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Abstract

This paper examines the question of lifetime personal financial plan-
ning—how should individuals determine their optimal consumption, port-
folio selection and life insurance needs? Although Richard (1975) provides
the theoretical basis for such a model, no numerical results from this model
have been produced. The paper uses the Markov chain approximation
method of Kushner (1977) to determine numerical results for Richard’s
model. This approximation method is general, and handles constraints to
the model; solutions are developed with a borrowing constraint. The re-
sults are interpreted in light of financial planners’ traditional rules of thumb
for both investment in risky assets over one’s lifetime and life insurance
purchases.
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1 Introduction

This paper examines lifetime personal financial planning—how should individ-
uals determine their optimal consumption, portfolio selection and life insurance
needs over their life cycles? Personal financial planning, which encompasses the
saving and insurance decisions of individuals, has been confined to high net worth
individuals in the past. However, there are a number of reasons to expect it to
become much more widespread in the future.

Governments and companies throughout the world appear to be shifting in in-
creasing numbers towards accumulation (or defined contribution) type retirement
schemes in a move to make individuals responsible for their own retirement.!
Clearly, as those in control of pension funds shift risk back onto individuals
through the rise of defined contribution arrangements, individuals will have more
personal responsibilities. For the unsophisticated, the required acumen may be
lacking. What advice can modern financial economics give to these people as
they embark on their financial planning?

The literature offers up a number of contributions on optimal consumption
and portfolio selection in a lifetime (finite-horizon) setting, beginning principally
with Samuelson (1969), Merton (1969, 1971). A large literature has developed,
with many of its facets mentioned in Merton (1990) and Duffie (1992).

Merton (1971) introduced mortality to these models, incorporating a paramet-
ric survival model of mortality into his formulation. While much of the literature
that has followed focuses only on optimal consumption and portfolio selection,
Richard (1975) extended this model to consider additionally the optimal amount

of life insurance. In doing so, he substituted the parametric survival model of

1See, for example, World Bank (1994) and Bodie & Papke (1992).



Merton (1971) with a more realistic tabular, or nonparametric, survival model
along the lines of Yaari (1965).

Richard’s model contains key elements of personal financial planning. How-
ever, due to the complexity of the model, it is not at all straightforward to
implement. The contribution of this paper is to provide a general approach for
obtaining numerical solutions of the model. This approach readily allows for
the incorporation of different functional forms, as well as permitting a variety of
constraints to be imposed.

The numerical solution of Richard allows the financial planning implications
of the model to be fully examined. The issue of age-phased reduction in risky
assets will be considered. Such advice is often given by financial planners. In-
deed, Jagannathan & Kocherlakota (1996, p. 11) quote a rule of thumb for age-
phasing—that the percentage of one’s wealth in bonds should be no more than
one’s age. Richard’s model supports the age-phasing proposition.?

In addition, the optimal amount of life insurance given by Richard can be
compared to that recommended by personal financial planners. Here, authors
have advocated the ‘human life value’ (henceforth HLV) of Huebner (1964).2
Essentially, Huebner argues for individuals taking life insurance to the value of
their future earnings, thus protecting their human capital, and protecting this
asset in such a way that death leaves their family’s net worth unchanged.* Within

the framework of the Richard model, however, such a rule of thumb can be shown

2 After initially suggesting an investor’s time horizon doesn’t matter in investment decisions,
Paul A. Samuelson spent a number of years examining the rationale for age-phasing in a search
to reconcile observed age-phasing with his belief in the optimal behaviour of a constant propor-
tion of wealth invested in risky assets. See, for example, Samuelson (1963), Samuelson (1989a),
Samuelson (1989b), Samuelson (1991) and Samuelson (1994).

3This is also the view that is taught to students of life insurance. See Black & Skipper (1987,
pp- 201-202, 204-205).

4Mathematically, the HLV of someone aged t can be expressed as ftoo Y (8)e~"(?=1)dh, where
r is the discount rate used and Y () is the person’s income at time 6.



to be questionable. Rather, an appropriate amount of life insurance should be be
based on current consumption, or a multiple thereof.?

The paper is oganized as follows. Section 2 discusses the Richard model. The
approach to solving the model is given in section 3. Section 4 treats the results
of the model and analyses the findings. Some concluding remarks are made in
section 5. Appendix A describes an alternative approach to the model’s solu-
tion, which verifies the paper’s results. Appendix B details some computational

considerations.

2 The Model

Richard (1975) models a multi-period utility maximizing investor with objective®

maxE[/T U(C(), 8)dt + B(Z(T), T)), (1)

T

where T is the investor’s uncertain time of death, and U, C', Z and B are the
investor’s utility, consumption, legacy at death and utility from bequest. The
investor is able to choose between two securities, one risky and one risk risk-free,

with the price of the risky asset, ), following geometric Brownian motion

——= = adt + odq(t), (2)

5In this way, we get yet another “consumption-based” rule from modern financial theory.

6One problem that has been discussed concerning this objective function (Borch 1990,
pp. 257-260) has been that it doesn’t allow for the spouse or beneficiary predeceasing the
insured. For simplicity, we assume that in the event the spouse dies before the insured, the
insured immediately finds someone whom he or she wishes to insure at the same amount.

The resolution of this issue is not straightforward; Borch does not attempt it. We leave
the issue for future research. However, it must be borne in mind that our solution results in
over-insurance to the extent this wrinkle matters.



where dq(t) is a Wiener increment.

The investor’s change in wealth is given by the stochastic differential equation

dW(t) = —C(t)dt— P(t)dt + Y (t)dt + W (t)dt +

(o —r)m ()W (t)dt + om(t)Wdq(t), (3)

where P(t), Y(t), W(t) are, respectively, the investor’s life insurance premium
paid, income (assumed to be non-stochastic), and wealth at time ¢. From equation
(2), the mean return on risky investment is «, with standard deviation o, while
the risk-free investment returns r; the investor places a proportion 7 of wealth in
the risky asset.

Richard’s model necessarily incorporates the probability of death of an in-
vestor. Let the investor’s age-at-death, X, a continuous random variable, have a
cumulative distribution function given by F'(x) and probability density function
of f(x). Consequently, S(z) = 1 — F(z) gives the probability that the investor
lives to age x. The function S(x) is known as the survival function. The condi-
tional probability density function (the probability the investor dies at exact age
x, having survived to that age) is given by f(z)/S(x), and is known as the force
of mortality by demographers and actuaries, or as the hazard rate or intensity
rate by reliability theorists (Elandt-Johnson & Johnson 1980).

The investor buys instantaneous term life insurance to the amount of Z(t) —

W (t). For this, a premium of P(t) is paid. If we denote the force of mortality by



u(t), then the amount of premium paid for actuarially fair insurance will be’

P(t) = p(t)(Z(t) = W(2)). (4)

The investor’s problem is to solve equation (1), subject to budget constraint
(3) and initial wealth condition W (0) = Wy, by optimal choice of controls C,m
and Z. U is assumed to be strictly concave in C' and B is assumed strictly concave

in Z. Equation (1) can be re-expressed as

T,7) = max B, [ (f’;g) (T [/T U(C(#), t)dt + B(Z(T), T)| dT, (5)

where w represents the limiting age of the underlying mortality table, i.e., X €

[0,w]. Applying Fubini’s theorem, equation (5) becomes

_ v 5(T)
JW,r) = max ET/T S

B W(T)B(Z(T),T) + U(C(T), T)]dT (6)

after swapping the order of integration over the triangle T > ¢, ¢ > 7 in R?. The
Hamilton-Jacobi-Bellman (HJB) equation is therefore

0 = max{ W) B(Z(8),) + U(C (1), ) — u(t)] + J;

C,Z.m

|
raW 4 (1—m)W+Y - C — Pl + 5U%r?W?JWW}. (7)

As Y(t) in equation (7) is non-stochastic, Richard demonstrates that (7) is

equivalent to an equation involving capitalized Y (¢). That is, adjusted wealth is

"Richard actually considered the more general case of there being some sort of ‘loading’
to mortality. This means mortality rates are increased to above their true levels, ensuring
profitability for the life insurer. For the purposes of this paper, the simpler case of actuarial
fairness is sufficient, with the ‘loaded’ model being an straightforward extension.



defined as

W(t) = W(t)+b(t), (8)

where b(t) is defined as the capitalized value of future income:

b(t) = /t ) Y(e)%e—“"—t)de. 9)

The standard approach (Richard 1975, Bodie, Merton & Samuelson 1992) is to
remove Y (t) from (7) and substitute W (t) for W (t). Income is thus treated
as a traded asset. As Bodie et al. (1992) rightly point out, the individual never
actually ‘sells’ his or her human capital, but rather enters the (assumed) complete
market in traded securities to accomplish the same thing. For example, the
riskless asset could be sold short, with the proceeds invested in the risky asset;
the short sale would be designed so future liabilities from the sale are offset by
future wage payments.

Richard provides an algebraic solution to the above model for CRRA utility.

He demonstrates that when

UC(t),t) = h(t) o vy<1L,h>0,C>0 (10)
B(Z(),1) = m() ny(t), < Lh>0,250 (11)

the optimal controls are given by®
cC*(W,t) = <%)1/(1_7) (W +b(t)], (12)

8Note that equation (13) simplifies equation (32) of Richard, due to the consideration of
actuarially fair insurance.



* m 1/(1—)
W) = wal % b _ (a(?) (W4b(#)]  and (13)
W, OW = ﬁwm@)} . (14)
where
o e S(0) (a—r)? o
a(t) = {/t KO) g5 o L - (2(1 — +7‘>] d@} (15)
and®

1 1/
k(1) = { ol e e <t>} B

The solutions are linear in adjusted wealth, a familiar result for HARA (hy-
perbolic absolute risk aversion) utility functions (Merton 1971). Interestingly, for
h(t) = m(t) optimal consumption and bequest amounts will be identical. The so-
lution for 7* indicates investment in the risky asset should be a constant fraction
of adjusted wealth. This is an example of the well-known result that optimal in-
vestment, behaviour over the life cycle, for utility functions that display constant
relative risk aversion, is “myopic”, with individuals always investing a constant
proportion of wealth in the risky asset and ignoring the future distribution of
asset returns.

Numeric solutions to this model are not available. Although it is possible to
approximate the integral in (15) (see Appendix A for details), a more general
approach is to use a probabilistic approximation to solve the control problem.
Such an approach readily handles different functional forms for U, B, h and m.
It also makes the inclusion of contraints to the model relatively straightforward.

Richard’s model allows individuals to borrow an unlimited sum at the risk-

9Equation (39) of Richard, which gives the formula for k(t), contains a typographical error.
Equation (16) above is this author’s corrected version—for the case of actuarially fair life
insurance.



free rate, r. A better model would include some sort of borrowing restraint.
Drawing on the work of Fleming & Zariphopoulou (1991), one possibility would
be to allow individuals to borrow up to the amount of their financial wealth,

W (t) (= W(t)—b(t)), at the risk-free rate, but at a higher rate R for borrowings

in excess of this amount.'® Hence, (3) is modified to become:

dW(t) = —C(t)dt — P(t)dt+ W ()dt + (a — r)a(t)W (£)dt

—(R — r) max[# ()W (t) — W(t),0]dt + o7 ()W (t)dq(t), (17)

where 7 (t) is the modified proportion of adjusted wealth investment in risky assets
and max[7 (£)W (t) =W (t), 0] is the amount of money the individual has borrowed.
The second last term of equation (17) captures the essence of costly borrowing
by reducing the returns to adjusted wealth.

Finally, noting that discounted values of the functions of interest can pro-
duce very small values, we may facilitate the numerical solution of the model
by converting the discounted HJB equation (7) to current values. If we set
h(t) = e, so U(C(t),t) = e P'U(C(t)), and m(t) = e ¢(t), so B(Z(t),t) =
e P $(t)B(Z(t)), where p represents an individual’s rate of time preference and

¢(t) is a function relevant to bequest determination, then equation (7) becomes

0 = maX{u(t)¢(t)B(Z(t)) +U(C() = p(t)] = pJ + J,

C,Z 7

3 3 1 3
LFal 4 (1= #)rW = C = Pliw + 502’}?2W2JWW}. (18)

10This could be seen as reflecting the presence of moral hazard problems associated with
borrowing against one’s future income.



3 Solving the Model

The numerical solution of finite horizon stochastic optimal control problems is
well described in Kushner (1977, Chapter 7) and Kushner & Dupuis (1992, Chap-
ter 12). The “explicit” solution approach involves a finite difference approxima-
tion to the HJB equation (18), a second-order linear parabolic partial differential
equation, as described below.

Firstly, consider the coefficient of .Jy in (18). Partition the terms that make
up this coefficient into a positive group, d* = (a — 7)#W + rW + W, and a
negative group d~ = C + uZ, where d = d* + d~, d being the coefficient of Jy .

Let us approximate the partial derivatives in equation (18) as follows:

fz,t+0)— f(z, 1)
)

Lo — flx+ht+06)— f(z,t+90) for 4+

h
fz,t+0)— f(x — h,t+0)
h

fi(z, 1)

for d-

flx+ht+06)+ f(x —h,t+0) —2f(z,t + )
h2

fo(z,t) —

fzz(l':t) —

and write (18) as follows, where V (-, -) represents the solution to the finite differ-

ence equation:

0 = ma{uoB(Z() + U(CW) — (u+ pVOV,1) +

C,m, 7
VW, t+68) = V(W,t) V(W +ht+38)-V(W,t+6) ,
+ d
4} h
_V(W,t+5)—V(W—h,t+5)d_+
h
1 7 v — —2V(W
5(mNTW)QV(I/VJrh,15+5)JH/(Wth,15+<S) V(W,t+5)}‘(19)



Equation (19) can be written as

- 1 - -
VIW,t) = g}ggm{[](c(t))+M¢(t)B(Z(t))
~ o o
V(W,t+06) [1—Ed—ﬁ021 +
~ ) 0o ) 5 o?
V(W + h,t+9) lhdﬂrﬁ—] + V(W = h,t+96) [hd +§5H

or, more conveniently,

~ 1

+6[U<c<t>> * w(t)fz(zu))] } (20)

where the p(-,-) may be interpreted as transition probabilities of a Markov chain,

locally consistent with equation (3), and given by:"!

p(W, W +h) = hi {%@m)? A (ROt SR U 4 PG
p(W W —h) = % {%(JfrW)Q +h[C+p2)) (22)
p(W, W) = 1—p(W,W +h)—p(W,W —h) (23)

The boundary condition is V(W,w) = ¢(w)B(Z(w)). Thus, the solution to
the investor’s stochastic control problem (equation (1)) is approximated by the
solution to equation (20) as h — 0 and 0 — 0 together. The convergence of
this approximation method has been established by viscosity solution techniques

(Fitzpatrick & Fleming 1990, Fitzpatrick & Fleming 1991).

1'We must, through choice of § and h?, ensure 0 < p(-,-) < 1.

10



a = 0.10 h =0.02

r =0.05 N =1000
p = 0.05 v=—-0.5
o =0.30 R =10.06

Mortality: A1967-70* w = 110

®From Neill (1977, Appendix IIT). This is a table of assured lives mortality; no sex distinction
is present. Many annuity and assurance values are tabulated, making it particularly useful in
interpreting the solution results.

Table 1: Parameters used in the numerical solution of the model.

Equation (20) was solved on a grid by backward iteration, using a computer.
Further details may be found in Appendix B.
Imposing the borrowing constraint, discussed in Section 2 above, is a straight-

forward matter of solving equation (20), subject to the required constraint.

4 Results and Implications

This section lays out the results of the numerical solutions of the Richard model,
as well as some implications of its results. Firstly, we consider the parametrization
of the model. Consideration is given to the resulting life insurance implications,
and how these suggest the HLV rule of thumb is not an appropriate rule for life
insurance purchases. Numeric results are then discussed, and we consider the
life cycle dynamics of the model with a simple illustrative example showing its
age-phasing consequences. Introducing realistic constraints concludes the section.

Using the parameters set out in Table 1, theRichard model was solved using
the methodology of the preceding section. Details on the verification of the
solution may be found in Appendix A. The functional forms used for U(C,t)
and B(Z,t) were those of equations (10) and (11); h(t) was set to e ** and m(t)
were set to e ¢ (t). From equation (13), we can see that if ¢(t) = £'77(¢), then

Z*(t) = &(t)C*(t). Drawing on prevailing social norms, a reasonable value to

11



provide a spouse following the death of his or her partner would be an amount
sufficient to provide two-thirds of the deceased’s current income for life. This
notion has in fact been enshrined in pension benefits regulations in Canada, for
example, where the surviving spouse of a deceased pensioner is provided with
between 50% and 662/3% pension continuation.'? Hence, we set £(t) to 2/sal,

giving Z* as 2/3C*a}, where'3

a; = /t : %e—rw—t)da (24)

In this way, the bequest value is made to be a stock, rather than a flow variable.

The above serves to underline the dependence of individual’s life insurance
needs on their bequest function. Under the assumptions made, the inconsistency
of this model with the HLV concept of financial planning is apparent: individuals’
insurance needs are dependent on their personal characteristics, and in particular,
their level of consumption. An approach to life insurance provision consistent
with this model would be based on some function of investor consumption. The
HLV rule of thumb is, however, based on the flow of future income. Intuitively
we can see the HLV concept providing too much insurance for the case of high
income individuals with only moderate consumption tastes, or providing too little
for those with high rates of time preference.

The solutions for a mildly risk averse investor (y = —0.5) with time preference

p = 0.05 are displayed in Table 2.!* The constancy of 7* is apparent and its values

12Gee, for example, s. 45(2) of Ontario’s Pension Benefits Act, 1987.
BFor simplicity, we assume partners are close in age and have similar preferences. In the

numerical work @?-°% is approximated by a linear function, 20 — (19/80)(z — 30), which, while

not exactly matching a9 values, gives both a reasonable approximation to the function and
avoids the inconvenience of a zero boundary condition.
4The value of ¥ = —0.5 corresponds to an Arrow-Pratt measure of relative risk aversion of

1.5. Recent numerical estimates (Hansen & Singleton 1983, Mankiw 1985) place this measure

12



HLV

Life Invested Life
E(W) E(W) C* * zZ* Insurance | in Risky || Insurance

Age | (9) (3) @) | )| ©) (3) (3) (3)

30 | 1000000 | 10000 | 59100 | 35.9 | 792000 782000 | 359000 || 1017000
40 | 1062000 | 221000 | 67500 | 36.0 | 797 000 576 000 | 382000 876 000
50 | 1070000 | 459000 | 76 600 | 36.4 | 792 000 333000 | 389000 645 000
60 962 000 | 704000 | 82700 | 36.7 | 714 000 10000 | 353000 269 000
70 711000 | 711000 | 79600 | 36.8 | 560000 | -151000 | 262000 0
80 | 356000 | 356000 | 56100 | 36.5 | 305000 -51000 | 130000 0
90 81000 | 81000 | 19600 | 36.8 | 76000 -5000 30000 0
100 7000 7000 | 2500 | 36.8 6 000 -1000 3000 0

Table 2: Numerical solution of Richard (1975), v =
insurance levels from HLV concept.

—0.5, p = 0.05, and life

are very close to the theoretical value given by equation (14). Table 2 gives results
for an individual whose lifetime wealth path follows that expected.

The table indicates that for a 30 year old individual with wealth of 1% of
adjusted wealth ($10000) and a constant of income of about $61 000 to age 65
(implies b(30)=%$990000),' the individual will consume $59 100, invest $359 000
in risky assets, and take insurance to the value of around $782000. An 80 year
old individual, on the other hand with wealth of $356 000 and no future income,
would consume $56 100, invest $130 000 in risky assets, and sell insurance (or take
bets on his or her death) to the value of $51000. (This quirk will be expanded
on below.) At all ages, the level of life insurance suggested by the Richard (1975)
model is less than than given by the HLV rule of thumb.

The optimal proportion of adjusted wealth invested in the risky asset is con-

between 1 and 3. Lucas (1990) advances empirical and theoretical arguments based on cross-
country interest rate differentials, why the measure should be less than 2.

5Expected wealth holdings over an individual’s lifetime were generated by computer simu-
lation (Purcal forthcoming).

16This follows from 60 636.07 L605 [S(w)/S(30)]e 7«30 dw = 990000, using the interest and
mortality rates given in Table 1.

13



Proportion of financial
wealth invested in
risky, 7*
Age (%)
30 3590
35 328
40 173
45 114
50 83
55 64
60 49
>65 37

Table 3: Age-phasing path for numerical solution of Richard (1975), v = —0.5,
p = 0.05.

stant over time, a feature of models with individuals with utility functions that
exhibit constant relative risk aversion and an underlying stochastic process with
constant coefficients. Note, however, as a proportion of financial wealth (as op-
posed to adjusted wealth), the proportion invested in risky falls as investors age—
our 30 year old invests 3590% of financial wealth in risky while the 80 year old
invests only 37%. Bodie et al. (1992) point out that a major practical manifesta-
tion of this is the leveraged purchase of the family home. This is an example of
age-phasing, which advocates individuals should reduce their exposure to risky
assets over time. Table 3 gives the age-phasing path generated by our solution
to the model. Thus, Richard’s model lends support to this common tenet of
financial planning, suggesting also that young investors may be highly leveraged.

It is interesting to observe in Table 2 that, for our parametrization of the
model, one needs a considerable amount of life insurance when young—this
amount decreases over one’s working life to become zero, and even negative

around, and after, the time of retirement. A negative premium implies individu-

14



als are able to sell life insurance (for a life aged exactly their age) or, alternatively,
they are able to take bets on their own deaths, to be paid out of terminal wealth.

As Fischer (1973) pointed out, this state of affairs is equivalent to the purchase
of an annuity. Thus, the model has also provided a motivation for retirement in-
come. Table 2 shows optimal annuity payment levels start at zero near retirement
and rise to a peak, then gradually falling off.

It is in the area of retirement income that a weakness of the current set up of
the model is apparent. The utility function used allows consumption to move to
very low levels at higher ages. Clearly, to motivate reasonable retirement income
needs, a more general HARA utility function with a positive level of subsistence
consumption would be more appropriate.

As discussed above, a more appropriate model of consumption and investment
behaviour would also include a borrowing constraint. The constraint, equation
(17), was incorporated into the model. The results for R = 0.06 are shown in Ta-
ble 4. The effect on behaviour is as one would expect: when the constraint binds
we see investment falling to a rate less than when borrowing is unconstrained.
Here 7* falls from its unconstrained level of around 37% to around 30% when
the contraint is binding (i.e., when financial wealth is less than 37% of adjusted
wealth).

Through developing the numerical solution for the borrowing constrained
model, it became apparent that the investor’s portfolio selection behaviour fol-
lows certain rules, set out in Table 5.'7 The results in the #* column of Ta-
ble 4 do not exactly reflect the results of Table 5. This is because the solution
for 7* derives from equations of the form —[(a — r)W/(aW)?][v'(W)/v"(W)],

I"These results are identical to those explored theoretically in Fleming & Zariphopoulou
for an optimal investment/consumption model with the same borrowing constraint, but with
infinitely-lived investors, no life insurance and no income.

15



Life Invested

we wh cr | #* Z* | Insurance | in Risky | W/W

Age (3) (3) ® | ()| () (%) (%) (%)
30 | 1000000 | 10000 | 54500 | 31.0 | 731000 | 721000 | 310000 1.0
31 [ 1008000 | 25000 | 55100 | 30.4 | 730000 | 705000 | 306 000 2.5
32 [ 1016000 | 42000 | 55800 | 29.8 | 730000 | 688000 | 302000 4.1
33 (1023000 | 58000 | 56500 | 29.1 | 730000 | 672000 | 298000 5.7
34 1031000 | 77000 | 57100 | 28.6 | 729000 | 652000 | 294000 7.4
35 [ 1039000 [ 97000 | 57900 | 28.0 | 730000 | 633000 | 291000 9.3
36 | 1042000 | 113000 | 58500 | 27.6 | 728000 | 615000 | 287000 | 10.9
37 | 1048000 | 134000 | 59300 | 27.1 | 729000 | 595000 | 284000 | 12.8
38 | 1053000 | 154000 | 60000 | 26.8 | 728000 | 574000 | 282000 | 14.7
39 [ 1058000 | 176000 | 60900 | 26.5 | 729000 | 553000 | 280000 | 16.7
40 | 1062000 | 199000 | 61700 | 26.3 | 729000 | 530000 | 279000 | 18.7
41 | 1066000 | 223000 | 62600 | 26.1 | 729000 | 506000 | 279000 | 20.9
42 11073000 | 250000 | 63600 | 26.0 | 731000 | 481000 | 279000 | 23.3
43 11075000 | 274000 | 64500 | 26.0 | 730000 | 456000 | 279000 | 25.5
44 [ 1075000 | 298000 | 65300 | 27.8 [ 730000 | 432000 | 298000 | 27.7
45 [ 1077000 | 324000 | 66200 | 30.2 | 730000 | 406000 | 325000 | 30.1
46 ] 1079000 | 351000 | 67000 | 32.6 | 727000 | 376000 | 351000 | 32.6
47 11079000 | 379000 | 67800 | 34.4 | 725000 | 346000 | 371000 | 35.1
4811078000 | 407000 | 68500 | 35.0 | 722000 | 315000 | 377000 | 37.7
49 | 1076000 | 434000 | 69200 | 35.5 | 718000 | 284000 | 382000 | 40.3
50 | 1070000 | 459000 | 69500 | 35.8 | 710000 | 251000 | 383000 | 42.9

60 | 962000 | 727000 | 71100 | 36.6 | 614000 113000 | 353 000 75.6
70 711000 | 711000 | 63800 | 36.8 | 449000 | -262000 | 261000 | 100.0
80 | 356000 | 356 000 | 42300 | 36.8 | 230000 | —126 000 | 131000 | 100.0
90 81000 | 81000 | 14000 | 36.8 | 54000 27000 30000 | 100.0
100 7000 7000 | 2000 | 36.8 4000 -3 000 2000 | 100.0

®These are the E(WW) values from Table 2.
bIn an effort to reduce computation time, b(t) was approximated by a quadratic equation.
Hence the difference between this column and the corresponding column in Table 2.

Table 4: Numerical solution of Richard (1975), v = —0.5, p = 0.05, R = 0.06.
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(a=r) (a=R) _ W (a—R)
A " T W )
(a—r) w (a—R) w
F2(1=7) ~ W = o(1=7) W
w > (a—r S (a—R) (a—r)

Table 5: Effect of borrowing constraint.

—[(@ = RYW/(eW)['(W)/v"(W)] or W/W, where v(W) is the value func-
tion corresponding to the HJB equation (18) above. Due to the HARA form
of the direct utility function, U(C'), it is readily established that v'(W)/v" (W) =
—W/(1 — v) (Fleming & Zariphopoulou 1991, p. 808), giving the values that
appear in Table 5. However, for the purposes of the approximation method,
v'(W) /" (W) is determined by finite difference approximations. These do not
always produce constant values of —W/(1 — 7). Closer correspondence would be
achieved by working over a finer grid.

The investor’s life cycle proportion-in-risky investment path (7*) from Table
4 is represented diagramatically in Figure 1. In region A of the figure the investor
has to borrow funds to make his or her optimal investment in the risky asset; the
investor’s optimal investment in risky is (o — R)/[0%(1 — )] = 30%. Region A of
the figure corresponds to ages 30-44 in Table 4. In region B, optimal investment is
at rate W/ —this level of investment is better than investing at the lower rate of
(a—R)/[0*(1—7)], or borrowing to invest at the higher rate of (a—r)/[o%(1—7)].
In region B the level of investment tracks the growth in financial wealth. Region
B corresponds to ages 45-47 in Table 4.

In region C of Figure 1 the investor no longer has to borrow to invest at level
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Figure 1: Investment in risky asset over time with costly borrowing, R = 0.06.
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(a—r)/[o?(1—=)]. His or her level of financial wealth is a sufficient proportion of
adjusted wealth to be able to draw on those funds for all desired risky investment.
This occurs between ages 48 and 65 in Table 4. In region D the investor has
retired, and no longer has a human capital component to his or her adjusted
wealth. As a result, in region D the investor would invest in risky at level (a —
r)/[0?(1 — 7)] regardless of his or her wealth situation.

In Table 4, investors’ levels of consumption and life insurance over their life-

times are lower than the unconstrained levels of Table 2.

5 Conclusion

This paper has examined the Richard (1975) model as a preliminary step to de-
veloping a relevant model for financial planning. Using a probabilistic approach,
numerical solutions to the Richard model were provided.

The Richard model, with its non-stochastic income, generated an age-phased
reduction in investment in risky assets over an individual’s life, lending support
to this traditional piece of financial planners’ advice. For the parametrization
of the model considered above, we are led to the situation of individuals being
highly leveraged in their youth.

The life insurance behaviour implied by the model was also examined, show-
ing that, for the CRRA parametrization of the model considered, optimal life
insurance purchase is related to consumption levels. This finding calls into ques-
tion the usefulness of the HLV concept of financial planning, which focuses on
future income streams. In addition, the model provides details about optimal an-
nuity purchase around retirement, suggesting a hump shaped pattern of annuity

receipts.
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Consideration was given to making the Richard model more realistic. The
imposition of a borrowing constraint, reflecting costly borrowing, reduced invest-
ment in the risky asset in a way that was able to be quantified.

The solution method employed is quite powerful, able to deal with complica-
tions like the constraints mentioned above, as well as different functional forms.

Future work aims to inject further realism into the model in a variety of
ways. By recasting the model into a more general HARA utility framework, with
a positive subsistence consumption level, we should be able to motivate more
realistic levels of retirement income. Currently, the model permits low levels of
consumption at older ages.

Bodie et al. (1992) considered uncertain wage income, thus exposing individ-
uals to future income risk, with consequences for consumption and investment
behaviour. In their model, wage income was perfectly correlated with the risky
asset’s diffusion. Using the techniques discussed in this paper, and drawing on
the recent work of Duffie & Zariphopoulou (1993) and Duffie, Fleming, Soner
& Zariphopoulou (1997), it is possible to consider the more interesting case of

imperfect correlation between the risky asset and wages.

A Verification of Results

The text above has discussed a numerical approach to approximate solutions
to Richard’s optimal stochastic control problem. It is important to verify the
accuracy of any numerical approximation; this is the purpose of this Appendix.

The results of the numerical solution have been verified in the following man-
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ner. Equation (15) may be expressed as

) = {0 [0+ )5 e (10 -

e e afw)

= A Fap} T, (25)

where A§ is the expected present value of a term life insurance paying $1 on death.
The term ELtC , the expected present value of an annuity, payable continuously for
life, is given by equation (24). Furthermore, equation (25) assumes h(t) = m(t) =
e *'. Both Af and dtg are evaluated at the continuously compounded rate of

interest

1 v (la—-r, 1 }
- _ - ) 26
c= it (3 ] (26)
It is a requirement for the solution of the model that ( be non-negative.
Approximations are readily available for df in the actuarial literature. One

such approximation is'®

- Y 4509 1 1
~ ¢o
a; ~ e == |+ - — —=[p)+].
<9§1 S (t)) 2 12
The theoretical relationship between Af and df, Af =1- Cdf, can then be used

to evaluate A5.1° The resulting solution values compare favourably with those

generated by the numerical methods of section 3, for h(t) = m(t) = e 7.

18Gee, for example, Neill (1977).
9This relationship is proved in Neill (1977, p. 84).
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B Computational Details

Equation (20) was solved using backward iteration over a grid of the state vari-
able. For details of the Markov chain approximation, the boundary transition
probabilities and determination of the normalizing constant Q = h? /8, including
adjusting Q to speed computation, see Fitzpatrick & Fleming (1991).

A grid size of N = 1000 was used, with state variable W taking values of
from 0 through 20.00, in steps of & = 0.02. As noted in other work (Fitzpatrick
& Fleming 1991), values at the top and bottom of the grid are inaccurate, while
values in the middle are accurate.

The solution method was coded by the author, in C, and run on a 166 MHz
Digital AlphaStation 200 4/166, with 64M of memory operating under OpenVMS
v7.0. Solving the model (going from terminal age of 110 back to 30) took up to

3 hours.
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