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Abstract

This paper examines the question of lifetime personal �nancial plan-

ning|how should individuals determine their optimal consumption, port-

folio selection and life insurance needs? Although Richard (1975) provides

the theoretical basis for such a model, no numerical results from this model

have been produced. The paper uses the Markov chain approximation

method of Kushner (1977) to determine numerical results for Richard's

model. This approximation method is general, and handles constraints to

the model; solutions are developed with a borrowing constraint. The re-

sults are interpreted in light of �nancial planners' traditional rules of thumb

for both investment in risky assets over one's lifetime and life insurance

purchases.
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1 Introduction

This paper examines lifetime personal �nancial planning|how should individ-

uals determine their optimal consumption, portfolio selection and life insurance

needs over their life cycles? Personal �nancial planning, which encompasses the

saving and insurance decisions of individuals, has been con�ned to high net worth

individuals in the past. However, there are a number of reasons to expect it to

become much more widespread in the future.

Governments and companies throughout the world appear to be shifting in in-

creasing numbers towards accumulation (or de�ned contribution) type retirement

schemes in a move to make individuals responsible for their own retirement.1

Clearly, as those in control of pension funds shift risk back onto individuals

through the rise of de�ned contribution arrangements, individuals will have more

personal responsibilities. For the unsophisticated, the required acumen may be

lacking. What advice can modern �nancial economics give to these people as

they embark on their �nancial planning?

The literature o�ers up a number of contributions on optimal consumption

and portfolio selection in a lifetime (�nite-horizon) setting, beginning principally

with Samuelson (1969), Merton (1969, 1971). A large literature has developed,

with many of its facets mentioned in Merton (1990) and Du�e (1992).

Merton (1971) introduced mortality to these models, incorporating a paramet-

ric survival model of mortality into his formulation. While much of the literature

that has followed focuses only on optimal consumption and portfolio selection,

Richard (1975) extended this model to consider additionally the optimal amount

of life insurance. In doing so, he substituted the parametric survival model of

1See, for example, World Bank (1994) and Bodie & Papke (1992).
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Merton (1971) with a more realistic tabular, or nonparametric, survival model

along the lines of Yaari (1965).

Richard's model contains key elements of personal �nancial planning. How-

ever, due to the complexity of the model, it is not at all straightforward to

implement. The contribution of this paper is to provide a general approach for

obtaining numerical solutions of the model. This approach readily allows for

the incorporation of di�erent functional forms, as well as permitting a variety of

constraints to be imposed.

The numerical solution of Richard allows the �nancial planning implications

of the model to be fully examined. The issue of age-phased reduction in risky

assets will be considered. Such advice is often given by �nancial planners. In-

deed, Jagannathan & Kocherlakota (1996, p. 11) quote a rule of thumb for age-

phasing|that the percentage of one's wealth in bonds should be no more than

one's age. Richard's model supports the age-phasing proposition.2

In addition, the optimal amount of life insurance given by Richard can be

compared to that recommended by personal �nancial planners. Here, authors

have advocated the `human life value' (henceforth HLV) of Huebner (1964).3

Essentially, Huebner argues for individuals taking life insurance to the value of

their future earnings, thus protecting their human capital, and protecting this

asset in such a way that death leaves their family's net worth unchanged.4 Within

the framework of the Richard model, however, such a rule of thumb can be shown

2After initially suggesting an investor's time horizon doesn't matter in investment decisions,

Paul A. Samuelson spent a number of years examining the rationale for age-phasing in a search

to reconcile observed age-phasing with his belief in the optimal behaviour of a constant propor-

tion of wealth invested in risky assets. See, for example, Samuelson (1963), Samuelson (1989a),

Samuelson (1989b), Samuelson (1991) and Samuelson (1994).
3This is also the view that is taught to students of life insurance. See Black & Skipper (1987,

pp. 201{202, 204{205).
4Mathematically, the HLV of someone aged t can be expressed as

R
1

t
Y (�)e�r(��t)d�, where

r is the discount rate used and Y (�) is the person's income at time �.
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to be questionable. Rather, an appropriate amount of life insurance should be be

based on current consumption, or a multiple thereof.5

The paper is oganized as follows. Section 2 discusses the Richard model. The

approach to solving the model is given in section 3. Section 4 treats the results

of the model and analyses the �ndings. Some concluding remarks are made in

section 5. Appendix A describes an alternative approach to the model's solu-

tion, which veri�es the paper's results. Appendix B details some computational

considerations.

2 The Model

Richard (1975) models a multi-period utility maximizing investor with objective6

maxE[

Z T

�
U(C(t); t)dt +B(Z(T ); T )]; (1)

where T is the investor's uncertain time of death, and U , C, Z and B are the

investor's utility, consumption, legacy at death and utility from bequest. The

investor is able to choose between two securities, one risky and one risk risk-free,

with the price of the risky asset, Q, following geometric Brownian motion

dQ(t)

Q(t)
= �dt+ �dq(t); (2)

5In this way, we get yet another \consumption-based" rule from modern �nancial theory.
6One problem that has been discussed concerning this objective function (Borch 1990,

pp. 257{260) has been that it doesn't allow for the spouse or bene�ciary predeceasing the

insured. For simplicity, we assume that in the event the spouse dies before the insured, the

insured immediately �nds someone whom he or she wishes to insure at the same amount.

The resolution of this issue is not straightforward; Borch does not attempt it. We leave

the issue for future research. However, it must be borne in mind that our solution results in

over-insurance to the extent this wrinkle matters.

3



where dq(t) is a Wiener increment.

The investor's change in wealth is given by the stochastic di�erential equation

dW (t) = �C(t)dt� P (t)dt+ Y (t)dt+ rW (t)dt+

(�� r)�(t)W (t)dt+ ��(t)Wdq(t); (3)

where P (t), Y (t), W (t) are, respectively, the investor's life insurance premium

paid, income (assumed to be non-stochastic), and wealth at time t. From equation

(2), the mean return on risky investment is �, with standard deviation �, while

the risk-free investment returns r; the investor places a proportion � of wealth in

the risky asset.

Richard's model necessarily incorporates the probability of death of an in-

vestor. Let the investor's age-at-death, X, a continuous random variable, have a

cumulative distribution function given by F (x) and probability density function

of f(x). Consequently, S(x) = 1 � F (x) gives the probability that the investor

lives to age x. The function S(x) is known as the survival function. The condi-

tional probability density function (the probability the investor dies at exact age

x, having survived to that age) is given by f(x)=S(x), and is known as the force

of mortality by demographers and actuaries, or as the hazard rate or intensity

rate by reliability theorists (Elandt-Johnson & Johnson 1980).

The investor buys instantaneous term life insurance to the amount of Z(t)�

W (t). For this, a premium of P (t) is paid. If we denote the force of mortality by
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�(t), then the amount of premium paid for actuarially fair insurance will be7

P (t) = �(t)(Z(t)�W (t)): (4)

The investor's problem is to solve equation (1), subject to budget constraint

(3) and initial wealth condition W (0) = W0, by optimal choice of controls C; �

and Z. U is assumed to be strictly concave in C and B is assumed strictly concave

in Z. Equation (1) can be re-expressed as

J(W; �) = max
C;Z;�

E�

Z !

�

 
S(T )

S(�)

!
�(T )

"Z T

�
U(C(t); t)dt +B(Z(T ); T )

#
dT; (5)

where ! represents the limiting age of the underlying mortality table, i.e., X 2

[0; !]. Applying Fubini's theorem, equation (5) becomes

J(W; �) = max
C;Z;�

E�

Z !

�

S(T )

S(�)
[�(T )B(Z(T ); T ) + U(C(T ); T )] dT (6)

after swapping the order of integration over the triangle T � t, t � � in <2. The

Hamilton-Jacobi-Bellman (HJB) equation is therefore

0 = max
C;Z;�

�
�(t)B(Z(t); t) + U(C(t); t)� �(t)J + Jt

+[��W + (1� �)rW + Y � C � P ]JW +
1

2
�2�2W 2JWW

�
: (7)

As Y (t) in equation (7) is non-stochastic, Richard demonstrates that (7) is

equivalent to an equation involving capitalized Y (t). That is, adjusted wealth is

7Richard actually considered the more general case of there being some sort of `loading'

to mortality. This means mortality rates are increased to above their true levels, ensuring

pro�tability for the life insurer. For the purposes of this paper, the simpler case of actuarial

fairness is su�cient, with the `loaded' model being an straightforward extension.
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de�ned as

~W (t) � W (t) + b(t); (8)

where b(t) is de�ned as the capitalized value of future income:

b(t) =

Z !

t
Y (�)

S(�)

S(t)
e�r(��t)d�: (9)

The standard approach (Richard 1975, Bodie, Merton & Samuelson 1992) is to

remove Y (t) from (7) and substitute ~W (t) for W (t). Income is thus treated

as a traded asset. As Bodie et al. (1992) rightly point out, the individual never

actually `sells' his or her human capital, but rather enters the (assumed) complete

market in traded securities to accomplish the same thing. For example, the

riskless asset could be sold short, with the proceeds invested in the risky asset;

the short sale would be designed so future liabilities from the sale are o�set by

future wage payments.

Richard provides an algebraic solution to the above model for CRRA utility.

He demonstrates that when

U(C(t); t) = h(t)
C
(t)



; 
 < 1; h > 0; C > 0 (10)

B(Z(t); t) = m(t)
Z
(t)



; 
 < 1; h > 0; Z > 0 (11)

the optimal controls are given by8

C�(W; t) =

 
h(t)

â(t)

!1=(1�
)

[W + b(t)]; (12)

8Note that equation (13) simpli�es equation (32) of Richard, due to the consideration of

actuarially fair insurance.

6



Z�(W; t) � W +
P �(W; t)

�(t)
=

 
m(t)

â(t)

!1=(1�
)

[W + b(t)] and (13)

��(W; t)W =
�� r

(1� 
)�2
[W + b(t)] = ~�� ~W (14)

where

â(t) =

(Z !

t
k(�)

S(�)

S(t)
exp

"



1� 


 
(�� r)2

2(1� 
)�2
+ r

!#
d�

)1�


(15)

and9

k(t) =

8<
:
"

1

�(t)

#
=(1�
)
[�(t)m(t)]1=(1�
) + h1=(1�
)(t)

9=
; : (16)

The solutions are linear in adjusted wealth, a familiar result for HARA (hy-

perbolic absolute risk aversion) utility functions (Merton 1971). Interestingly, for

h(t) = m(t) optimal consumption and bequest amounts will be identical. The so-

lution for ~�� indicates investment in the risky asset should be a constant fraction

of adjusted wealth. This is an example of the well-known result that optimal in-

vestment behaviour over the life cycle, for utility functions that display constant

relative risk aversion, is \myopic", with individuals always investing a constant

proportion of wealth in the risky asset and ignoring the future distribution of

asset returns.

Numeric solutions to this model are not available. Although it is possible to

approximate the integral in (15) (see Appendix A for details), a more general

approach is to use a probabilistic approximation to solve the control problem.

Such an approach readily handles di�erent functional forms for U , B, h and m.

It also makes the inclusion of contraints to the model relatively straightforward.

Richard's model allows individuals to borrow an unlimited sum at the risk-

9Equation (39) of Richard, which gives the formula for k(t), contains a typographical error.

Equation (16) above is this author's corrected version|for the case of actuarially fair life

insurance.

7



free rate, r. A better model would include some sort of borrowing restraint.

Drawing on the work of Fleming & Zariphopoulou (1991), one possibility would

be to allow individuals to borrow up to the amount of their �nancial wealth,

W (t) (� ~W (t)� b(t)), at the risk-free rate, but at a higher rate R for borrowings

in excess of this amount.10 Hence, (3) is modi�ed to become:

d ~W (t) = �C(t)dt� P (t)dt+ r ~W (t)dt+ (�� r)�̂(t) ~W (t)dt

�(R � r)max[�̂(t) ~W (t)�W (t); 0]dt+ ��̂(t) ~W (t)dq(t); (17)

where �̂(t) is themodi�ed proportion of adjusted wealth investment in risky assets

and max[�̂(t) ~W (t)�W (t); 0] is the amount of money the individual has borrowed.

The second last term of equation (17) captures the essence of costly borrowing

by reducing the returns to adjusted wealth.

Finally, noting that discounted values of the functions of interest can pro-

duce very small values, we may facilitate the numerical solution of the model

by converting the discounted HJB equation (7) to current values. If we set

h(t) = e��t, so U(C(t); t) = e��t ~U(C(t)), and m(t) = e��t�(t), so B(Z(t); t) =

e��t�(t) ~B(Z(t)), where � represents an individual's rate of time preference and

�(t) is a function relevant to bequest determination, then equation (7) becomes

0 = max
C;Z;~�

�
�(t)�(t) ~B(Z(t)) + ~U(C(t))� �(t) ~J � � ~J + ~Jt

+[~�� ~W + (1� ~�)r ~W � C � P ] ~JW +
1

2
�2~�2W 2 ~JWW

�
: (18)

10This could be seen as re
ecting the presence of moral hazard problems associated with

borrowing against one's future income.
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3 Solving the Model

The numerical solution of �nite horizon stochastic optimal control problems is

well described in Kushner (1977, Chapter 7) and Kushner & Dupuis (1992, Chap-

ter 12). The \explicit" solution approach involves a �nite di�erence approxima-

tion to the HJB equation (18), a second-order linear parabolic partial di�erential

equation, as described below.

Firstly, consider the coe�cient of ~JW in (18). Partition the terms that make

up this coe�cient into a positive group, d+ = (� � r)~� ~W + r ~W + � ~W , and a

negative group d� = C + �Z, where d = d+ + d�, d being the coe�cient of ~JW .

Let us approximate the partial derivatives in equation (18) as follows:

ft(x; t) !

f(x; t+ �)� f(x; t)

�

fx(x; t) !

f(x+ h; t+ �)� f(x; t + �)

h
for d+

fx(x; t) !

f(x; t+ �)� f(x� h; t+ �)

h
for d�

fxx(x; t) !

f(x+ h; t+ �) + f(x� h; t+ �)� 2f(x; t+ �)

h2

and write (18) as follows, where V (�; �) represents the solution to the �nite di�er-

ence equation:

0 = max
C;~�;Z

�
�� ~B(Z(t)) + ~U(C(t))� (�+ �)V ( ~W; t) +

V ( ~W; t+ �)� V ( ~W; t)

�
+
V ( ~W + h; t+ �)� V ( ~W; t+ �)

h
d+

�

V ( ~W; t+ �)� V ( ~W � h; t + �)

h
d� +

1

2
(�~�W )2

V ( ~W + h; t+ �) + V ( ~W � h; t+ �)� 2V ( ~W; t+ �)

h2

�
:(19)
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Equation (19) can be written as

V ( ~W; t) = max
C;~�;Z

1

1 + �� + ��

(
~U(C(t)) + ��(t) ~B(Z(t))

V ( ~W; t+ �)

"
1�

�

h
d�

�

h2
�2
#
+

V ( ~W + h; t+ �)

"
�

h
d+ +

�

h2
�2

2

#
+ V ( ~W � h; t+ �)

"
�

h
d� +

�

h2
�2

2

#)

or, more conveniently,

V ( ~W; t) = max
C;~�;Z

1

1 + �� + ��

�� 1X
�=�1

p( ~W; ~W + �h)V ( ~W + �h; t + �)

�

+�

�
~U(C(t)) + ��(t) ~B(Z(t))

��
(20)

where the p(�; �) may be interpreted as transition probabilities of a Markov chain,

locally consistent with equation (3), and given by:11

p( ~W; ~W + h) =
�

h2

�
1

2
(�~� ~W )2 + h

h
(�� r)~� ~W + r ~W + � ~W

i�
(21)

p( ~W; ~W � h) =
�

h2

�
1

2
(�~� ~W )2 + h [C + �Z]

�
(22)

p( ~W; ~W ) = 1� p( ~W; ~W + h)� p( ~W; ~W � h) (23)

The boundary condition is V ( ~W;!) = �(!) ~B(Z(!)). Thus, the solution to

the investor's stochastic control problem (equation (1)) is approximated by the

solution to equation (20) as h ! 0 and � ! 0 together. The convergence of

this approximation method has been established by viscosity solution techniques

(Fitzpatrick & Fleming 1990, Fitzpatrick & Fleming 1991).

11We must, through choice of � and h2, ensure 0 � p(�; �) � 1.
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� = 0:10 h = 0:02

r = 0:05 N = 1000

� = 0:05 
 = �0:5

� = 0:30 R = 0:06

Mortality: A1967{70a ! = 110

aFrom Neill (1977, Appendix III). This is a table of assured lives mortality; no sex distinction

is present. Many annuity and assurance values are tabulated, making it particularly useful in

interpreting the solution results.

Table 1: Parameters used in the numerical solution of the model.

Equation (20) was solved on a grid by backward iteration, using a computer.

Further details may be found in Appendix B.

Imposing the borrowing constraint, discussed in Section 2 above, is a straight-

forward matter of solving equation (20), subject to the required constraint.

4 Results and Implications

This section lays out the results of the numerical solutions of the Richard model,

as well as some implications of its results. Firstly, we consider the parametrization

of the model. Consideration is given to the resulting life insurance implications,

and how these suggest the HLV rule of thumb is not an appropriate rule for life

insurance purchases. Numeric results are then discussed, and we consider the

life cycle dynamics of the model with a simple illustrative example showing its

age-phasing consequences. Introducing realistic constraints concludes the section.

Using the parameters set out in Table 1, theRichard model was solved using

the methodology of the preceding section. Details on the veri�cation of the

solution may be found in Appendix A. The functional forms used for U(C; t)

and B(Z; t) were those of equations (10) and (11); h(t) was set to e��t and m(t)

were set to e��t�(t). From equation (13), we can see that if �(t) = �1�
(t), then

Z�(t) = �(t)C�(t). Drawing on prevailing social norms, a reasonable value to
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provide a spouse following the death of his or her partner would be an amount

su�cient to provide two-thirds of the deceased's current income for life. This

notion has in fact been enshrined in pension bene�ts regulations in Canada, for

example, where the surviving spouse of a deceased pensioner is provided with

between 50% and 662/3% pension continuation.12 Hence, we set �(t) to 2/3�a
r
t ,

giving Z� as 2/3C
��art , where

13

�art =

Z !

t

S(�)

S(t)
e�r(��t)d� : (24)

In this way, the bequest value is made to be a stock, rather than a 
ow variable.

The above serves to underline the dependence of individual's life insurance

needs on their bequest function. Under the assumptions made, the inconsistency

of this model with the HLV concept of �nancial planning is apparent: individuals'

insurance needs are dependent on their personal characteristics, and in particular,

their level of consumption. An approach to life insurance provision consistent

with this model would be based on some function of investor consumption. The

HLV rule of thumb is, however, based on the 
ow of future income. Intuitively

we can see the HLV concept providing too much insurance for the case of high

income individuals with only moderate consumption tastes, or providing too little

for those with high rates of time preference.

The solutions for a mildly risk averse investor (
 = �0:5) with time preference

� = 0:05 are displayed in Table 2.14 The constancy of ~�� is apparent and its values

12See, for example, s. 45(2) of Ontario's Pension Bene�ts Act, 1987.
13For simplicity, we assume partners are close in age and have similar preferences. In the

numerical work �a0:05
t

is approximated by a linear function, 20� (19=80)(x� 30), which, while

not exactly matching �a0:05
t

values, gives both a reasonable approximation to the function and

avoids the inconvenience of a zero boundary condition.
14The value of 
 = �0:5 corresponds to an Arrow-Pratt measure of relative risk aversion of

1.5. Recent numerical estimates (Hansen & Singleton 1983, Mankiw 1985) place this measure
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HLV

Life Invested Life

E( ~W ) E(W ) C
� ~�� Z

� Insurance in Risky Insurance

Age ($) ($) ($) (%) ($) ($) ($) ($)

30 1 000 000 10 000 59 100 35.9 792 000 782 000 359 000 1 017 000

40 1 062 000 221 000 67 500 36.0 797 000 576 000 382 000 876 000

50 1 070 000 459 000 76 600 36.4 792 000 333 000 389 000 645 000

60 962 000 704 000 82 700 36.7 714 000 10 000 353 000 269 000

70 711 000 711 000 79 600 36.8 560 000 {151 000 262 000 0

80 356 000 356 000 56 100 36.5 305 000 {51 000 130 000 0

90 81 000 81 000 19 600 36.8 76 000 {5 000 30 000 0

100 7 000 7 000 2 500 36.8 6 000 {1 000 3 000 0

Table 2: Numerical solution of Richard (1975), 
 = �0:5, � = 0:05, and life

insurance levels from HLV concept.

are very close to the theoretical value given by equation (14). Table 2 gives results

for an individual whose lifetime wealth path follows that expected.15

The table indicates that for a 30 year old individual with wealth of 1% of

adjusted wealth ($10 000) and a constant of income of about $61 000 to age 65

(implies b(30)=$990 000),16 the individual will consume $59 100, invest $359 000

in risky assets, and take insurance to the value of around $782 000. An 80 year

old individual, on the other hand with wealth of $356 000 and no future income,

would consume $56 100, invest $130 000 in risky assets, and sell insurance (or take

bets on his or her death) to the value of $51 000. (This quirk will be expanded

on below.) At all ages, the level of life insurance suggested by the Richard (1975)

model is less than than given by the HLV rule of thumb.

The optimal proportion of adjusted wealth invested in the risky asset is con-

between 1 and 3. Lucas (1990) advances empirical and theoretical arguments based on cross-

country interest rate di�erentials, why the measure should be less than 2.
15Expected wealth holdings over an individual's lifetime were generated by computer simu-

lation (Purcal forthcoming).
16This follows from 60 636:07

R 65
30
[S(!)=S(30)]e�r(!�30)d! = 990 000, using the interest and

mortality rates given in Table 1.
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Proportion of �nancial

wealth invested in

risky, ��

Age (%)

30 3 590

35 328

40 173

45 114

50 83

55 64

60 49

>65 37

Table 3: Age-phasing path for numerical solution of Richard (1975), 
 = �0:5,

� = 0:05.

stant over time, a feature of models with individuals with utility functions that

exhibit constant relative risk aversion and an underlying stochastic process with

constant coe�cients. Note, however, as a proportion of �nancial wealth (as op-

posed to adjusted wealth), the proportion invested in risky falls as investors age|

our 30 year old invests 3 590% of �nancial wealth in risky while the 80 year old

invests only 37%. Bodie et al. (1992) point out that a major practical manifesta-

tion of this is the leveraged purchase of the family home. This is an example of

age-phasing, which advocates individuals should reduce their exposure to risky

assets over time. Table 3 gives the age-phasing path generated by our solution

to the model. Thus, Richard's model lends support to this common tenet of

�nancial planning, suggesting also that young investors may be highly leveraged.

It is interesting to observe in Table 2 that, for our parametrization of the

model, one needs a considerable amount of life insurance when young|this

amount decreases over one's working life to become zero, and even negative

around, and after, the time of retirement. A negative premium implies individu-
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als are able to sell life insurance (for a life aged exactly their age) or, alternatively,

they are able to take bets on their own deaths, to be paid out of terminal wealth.

As Fischer (1973) pointed out, this state of a�airs is equivalent to the purchase

of an annuity. Thus, the model has also provided a motivation for retirement in-

come. Table 2 shows optimal annuity payment levels start at zero near retirement

and rise to a peak, then gradually falling o�.

It is in the area of retirement income that a weakness of the current set up of

the model is apparent. The utility function used allows consumption to move to

very low levels at higher ages. Clearly, to motivate reasonable retirement income

needs, a more general HARA utility function with a positive level of subsistence

consumption would be more appropriate.

As discussed above, a more appropriate model of consumption and investment

behaviour would also include a borrowing constraint. The constraint, equation

(17), was incorporated into the model. The results for R = 0:06 are shown in Ta-

ble 4. The e�ect on behaviour is as one would expect: when the constraint binds

we see investment falling to a rate less than when borrowing is unconstrained.

Here ~�� falls from its unconstrained level of around 37% to around 30% when

the contraint is binding (i.e., when �nancial wealth is less than 37% of adjusted

wealth).

Through developing the numerical solution for the borrowing constrained

model, it became apparent that the investor's portfolio selection behaviour fol-

lows certain rules, set out in Table 5.17 The results in the �̂� column of Ta-

ble 4 do not exactly re
ect the results of Table 5. This is because the solution

for �̂� derives from equations of the form �[(� � r)W=(�W )2][v0(W )=v00(W )],

17These results are identical to those explored theoretically in Fleming & Zariphopoulou

for an optimal investment/consumption model with the same borrowing constraint, but with

in�nitely-lived investors, no life insurance and no income.
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Life Invested
~W a

W
b

C
�

�̂
�

Z
� Insurance in Risky W= ~W

Age ($) ($) ($) (%) ($) ($) ($) (%)

30 1 000 000 10 000 54 500 31.0 731 000 721 000 310 000 1.0

31 1 008 000 25 000 55 100 30.4 730 000 705 000 306 000 2.5

32 1 016 000 42 000 55 800 29.8 730 000 688 000 302 000 4.1

33 1 023 000 58 000 56 500 29.1 730 000 672 000 298 000 5.7

34 1 031 000 77 000 57 100 28.6 729 000 652 000 294 000 7.4

35 1 039 000 97 000 57 900 28.0 730 000 633 000 291 000 9.3

36 1 042 000 113 000 58 500 27.6 728 000 615 000 287 000 10.9

37 1 048 000 134 000 59 300 27.1 729 000 595 000 284 000 12.8

38 1 053 000 154 000 60 000 26.8 728 000 574 000 282 000 14.7

39 1 058 000 176 000 60 900 26.5 729 000 553 000 280 000 16.7

40 1 062 000 199 000 61 700 26.3 729 000 530 000 279 000 18.7

41 1 066 000 223 000 62 600 26.1 729 000 506 000 279 000 20.9

42 1 073 000 250 000 63 600 26.0 731 000 481 000 279 000 23.3

43 1 075 000 274 000 64 500 26.0 730 000 456 000 279 000 25.5

44 1 075 000 298 000 65 300 27.8 730 000 432 000 298 000 27.7

45 1 077 000 324 000 66 200 30.2 730 000 406 000 325 000 30.1

46 1 079 000 351 000 67 000 32.6 727 000 376 000 351 000 32.6

47 1 079 000 379 000 67 800 34.4 725 000 346 000 371 000 35.1

48 1 078 000 407 000 68 500 35.0 722 000 315 000 377 000 37.7

49 1 076 000 434 000 69 200 35.5 718 000 284 000 382 000 40.3

50 1 070 000 459 000 69 500 35.8 710 000 251 000 383 000 42.9

60 962 000 727 000 71 100 36.6 614 000 {113 000 353 000 75.6

70 711 000 711 000 63 800 36.8 449 000 {262 000 261 000 100.0

80 356 000 356 000 42 300 36.8 230 000 {126 000 131 000 100.0

90 81 000 81 000 14 000 36.8 54 000 {27 000 30 000 100.0

100 7 000 7 000 2 000 36.8 4 000 {3 000 2 000 100.0

aThese are the E( ~W ) values from Table 2.
bIn an e�ort to reduce computation time, b(t) was approximated by a quadratic equation.

Hence the di�erence between this column and the corresponding column in Table 2.

Table 4: Numerical solution of Richard (1975), 
 = �0:5, � = 0:05, R = 0:06.
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Market �̂
�(t)

(��r)
�2(1�
)

>
(��R)
�2(1�
)

>
W
~W

(��R)
�2(1�
)

(��r)
�2(1�
)

>
W
~W
>

(��R)
�2(1�
)

W
~W

W
~W
>

(��r)
�2(1�
)

>
(��R)
�2(1�
)

(��r)
�2(1�
)

Table 5: E�ect of borrowing constraint.

�[(� � R)W=(�W )2][v0(W )=v00(W )] or W= ~W , where v(W ) is the value func-

tion corresponding to the HJB equation (18) above. Due to the HARA form

of the direct utility function, U(C), it is readily established that v0(W )=v00(W ) =

�W=(1 � 
) (Fleming & Zariphopoulou 1991, p. 808), giving the values that

appear in Table 5. However, for the purposes of the approximation method,

v0(W )=v00(W ) is determined by �nite di�erence approximations. These do not

always produce constant values of �W=(1� 
). Closer correspondence would be

achieved by working over a �ner grid.

The investor's life cycle proportion-in-risky investment path (�̂�) from Table

4 is represented diagramatically in Figure 1. In region A of the �gure the investor

has to borrow funds to make his or her optimal investment in the risky asset; the

investor's optimal investment in risky is (��R)=[�2(1� 
)] = 30%. Region A of

the �gure corresponds to ages 30{44 in Table 4. In region B, optimal investment is

at rateW= ~W|this level of investment is better than investing at the lower rate of

(��R)=[�2(1�
)], or borrowing to invest at the higher rate of (��r)=[�2(1�
)].

In region B the level of investment tracks the growth in �nancial wealth. Region

B corresponds to ages 45{47 in Table 4.

In region C of Figure 1 the investor no longer has to borrow to invest at level
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Figure 1: Investment in risky asset over time with costly borrowing, R = 0:06.
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(��r)=[�2(1�
)]. His or her level of �nancial wealth is a su�cient proportion of

adjusted wealth to be able to draw on those funds for all desired risky investment.

This occurs between ages 48 and 65 in Table 4. In region D the investor has

retired, and no longer has a human capital component to his or her adjusted

wealth. As a result, in region D the investor would invest in risky at level (� �

r)=[�2(1� 
)] regardless of his or her wealth situation.

In Table 4, investors' levels of consumption and life insurance over their life-

times are lower than the unconstrained levels of Table 2.

5 Conclusion

This paper has examined the Richard (1975) model as a preliminary step to de-

veloping a relevant model for �nancial planning. Using a probabilistic approach,

numerical solutions to the Richard model were provided.

The Richard model, with its non-stochastic income, generated an age-phased

reduction in investment in risky assets over an individual's life, lending support

to this traditional piece of �nancial planners' advice. For the parametrization

of the model considered above, we are led to the situation of individuals being

highly leveraged in their youth.

The life insurance behaviour implied by the model was also examined, show-

ing that, for the CRRA parametrization of the model considered, optimal life

insurance purchase is related to consumption levels. This �nding calls into ques-

tion the usefulness of the HLV concept of �nancial planning, which focuses on

future income streams. In addition, the model provides details about optimal an-

nuity purchase around retirement, suggesting a hump shaped pattern of annuity

receipts.
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Consideration was given to making the Richard model more realistic. The

imposition of a borrowing constraint, re
ecting costly borrowing, reduced invest-

ment in the risky asset in a way that was able to be quanti�ed.

The solution method employed is quite powerful, able to deal with complica-

tions like the constraints mentioned above, as well as di�erent functional forms.

Future work aims to inject further realism into the model in a variety of

ways. By recasting the model into a more general HARA utility framework, with

a positive subsistence consumption level, we should be able to motivate more

realistic levels of retirement income. Currently, the model permits low levels of

consumption at older ages.

Bodie et al. (1992) considered uncertain wage income, thus exposing individ-

uals to future income risk, with consequences for consumption and investment

behaviour. In their model, wage income was perfectly correlated with the risky

asset's di�usion. Using the techniques discussed in this paper, and drawing on

the recent work of Du�e & Zariphopoulou (1993) and Du�e, Fleming, Soner

& Zariphopoulou (1997), it is possible to consider the more interesting case of

imperfect correlation between the risky asset and wages.

A Veri�cation of Results

The text above has discussed a numerical approach to approximate solutions

to Richard's optimal stochastic control problem. It is important to verify the

accuracy of any numerical approximation; this is the purpose of this Appendix.

The results of the numerical solution have been veri�ed in the following man-
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ner. Equation (15) may be expressed as

â(t) =

�
(e��t)1=(1�
)

Z !

t
(�(�) + 1)

S(�)

S(t)
exp

��
1

1� 

��
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1
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(
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�
)2

1
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+ r

��
(t� �)

�
d�

�1�


= e��tf �A
�
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�
tg

1�
; (25)

where �A
�
t is the expected present value of a term life insurance paying $1 on death.

The term �a
�
t , the expected present value of an annuity, payable continuously for

life, is given by equation (24). Furthermore, equation (25) assumes h(t) = m(t) =

e��t. Both �A
�
t and �a

�
t are evaluated at the continuously compounded rate of

interest

� =

"
1

1� 

��




1� 


�
1

2
(
�� r

�
)2

1

1� 

+ r

�#
: (26)

It is a requirement for the solution of the model that � be non-negative.

Approximations are readily available for �a
�
t in the actuarial literature. One

such approximation is18

�at �

0
@ !X
�=t+1

e���
S(�)

S(t)

1
A+

1

2
�

1

12
[�(t) + �] :

The theoretical relationship between �A
�
t and �a

�
t , �A

�
t = 1� ��a

�
t , can then be used

to evaluate �A
�
t .
19 The resulting solution values compare favourably with those

generated by the numerical methods of section 3, for h(t) = m(t) = e��t.

18See, for example, Neill (1977).
19This relationship is proved in Neill (1977, p. 84).
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B Computational Details

Equation (20) was solved using backward iteration over a grid of the state vari-

able. For details of the Markov chain approximation, the boundary transition

probabilities and determination of the normalizing constant ~Q = h2=�, including

adjusting ~Q to speed computation, see Fitzpatrick & Fleming (1991).

A grid size of N = 1 000 was used, with state variable ~W taking values of

from 0 through 20.00, in steps of h = 0:02. As noted in other work (Fitzpatrick

& Fleming 1991), values at the top and bottom of the grid are inaccurate, while

values in the middle are accurate.

The solution method was coded by the author, in C, and run on a 166MHz

Digital AlphaStation 200 4/166, with 64M of memory operating under OpenVMS

v7.0. Solving the model (going from terminal age of 110 back to 30) took up to

3 hours.
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