (1− β∗)C(i)(k

(i)
j+1),

where β∗ =
k
(i)
optimal−k

(i)
j+1

k
(i)
optimal−k

(i)
j

. In this way, the upper bound for a basket call option can be

5Its proof is provided in Appendix.
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generally expressed as

∑
k
(i)
optimaltraded

ωie
−rT E

[(
Si(T )− b∗i

ωi
K

)+
]

+

∑
k
(i)
optimalnon-traded

ωie
−rT

(
β∗E

[(
Si(T )− k

(i)
j

)+
]

+ (1− β∗)E
[(

Si(T )− k
(i)
j+1

)+
])

.

Hence when only a limited number of strikes are traded on each asset, one can still find
a super-hedging strategy that consists of one or two traded calls on each constituent asset.

In all, this hedging portfolio is an upper bound. Thus, all the risks are avoided,
which is the second best for risk managers as the first best, perfect hedging, is almost
impossible or complicated for basket options. Meanwhile, the hedging portfolio consists
of a portfolio of plain vanilla options, thus is independent of the correlation structure
between assets. As mentioned above, one of the difficulty of basket options hedging
lies in controlling the correlation structure. Furthermore, the lack of reliable data on
correlation worsens the problem. Consequently, it is favorable to achieve a hedging
method independent of correlations. As easily observed, if the underlying assets are
perfectly correlated, the upper bound is exactly equal to the price of the basket option.
In this case, it is a perfect hedge. In the case of high correlation, for example when all
the constituent stocks belong to the same industry, a high performance can be expected.
However, in the case of low correlations, then it may perform not that well, which
additionally serves as the underlying reason for introducing the idea of hedging by only
a subset of assets to reduce the relatively large difference between the final payoffs of
basket options and the hedging portfolio.

The similar idea is applied by Nielsen and Sandmann (2003) [20] to derive an upper
bound for Asian options; and also by Hobson, Laurence and Wang (2004) [13] to super-
hedge basket options. In the latter paper, this problem is analyzed in a general framework
for obtaining a model-independent super-hedging portfolio, thus with a focus on proving
the existence of such a super-hedging strategy, but without any hint on the form of the
solution.

4.2 Combination of Asset Selection and the Static Super-
hedging Strategy

In this subsection, some new two-step static hedging methods are proposed by following
the idea of the above super-hedging strategy. First, the optimal subset of assets are picked
out by PCA. Then, the hedging portfolio is proposed to be composed of the call options
written on these N1 most important underlying assets in the basket with the optimal
strikes according to certain optimality criteria, which is defined through risk measures.
The obtained hedging strategies are indeed to gain a trade-off between reduced hedging
costs and the overall super-replication on basket options.
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4.2.1 Problem Formulation

As the first step of the newly-designed static hedging method, PCA is utilized to find the
subset of important assets in the basket. In this way, all the underlying assets are newly
indexed and regrouped into two subsets: one subset of N1 assets of high significance Sj,
where j = 1, · · · , N1 and one with the other N −N1 assets Sj, where j = N1 + 1, · · · , N .
Then the final payoff of the basket option can be rewritten as

 N∑
j=1

ωjSj(T )−K

+

=(A)

 N1∑
j=1

ωjSj(T )− λK +
N∑

j=N1+1

ωjSj(T )− (1− λ)K

+

≤(B)

 N1∑
j=1

ωjSj(T )− λK

+

︸ ︷︷ ︸
I

+

 N∑
j=N1+1

ωjSj(T )− (1− λ)K

+

︸ ︷︷ ︸
II

PN1
j=1 αj=1

=PN
j=N1+1 βj=1

 N1∑
j=1

ωj

(
Sj(T )− αj

ωj
λK

)+

+

 N∑
j=N1+1

ωj

(
Sj(T )− βj

ωj
(1− λ)K

)+

≤(C)

N1∑
j=1

ωj

(
Sj(T )− αj

ωj
λK

)+

︸ ︷︷ ︸
I′

+
N∑

j=N1+1

ωj

(
Sj(T )− βj

ωj
(1− λ)K

)+

︸ ︷︷ ︸
II′

. (7)

That is, a basket call option’s payoff is always dominated by two portfolios of plain
vanilla call options denoted as I ′ and II ′ in (C). This result is achieved by applying two
times Jensen’s inequality in (B) and (C), respectively. Serving as a trick for the further
derivation, the strike of the basket option K is in (A) split into λK and (1− λ)K where
λ ∈ [0, 1] such that the final payoff of the basket option is first dominated by two basket
call options on the two disjoint subsets of the original underlying assets as is expressed in
(B). Then following the same idea as in the previous section, one could find portfolios of
plain vanilla call options to further dominate the two basket options. Clearly, if N1 = N
and λ = 1 (or N1 = 0 and λ = 0), the obtained hedging portfolio consists of all the under-
lying assets. That is, hedging with all the assets discussed in Section 4.2 is one special case.

With the assumption of no arbitrage, we can get the same relationship for the price at
the initial date, time 0, of the basket option and the portfolio of plain vanilla call options,
after taking expectations and discounting their final payoffs:

BC0(K) ≤
N1∑
j=1

ωje
−rT E

[(
Sj(T )− αj

ωj
λK

)+
]

︸ ︷︷ ︸
I′

+
N∑

j=N1+1

ωje
−rT E

[(
Sj(T )− βj

ωj
(1− λ)K

)+
]

︸ ︷︷ ︸
II′

. (8)

Since the new hedging portfolio is only related to the dominant assets, our concern
here is simply on part I ′. Obviously for each given value of λ ∈ [0, 1], one can follow
the calculating process given in Section 4.1 to find the optimal α∗j to super-replicate the
basket option on the dominant assets with strike λK. Thus, in the second step, we have
to search for the optimal λ∗ to cover as well as possible the risks that basket options are

exposed to, and thus the corresponding optimal strike prices
α∗

j

ωj
λ∗K of the plain vanilla
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calls in the hedging portfolio.

As mentioned in the Introduction, hedging basket options by using subset underlying
assets is indeed a hedge in the incomplete market where the incompleteness is resulted from
impracticability and impossibility of trading in all the underlying assets. Consequently,
a perfect replication would be impossible or quite difficult. In this context, hedges are
derived through optimization to satisfy certain optimality criteria.

4.2.2 Static Hedging Strategies with Subset Underlying Assets

Basically, the optimality criteria depend on the risk attitude of investors and are defined
by particular risk measures. For instance, the criteria considered in the paper are to
achieve super-replication, minimum variance of the hedging error or minimum expected
shortfall given a certain initial hedging cost.

Criterion 1: To Super-Replicate the Basket Option The first constraint im-
posed on part I ′ is to maintain the price at the maturity date of the hedging portfolio
always higher than that of the basket option. Hence, this hedging portfolio is to achieve
super-replication which eliminates all the risks of holding a basket option. This is ob-
tained through an optimization with the constraint of no possible sub-replication. More
explicitly,

min
λ, αj

N1∑
j=1

ωje
−rT E

[(
Sj(T )− αj

ωj
λK

)+
]

︸ ︷︷ ︸
I′

(9)

s.t. IP

 N1∑
j=1

ωje
−rT

(
Sj(T )− αj

ωj
λK

)+

>

 N∑
j=1

ωjSj(T )−K

+ ≥ 1 (10)

N1∑
j=1

αj = 1.

In this way, the obtained hedging portfolio by using subset assets is composed of the
vanilla options on the subset hedging assets with the optimal strike prices such that the
basket options are super-replicated. However from a practical point of view, this hedging
portfolio may be not that effective and requires a high hedging cost. This is partly
due to the property of super-hedging portfolio whose hedging costs have to be high for
staying always on the safe side. In addition, since the hedging portfolio is composed of
only those significant assets, more capital has to be input for the risks resulted from
neglecting those insignificant assets. As a result, partial hedging strategies may be taken
to gain the tradeoff of reduced hedging costs and overall super-replication.

Criterion 2: To Minimize the Variance of the Hedging Error Given HC =
BC0(K) When investing less capital, the hedge is to minimize the remaining risks. Here
in this case, the shortfall risk is measured by the variance of the hedging error. Namely,
a hedging portfolio is obtained to minimize the variance of the hedging error when the
hedging cost is constrained to be exactly the basket option price. Formally, it is expressed
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as

min
kj

E

( N∑
j=1

ωjSj(T )−K
)+

−
N1∑
j=1

ωj (Sj(T )− kj)
+

2 (11)

s.t. e−rT E
[( N∑

j=1

ωjSj(T )−K
)+]

=
N1∑
j=1

ωje
−rT E

[
(Sj(T )− kj)

+] (12)

kj ≥ 0 ∀ j = 1, · · · , N1

One may observe, the control variables here are not λ and α’s. Instead, this optimization
problem is reformulated by directly searching the optimal strikes k’s of the hedging port-
folio. This nevertheless gives the same result but considerably simplifies the computation.

Criterion 3: To Minimize the Expected Shortfall Given a Certain Hedging
Cost One main drawback of this quadratic criterion is that it punishes both positive and
negative difference between the hedging portfolio and the basket option. Actually for the
purpose of hedging, only negative difference is not favored. To avoid such a problem,
some other effective risk measures could be considered. The expected shortfall (ES) is in
the context of hedging basket option defined as E[(BCT −HPT )+]. Obviously, it accounts
only the positive hedging error. Meanwhile as a risk measure, it takes into account not
only the probability of exposed risks but also its size. Hence, it is often used recently in
the literature as a risk indicator. In this case, the optimization problem becomes then as
follows:

min
kj

E

( N∑
j=1

ωjSj(T )−K
)+

−
N1∑
j=1

ωj (Sj(T )− kj)
+

+ (13)

s.t.

N1∑
j=1

ωje
−rT E

[
(Sj(T )− kj)

+] ≤ V0 (14)

kj ≥ 0 ∀ j = 1, · · · , N1,

where V0 is the maximal capital that investors would like to input to hedge the basket
option.

In summary, the newly-designed hedging portfolio is composed of the plain vanilla
call options on only dominant underlying assets in the basket with optimal strikes. This
hedging portfolio is achieved by first identifying the subset of hedging assets by means of
PCA, and then figuring out the optimal strikes for the call options on these assets based
on different optimality criteria, i.e. super-replication, minimum variance or minimum
ES given a certain investment into the hedge. The criteria chosen depend on the risk
attitude of investors when hedging basket options. The more risk averse he is, the tighter
the criterion on the hedging error is, and the more probable the hedging portfolio with
subset assets super-hedges basket options. In this context, all these static hedging strategy
is to find the compromise between reduced hedging costs and the overall super-replication.
It is worth mentioning that all the optimization problems above are solved numerically
by running Monte Carlo simulations due to the lack of a distribution of the underlying
basket.

15



5 Numerical Results

In this section we will give some numerical results of this new two-step static hedging
strategy. Here we use the example that is first presented in Milevsky and Posner (1998)
[19]. Basically, it is an index-linked guaranteed investment certificate offered by Canada
Trust Co., fusing a zero coupon bond with a basket option that is stuck at the spot rate
of the underlying indices. Here we are interested in hedging the embedded basket option
of a weighted average of the renormalized G-7 indices as

BC(T ) =

(
7∑

i=1

ωi
Si(T )

Si(t)
− 1

)+

.

That is, effectively, a call option on the rate of return of a basket of indices. The necessary
pricing parameters are given in Table 1 and 2. In addition to the data given above for
the basket option, a flat and constant interest rate of 6.3% is assumed6.

weight volatility dividend yield
country index (in %) (in %) (in %)
Canada TSE 100 10 11.55 1.69
France CAC 40 15 20.68 2.39
Germany DAX 15 14.53 1.36
U.K. FTSE 100 10 14.62 3.62
Italy MIB 30 5 17.99 1.92
Japan Nikkei 225 20 15.59 0.81
U.S. S&P 500 25 15.68 1.66

Table 1: G-7 Index-linked Guaranteed Investment Certificate

Canada France Germany U.K. Italy Japan U.S.
Canada 1.00 0.35 0.10 0.27 0.04 0.17 0.71
France 0.35 1.00 0.39 0.27 0.50 -0.08 0.15

Germany 0.10 0.39 1.00 0.53 0.70 -0.23 0.09
U.K. 0.27 0.27 0.53 1.00 0.46 -0.22 0.32
Italy 0.04 0.50 0.70 0.46 1.00 -0.29 0.13
Japan 0.17 -0.08 -0.23 -0.22 -0.29 1.00 -0.03
U.S. 0.71 0.15 0.09 0.32 0.13 -0.03 1.00

Table 2: Correlation Structure of G-7 Index-linked Guaranteed Investment Certificate

5.1 Asset Selection Through PCA

Given the data above, the covariance structure of G-7 Index-linked guaranteed invest-
ment certificate is easily calculated as the product of weights, variance and correlation

6One important issue has to be mentioned for this illustrative example. Since the underlying assets are
stock indices of different countries, exchange rate risks between the different currencies will be involved in
the basket options pricing and hedging. Here, in order to focus fully on the hedging issue, we neglect this
risk by simply assuming that all the indices are traded in the market denominated in the same currency.
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matrix. An implementation of the decomposition on this modified covariance gives then
the eigenvalue vector in the order of significance

λ = (0.0017453, 0.0011528, 0.00089155, 0.00038515, 0.00011805, 0.000054436, 0.000026893)T ,

and the eigenvectors γj by the columns of the matrix

Γ =



0.20343 −0.081831 0.084609 −0.043365 0.068215 0.86423 0.43742
0.34734 0.52281 0.64216 −0.42132 0.016241 −0.062038 −0.10967
0.17536 0.36359 0.1157 0.78463 −0.38794 0.14753 −0.18911
0.16872 0.12967 −0.0061681 0.34844 0.90951 −0.051608 −0.058339

0.080311 0.15239 0.046137 0.16156 −0.067293 −0.43374 0.8657
−0.1257 −0.62724 0.72511 0.23806 0.02119 −0.088621 −0.0037514
0.86977 −0.39282 −0.19783 −0.027897 −0.11138 −0.16985 −0.089545


.

Now with the knowledge of eigenvalues and eigenvectors, one can determine the
most significant factors according to the (cumulative) proportions of explained vari-
ance. As the result in Table 3 shows, the first PC already explains around 40%
of the total variation. An additional 46% is captured by the second and the third
PCs. The fourth PC explains a considerably smaller amount of total volatility. Thus,
the three dominant PCs together account for more than 87% of the total variation
associated with all 7 assets. This suggests that we can capture most of the variability
in the data by choosing the first three principal components and neglecting the other four.

eigenvalue proportion of variance cumulated proportion
0.0017453 0.399 0.399
0.0011528 0.26355 0.66255
0.00089155 0.20382 0.86637
0.00038515 0.08805 0.95442
0.00011805 0.026987 0.98141
0.000054436 0.012445 0.99385
0.000026893 0.0061481 1

Table 3: Proportion of Variance Explained by PCs

Then the final step is to find the optimal subset of the underlying assets by checking
the cumulative r2 of each asset with the important three components given in Table 4.
If two assets are planned to be used in the hedging portfolio, we have to find out the
five least important assets from the basket. To achieve this result, the individual r2 with
the first three PCs and the cumulative r2 are reported in Table 4. Obviously, assets
S1 (Canada TSE 100), S2 (France CAC 40), S3 (Germany DAX), S4 (U.K. FTSE 100)
and S5 (Italy MIB 30) appear to be the least important ones. As a result, the subset of
optimal hedging assets is composed of S6 (Japan Nikkei 225) and S7 (U.S. S&P 500).
If the restriction of the number of assets is relaxed, one can order the assets in the
list of significance: S7, S6, S2, S1, S5, S3 and S4. Besides, an obvious division can be
found between S1 and S2 as indicated by the large discrepancy of the cumulative r2 (the
difference between 92.84% and 64.71%). Therefore, we can finally determine the subset
of assets for the purpose of hedging consisting of three assets of S2 (France CAC 40), S6
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(Japan Nikkei 225) and S7 (U.S. S&P 500).

ri1 ri2 ri3 r2
i1 + r2

i2 + r2
i3

S1 0.73580 -0.24055 0.21873 0.64711
S2 0.46779 0.57224 0.61812 0.92836
S3 0.33612 0.56641 0.15851 0.45893
S4 0.48211 0.30115 -0.012597 0.32328
S5 0.37300 0.57523 0.15315 0.49347
S6 -0.16842 -0.68302 0.69438 0.97705
S7 0.92694 -0.34024 -0.15069 0.99769

Table 4: Correlation Between the Original Variables and the PCs

5.2 Static Hedging with the Selected Three Dominant Assets

Now with the selected assets, the static hedging strategy could be achieved by figuring
out the optimal strikes for the call options on these assets based on the calculating
procedure given in the former section. In the following, only the numerical results of
hedging portfolios with three assets are shown.7 Generally, hedging with three assets
works better than that with two assets due to the importance of S2 in the basket as
analyzed in Section 5.1. Moreover, as the weights in the basket are not changed after
assets selection, the hedging subset surely better duplicates the original basket when
more assets are included in the hedging portfolio. Nevertheless, the proper number of
assets should be chosen in practice by comparing the additional hedging cost and the
reduced hedging error.

To give a hint of the performance of this new static hedging method, the hedging
cost is compared to the basket options price. All the basket option prices and the
corresponding hedging portfolios are obtained numerically by Monte Carlo simulations
with the number of simulated paths equal to 500, 000. Such a simulation procedure
guarantees that the basket option price is relatively accurate to the fourth digits as shown
in Table 5. In addition to the hedging cost, the expected value of the hedging errors at
the maturity date is reported for each hedging portfolio to account for the hedging effect.
Based on the definition in Section 2, negative hedging errors are favorable, suggesting
that the basket option is well hedged with no risk exposure any more. Meanwhile, a
special attention is given to the ES which plays a major role as a risk indicator to measure
the hedging result. Especially, we vary the strike of this basket option with different
values as K ∈ {0.90, 0.95, 1.00, 1.05, 1.10} and the maturity date as T ∈ {1, 3, 5, 10} years
to gain an overall view of the hedging performance crossing maturities and strikes.

Table 6 presents the results of the static super-hedge portfolio with only three assets
based on the first criterion. First, super-replication is not available for those options
with long maturity of 5 and 10 years due to large volatility involved with long time.
Otherwise, this hedging strategy well dominates basket options, as shown by negative

7The results for hedging with 2 assets are given if required.
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T = 1 T = 3 T = 5 T = 10
K = 1.10 0.00014 0.00026 0.00038 0.00071
K = 1.05 0.00013 0.00025 0.00037 0.00070
K = 1.00 0.00011 0.00024 0.00036 0.00070
K = 0.95 0.00009 0.00022 0.00034 0.00069
K = 0.90 0.00006 0.00020 0.00033 0.00068

Table 5: Standard Error of MC Simulation for Basket Options with 500, 000 Simulations

Table 6: Super-Hedging Portfolio with Three Dominant Assets

K T BC λ∗K HC E[HE] k2 k5 k7

0.90
1 0.1398 0.3033 0.3062 -0.1773 0.4217 0.5371 0.5305
3 0.2080 0.0288 0.5490 -0.4119 0.0206 0.0585 0.0560

0.95
1 0.0978 0.3477 0.2644 -0.1775 0.4994 0.6102 0.6030
3 0.1714 0.0845 0.5030 -0.4006 0.0810 0.1642 0.1582

1.00
1 0.0625 0.4060 0.2099 -0.1569 0.6048 0.7049 0.6972
3 0.1374 0.0570 0.5254 -0.4687 0.0492 0.1127 0.1084

1.05
1 0.0358 0.4316 0.1861 -0.1601 0.6520 0.7460 0.7382
3 0.1077 0.1848 0.4194 -0.3765 0.2166 0.3447 0.3335

1.10
1 0.0185 0.4961 0.1282 -0.1168 0.7741 0.8490 0.8407
3 0.0826 0.1683 0.4336 -0.4240 0.1926 0.3155 0.3052
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expected hedging errors and zero shortfall probability as required in the calculation
procedure. However, super-replication requires rather low λ and hence pretty high
hedging cost which amounts to even over 10 times the basket option price for the case
T = 1 and K = 1.10. Especially, Figure 1 is designed to demonstrate how λ influences the
hedging cost and the hedging error. Clearly, λ has two opposing effects on the hedging
performance: an reduction in λ decreases the expected shortfall and meanwhile increases
the hedging cost. Thus, higher hedging cost is unavoidable to achieve super-replication.
Besides, it demonstrates that all hedging strategies proposed in this paper are exactly to
gain a tradeoff between successful hedge and reduced hedging cost by varying strikes.
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Expected Shortfall and Relative Hedging Cost vs. λ K

Figure 1: Expected Shortfall and Relative Hedging Cost vs. λK for
the Basket Option with T = 3 and K = 0.9

When relaxing the strong requirement of super-replication, the hedging cost can
be surely decreased, for instance, the hedging portfolio obtained by taking the second
criterion. As set in the model, the variance of the hedging error is minimized while
maintaining the hedging cost as the basket option price. It surely leads to some
sub-replication, although the hedging error is in average zero. The relative ES shown
in Table 7 is around 10% for in- and at-the-money options and comes to a relatively
high level for options with out-of-the-moneyness and short maturity. Moreover, the ES
differs insignificantly across the maturity for those in-the-money basket options. For all
cases, the obtained optimal strikes of the hedging portfolio increases with maturity and
decreases with strike of the basket option.

For minimum-expected-shortfall hedging portfolio, two constraints are provided on
the hedging cost and the numerical results are given in Table 8, respectively. The first
one is HP7, the hedging cost of the static super-hedging portfolio on all 7 underlying
assets. As shown in Figure 1, the ES decreases with the hedging cost. Hence, the minimal
ES is achieved when the hedging cost of the hedging portfolio with subset assets comes
to HP7. In this case, the hedging error turns out to be negative in average and the ES
decreases greatly to about 5% crossing all maturities and strikes of the underlying basket
option. This result indicates that hedging with three assets gives a relatively satisfactory
performance: only a reasonable low hedging error is aroused when investing the same
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Table 7: Minimum-Variance Hedging Portfolio with Three Dominant Assets

K T BC HC ES% k2 k5 k7

0.90

1 0.1398 0.1398 9.15 0.7500 0.8244 0.8219
3 0.2080 0.2080 10.10 0.6502 0.7805 0.7667
5 0.2628 0.2628 9.92 0.5468 0.7308 0.7044
10 0.3631 0.3631 9.51 0.3040 0.5553 0.5116

0.95

1 0.0978 0.0978 12.53 0.8485 0.9044 0.9019
3 0.1714 0.1714 11.94 0.7386 0.8609 0.8511
5 0.2302 0.2302 11.16 0.6328 0.8134 0.7850
10 0.3387 0.3387 10.05 0.3723 0.6441 0.5927

1.00

1 0.0625 0.0625 17.81 0.9508 0.9827 0.9849
3 0.1374 0.1374 14.31 0.8376 0.9422 0.9312
5 0.1989 0.1989 12.58 0.7184 0.8907 0.8736
10 0.3135 0.3135 10.74 0.4436 0.7284 0.6805

1.05

1 0.0358 0.0358 24.84 1.0558 1.0617 1.0726
3 0.1077 0.1077 17.10 0.9378 1.0212 1.0155
5 0.1698 0.1698 14.27 0.8138 0.9713 0.9540
10 0.2894 0.2894 11.49 0.5144 0.8125 0.7642

1.10

1 0.0185 0.0185 33.03 1.1678 1.1431 1.1581
3 0.0826 0.0826 20.39 1.0398 1.1034 1.1014
5 0.1435 0.1435 16.19 0.9114 1.0520 1.0411
10 0.2667 0.2667 12.14 0.5938 0.8986 0.8470

Note: ES% denotes the relative ES, namely expected shortfall divided by the expected basket
option payoff at the maturity date T measured in percentage.
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capital as the hedging portfolio with all 7 underlying assets.

To achieve a smaller ES, we raise the initial hedging cost constraint to the Value at
Risk at the level 10% of the basket option payoff. Due to the lack of the distribution of
the underlying basket, this has to be obtained by running the simulation. Under this
construction, the hedging cost of the hedging portfolio becomes surely higher (equal
to V aR0.10). It gives then a quite promising result that the ES is greatly reduced and
turns out to be almost zero, except those basket options with long maturity of 10 years.
As observed also in the results above, lower hedging costs are required for in- and
at-the-money basket options to achieve almost the same relative ES compared with those
of out-of-the-moneyness. Consequently, if aiming at gaining the tradeoff of the reduced
hedging cost and successful replication, the hedging strategies in this paper performs
better for in- and at-the-money basket options. To clearly show the regions of sub- and
super-replication, the payoffs of the basket option (T = 3, K = 0.9) and its minimum-ES
hedging portfolio given HC0 = V aR0.10 are simulated and plotted in Figure 2. It can be
observed that the basket option is completely hedged if the value of the basket comes
out to be under or around the strike. The possibility of sub-replication rises with the
value of the basket over 1.06. Nevertheless, the hedging error is rather small compared
to the basket option.

Table 8: Minimum-Expected-Shortfall Hedging Portfolios with Three Dominant Assets

K T BC
V0 = HP7 V0 = V aR0.10

HC E[HE] ES% k2 k5 k7 HC E[HE] ES% k2 k5 k7

0.90

1 0.1398 0.1505 -0.0114 5.87 0.7244 0.8058 0.8035 0.2618 -0.1300 0.01 0.4978 0.6239 0.6044
3 0.2080 0.2272 -0.0231 6.36 0.6030 0.7390 0.7284 0.4144 -0.2493 0.02 0.2598 0.3498 0.3298
5 0.2628 0.2843 -0.0295 6.65 0.4912 0.6775 0.6559 0.5225 -0.3559 0.03 0.0536 0.0714 0.8910
10 0.3631 0.3810 -0.0337 7.55 0.2612 0.4913 0.4516 0.5141 -0.2836 1.20 0 0 0

0.95

1 0.0978 0.1150 -0.0183 5.60 0.8028 0.8718 0.8686 0.2131 -0.1228 0.01 0.5969 0.6994 0.6922
3 0.1714 0.1966 -0.0304 6.23 0.6719 0.8052 0.7955 0.3731 -0.2437 0.02 0.3050 0.4443 0.4272
5 0.2302 0.2568 -0.0364 6.71 0.5615 0.7446 0.7219 0.4872 -0.3521 0.03 0.1120 0.1494 0.1870
10 0.3387 0.3599 -0.0398 7.62 0.3146 0.5672 0.5246 0.5147 -0.3305 0.88 0 0 0

1.00

1 0.0625 0.0848 -0.0237 5.29 0.8812 0.9325 0.9307 0.1676 -0.1119 0.01 0.6905 0.7780 0.7700
3 0.1374 0.1687 -0.0378 5.97 0.7434 0.8681 0.8559 0.3308 -0.2336 0.03 0.3814 0.5295 0.5161
5 0.1989 0.2311 -0.0441 6.52 0.6241 0.8069 0.7901 0.4509 -0.3453 0.03 0.1149 0.3154 0.2514
10 0.3135 0.3395 -0.0489 7.60 0.3713 0.6344 0.5929 0.5145 -0.3774 0.64 0 0 0

1.05

1 0.0358 0.0604 -0.0262 4.56 0.9532 0.9901 0.9916 0.1197 -0.0893 0.02 0.7943 0.8641 0.8574
3 0.1077 0.1436 -0.0433 5.70 0.8162 0.9253 0.9174 0.2899 -0.2201 0.03 0.4640 0.6148 0.5960
5 0.1698 0.2073 -0.0514 6.39 0.6896 0.8680 0.8511 0.4157 -0.3370 0.05 0.2116 0.3735 0.3374
10 0.2894 0.3201 -0.0577 7.56 0.4176 0.6974 0.6638 0.5140 -0.4217 0.50 0 0 0

1.10

1 0.0185 0.0416 -0.0246 3.75 1.0285 1.0475 1.0458 0.0729 -0.0580 0.12 0.9156 0.9618 0.9556
3 0.0826 0.1214 -0.0469 5.38 0.8885 0.9846 0.9774 0.2498 -0.2019 0.04 0.5523 0.6976 0.6780
5 0.1435 0.1853 -0.0572 6.20 0.7597 0.9298 0.9130 0.3765 -0.3192 0.05 0.2959 0.4588 0.4383
10 0.2667 0.3015 -0.0653 7.42 0.4806 0.7681 0.7246 0.5145 -0.4653 0.37 0 0 0

Finally to elucidate the importance of hedging assets selection, we present in Table 9
the results of the hedging portfolio on arbitrary 3 underlying assets, namely, S1, S2 and
S3. In comparison with the 3 dominant assets, the hedging portfolio with the arbitrary
selection has a considerably worse performance although it has the same number of hedg-
ing assets. Indeed, it performs even worse than the hedging portfolio with two assets.
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Figure 2: Simulations of the Basket Option (T=3, K=0.9) and the Minimum-Expected-
Shortfall Hedge Portfolio with Constraint V0 = V aR0.10

These results suggest that the significance of the choice of the hedging assets in order to
gain a good replication.

5.3 Remarks

Sometimes, the hedging performance is not that satisfactory especially for out-of-the-
money options. This inefficiency is mainly due to the following two factors.

• First, the hedging sub-basket is composed of simply the selected dominant assets
without reallocating weights. Therefore, the value of the subset is only part of
the original basket. The only tool in the model to match the payoff of the basket
option is to vary the strike prices of the hedging instruments. However, their power
to match the distribution is fairly limited since they do not change the shape of
the distribution of the hedging basket, but only shift the distribution to dominate
the original basket. This can be easily observed in Figure 3. After neglecting
those insignificant underlying assets, the sub-basket experiences less extreme cases.
However, since it is part of the original basket, it is located on the left of the original
basket. Therefore, the function of the strikes is to relocate the distribution of the
hedging portfolio to the proper position near the basket option. As shown in the
figure, the lower the hedging error is, the further the distribution shifted to the right.
This weakness becomes more clear when the hedging instruments are the dominant
hedging assets themselves for basket options of long maturity.

• In addition, all the hedging portfolios designed in this paper are static. Hence, it
may require more capital to well hedge the basket option. However, the model is
restricted to be static under the construction of hedging with plain vanilla options
on the significant underlying assets on optimal strikes. As the control variables in
this model are the strikes of these call options, frequent trading on options with
different strikes would cause great loss and additional transaction costs.

As a result, other control variables have to be considered to improve the hedging effect.
One possible instrument is to reallocate the weights of the hedging basket such that the
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Table 9: Hedging Strategies with Three Arbitrary Assets

K T BC
Mean-Variance HP Minimum-ES HP with V0 = HP7

HC ES% k2 k5 k7 HC E[HE] ES% k2 k5 k7

0.90

1 0.1395 0.1395 15.42 0.7485 0.5970 0.7026 0.1505 -0.0117 12.0522 0.7367 0.5551 0.6739
3 0.2083 0.2083 17.39 0.6262 0.3984 0.5578 0.2272 -0.0229 13.7017 0.5779 0.3359 0.5006
5 0.2633 0.2633 17.51 0.4878 0.2172 0.3863 0.2843 -0.0288 14.3080 0.4317 0.1476 0.3012
10 0.3638 0.3638* 21.01 0 0 0 0.3337 0.0566 21.0108 0 0 0

0.95

1 0.0976 0.0976 10.08 0.8361 0.7357 0.8090 0.1150 -0.0185 13.2384 0.8152 0.6640 0.7668
3 0.1713 0.1713 19.96 0.7199 0.5532 0.6690 0.1966 -0.0305 14.3538 0.6738 0.4235 0.5956
5 0.2297 0.2297 19.34 0.5931 0.3297 0.5101 0.2568 -0.0372 14.8146 0.5196 0.2380 0.4024
10 0.3386 0.3386* 19.03 0 0 0 0.3334 0.0098 19.0328 0 0 0

1.00

1 0.0623 0.0623 25.79 0.9085 0.8711 0.9065 0.0848 -0.0239 13.8963 0.8786 0.7659 0.8473
3 0.1373 0.1373 22.88 0.8016 0.6501 0.7755 0.1687 -0.0380 14.8961 0.7465 0.5167 0.6799
5 0.1988 0.1988 21.46 0.6894 0.4395 0.6241 0.2311 -0.0442 15.5823 0.6093 0.3105 0.5084
10 0.3133 0.3133 19.53 0.1205 0.0026 0.1693 0.3334 -0.0378 17.0348 0 0 0

1.05

1 0.0356 0.0356 33.16 0.9763 1.0030 0.9979 0.0604 -0.0264 14.0296 0.9369 0.8565 0.9163
3 0.1078 0.1078 26.10 0.8730 0.7816 0.8670 0.1436 -0.0432 15.3744 0.8143 0.6058 0.7581
5 0.1701 0.1701 23.56 0.7664 0.5615 0.7257 0.2073 -0.0509 16.1071 0.6843 0.3998 0.5907
10 0.2889 0.2889 20.80 0.3386 0.0936 0.2321 0.3201 -0.0586 16.8005 0.0796 0.0540 0.0539

1.10

1 0.0183 0.0183 41.21 1.0439 1.1332 1.0845 0.0416 -0.0248 13.8981 0.9865 0.9446 0.9782
3 0.0825 0.0825 29.56 0.9422 0.9052 0.9582 0.1214 -0.0469 15.7277 0.8739 0.6874 0.8309
5 0.1431 0.1431 25.90 0.8411 0.6821 0.8238 0.1853 -0.0578 16.4462 0.7502 0.4735 0.6760
10 0.2667 0.2667 22.03 0.4634 0.1696 0.3637 0.3015 -0.0653 17.3412 0.2037 0.0728 0.1979

Note: ∗ For these two cases, it is impossible to match the expectation values of the basket option
and the hedging portfolio at the maturity date even when the hedging portfolios are composed of
the hedging assets themselves. Hence, the variance is minimized without binding the constraint.
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new hedging sub-basket can better match the distribution of the original basket. One this
basis, dynamic hedging would also be possible by duplicating the basket option with the
hedging assets. This would be the extension for the future works.

6 Conclusion

In summary, Principal Component Analysis, a popular multivariate statistical method
for dimension reduction, is applied in basket options hedging, for selecting only a subset
of assets. The selection procedure is completed mainly by decomposing the covariance
structure of the underlying basket into eigenvalues and eigenvectors. Hedging basket
options with only the selected assets can not only reduce transaction costs if combined
with other hedging strategies, but also become practical and essential when some of the
underlying assets are illiquid or even not available to be traded. Following this idea, a new
two-step static hedging strategy is developed in this paper. It consists of the plain vanilla
options on N1 < N dominant assets with optimal strike prices. The strikes are optimally
chosen by numerically solving an optimization problem where the optimality criterion
depends on the risk attitude of investors while hedging basket options. As given in the
paper, the first objective is to eliminate all the risks that the basket option is exposed to.
Alternatively, optimal strikes are obtained by minimizing a particular risk measure, e.g.,
the variance of the hedging error or the expected shortfall. As observed from the numerical
results, the static hedging method here is indeed to achieve the tradeoff between reduced
hedging costs and overall super-replication. Moreover even without considering reduced
transaction costs, hedging with only subset assets works quite well particularly for in-
and at-the-money options, generating a small hedging error with a relatively low hedging
cost. Actually, its performance will become more satisfactory if the number of the assets
in the underlying basket is large. Since the hedging performance is sensitive to the subset
of the selected assets, it is recommended to examine the hedging cost and the involved
transaction costs as well as the additional reduced hedging error of several subsets. To
achieve an even better performance, hedging basket options with subset assets could be
improved by reallocating weights of the hedging sub-basket to approximately match the
distribution of the original basket. This could be the extension for the future research.
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[11] Härdle, W. and L. Simar (2003) Applied Multivariate Statistical Analysis, Springer.

[12] Haug, Espen Gaarder (1997) The Complete Guide to Option Pricing Formula,
McGraw-Hill.

[13] Hobson, D., P. Laurence and T. Wang (2004) Static Upper Bounds for the Prices of
Basket Options, submitted.

[14] Hotelling, H. (1933) Analysis of a Complex of Statistical Variables into Principal
Components, Journal of Educational Psychology, 24, pp. 498-520.

[15] Nelken, Israel (1999) Pricing, Hedging & Trading Exotic Options: Understand the
Intricacies of Exotic Options and How to Use Them to Maximum Advantage, Irwin.

[16] Joe, H. (1997) Multivariate Models and Dependence Concepts, Chapman and Hall,
London.



[17] Lamberton, D. and B. Lapeyre (1992) Hedging Index Options with Few Assets,
Mathematical Finance, Vol. 3, No. 1, pp. 25-41.

[18] Laurence, P. and T.H. Wang, (2003) Sharp Upper and Lower Bounds for Basket
Options, preprint.

[19] Milevsky, M. A. and S. E. Posner (1998) A Closed-Form Approximation for Valuing
Basket Options, The Journal of Derivatives, Vol. 5(4), Summer 1998.

[20] Nielsen, J.A. and K. Sandmann (2003) Pricing Bounds on Asian Options, Journal of
Financial and Quantitive Analysis, 38, No. 2.

[21] Pearson, K. (1901) On Lines and Planes of Closest Fit to Systems of Points in Space,
Philosophical Magazine, Ser. 6, 2, pp. 559-572.

[22] Pellizzari, P. (1998) Efficient Monte Carlo Pricing of Basket Options, Economics
Working Paper Archive (EconWPA).

[23] Pellizzari, P. (2004) Static Hedging of Multivariate Derivatives by Simulation, forth-
coming in European Journal of Operations Research.

[24] Rogers, L.C.G. and Z. Shi (1995) The Value of an Asian Option, Journal of Applied
Probability, 32, pp. 1077-1088.

[25] Srirastava, M.S. and C. G. Khatri (1979) An Introduction to Multivariate Statistics,
Elsevier North Holland Inc..



Appendix: Proposition 1 Proof

Proof. First, the Lagrange function of the minimization is formed

L =
N∑

i=1

ωie
−rT E

[(
Si(T )− bi

ωi

K

)+
]

+ λ

(
N∑

i=1

bi − 1

)

=
N∑

i=1

ωie
−rT
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max(
bi
ωi

K,0)

(
xi −

bi

ωi

K

)
fi(xi)dxi + λ

(
N∑

i=1

bi − 1

)

where fi(xi) is the lognormal density function under the risk-neutral martingale measure
for the stock Si. A necessary and sufficient condition for the sequence bi to minimize the
Lagrange function is found through the first order conditions:
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= 0
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bi − 1 = 0.

These conditions can be further simplified to

∂L
∂bi

= −Ke−rT

∫ ∞

max(
bi
ωi

K,0)

fi(xi)dxi + λ = 0 ∀ i = 1, · · · , N (15)

∂L
∂λ

=
N∑

i=1

bi − 1 = 0 (16)

since the term of the first condition ωie
−rT

∂max
�
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[
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)]
is always equal to zero no matter which value max

(
bi

ωi
K, 0

)
is going to take.

With these conditions, one can first prove that bi ∈ [0, 1] ∀ i = 1, · · · , N is always
satisfied. Assume any specific i we have bi < 0. This implies that

∂L
∂bi

|bi=bi
= −Ke−rT + λ = 0.

In this case, the first order condition (12) can be reduced to∫ ∞

max(
bi
ωi

K,0)

fi(xi)dxi = 1 ∀ i = 1, · · · , N, ,

which implies the result that bi ≤ 0 ∀ i = 1, · · · , N . This contradicts however the
second first order condition (13). Therefore, bi’s are always positive and lie in the interval



[0, 1].

Then, given bi ∈ [0, 1], ∀ i = 1, · · · , N , the first order condition (12) can be stated as

Φ(d2(Si, bi)) = Φ(d2(Sj, bj)) ∀ i, j

where d2(Si, bi) =
ln

 
Si(0)
bi
ωi

K

!
+(r−qi− 1

2
σ2

i )T

σi

√
T

as defined in the BS formula, and Φ again denotes

the standard normal cumulative distribution function.

Furthermore, Φ(x) is bijective, the first condition (12) can be reduced to

d2(Si, bi) = d2(Sj, bj) ∀ i = 1, · · · , N.

Then bi can be all expressed in b1 as

bi =
ωiSi

K

(
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) σi
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T

[(
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)(
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2
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(17)

In summary, the optimal sequence bi are all positive and determined by solving the
equations system of

bi =
ωiSi
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N∑
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The existing problem is if there is always a solution and if the solution is unique.
This is shown in the following way:

First, bi is a strictly increasing function of b1 since the first derivative of bi with respect
to b1
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is always larger than zero.

Then the sum of bi’s as a function of b1 given by
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is also continuous and increasing in b1, which could be proven again by checking its first
derivative. Moreover,

g(b1 = 0) = 0,



and
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As a consequence, there is always a unique solution bi ∈ [0, 1].


