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1.) Introduction

The premium which has to be paid for the insurance of any given risk is calculated on the basis of the probability distribution of the insurer's total stochastic payments. In the case of insurance contracts which last for many years such probability distributions can also be regarded for every single period. The payments are caused by any stochastic events. Further the premium parts for covering the administration costs are not taken into account. 

The ex ante information about the risk can be very different. Sometimes exact data and statistics are available, but sometimes the information about possible claim amounts and their probabilities is rather vague, and this problem holds even if the option of getting more information about the risk is taken into account. 

In decision theory decision-makers are generally assumed to have subjective probabilities for their decision, and all actuarial models are based on stochastic models as well. We therefore expect every insurer to be able to assess a given risk by a probability distribution of the corresponding payments.
) 

Considering this model there is no fundamental problem if only the exact level of the insurer's payments is unknown. In this case a density function of those payments can be assumed which can be connected with the general probability distribution. Thus only a modified probability distribution has to be assessed which describes the total risk. 

But in opposite to this there is a severe theoretical and practical problem if the information about the single probabilities is rather vague. 

Example 1:
(i)
Consider an urn with 90 ballots, 30 being red, 30 black and 30 yellow. 

(ii)
Consider an urn with 90 ballots. Each ballot can either be red, black or yellow.

(iii)
Consider an urn with 90 ballots. Each ballot can either be red, black or yellow, and the numbers of black and yellow ballots are equal.

In all three cases the risk is modelled by the following probability distribution:
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Obviously the degree of information about the probabilities in (ii) is less than in (i), and in (iii) the degree of information is less than in (i) and higher than in (ii), but the corresponding distributions are all equal. 

Comparing (i) and (ii) it can be noted that the information lack in (ii) becomes important for an insurance decision if claim payments are considered:

Let us assume that one ballot is randomly casted out of the urn and that there is a claim of 1000 if and only if the ballot is red. An insurer who covers this risk might demand a higher premium amount in (ii) than he does in (i), and the maximum price an insuree is willing to pay for the insurance of the risk will probably be higher in (ii), too. Both the demand and the supply price for insurance depend on the degree of information about the probability distribution which is neglected in usual stochastic models. In the following a model shall be presented which integrates the information level concerning the probabilities, and the implications for the determination of insurance premiums will be considered. 

2.) Information and Risk Aversion

Both the insurer's minimum price for covering a risk and the insuree's maximum price for insuring the risk depend on their individual risk aversion level. In expected utility theory this is assessed by the Arrow‑Pratt function
)
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with u being the decision-maker's utility function for final wealths. The utility function is also determined by the risk aversion function r so that it is sufficient to regard r for the decision analysis:
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with u(0)(R, u((0)>0 arbitrarily chosen.
) 

As it can be shown in decision theory the utility function u does not only exist for secure outcomes. It is mostly defined for all probability distributions P of stochastic outcomes. At least convex sets of probability distributions have to be assumed. The secure outcomes are included as the special cases of one-point distributions, but in the following a utility function u(P) shall be considered.
) 

As the risk aversion level increases if the degree of information about the probabilities decreases a decision-maker's risk aversion function does not only depend on the final wealth x, but also on an information level i, and so does the decision-maker's utility function. Any stochastic outcome can be formally connected with the information level of its corresponding probability. According to the decision theoretic model stochastic events must be regarded which combine the monetary outcomes with an information level which for each probability distribution P can be formulated as a function I(P). So the individual utility function has two formal components: u(P,I(P)), and a sensible definition of the information level is required which has to take into account that, if possible, this utility function should fulfill the expected utility maximization criterion. 

3.) Axiomatic Approach for Information and Entropy Levels

Once again Example 1 shall be considered. In (i) the exact numbers of red, black and yellow ballots are known so that we have full information about the single probabilities. There is no information lack. On the other hand, in (ii) the information lack is maximal, for we do not have any information about the distribution of the ballots. The following definition gives an assessment of the information lack in a way that the information lack is a number which is 0 when there is no information lack and which is 1 when it is maximal:

Def.1:
Let P be a probability distribution, and let x be a stochastic result. Pmax(x) shall be the maximal possible probability value of P(x), and Pmin(x) the minimal one, depending on the decision‑maker's information about the probabilities. 

For a discrete probability distribution we define:

(i)
i(x) := Pmax(x)-Pmin(x) is the information lack of the probability of x,

(ii)
i(P) := (VERSETZEN \D 7.5

VERSETZEN \L 5.60xVERSETZEN \U 7.5 P(x)(i(x) is the information lack of the probability distribution P,

(iii)
Let i(2P) be the vector of the 2n components which shows the information lacks 


(VERSETZEN \D 7.5

VERSETZEN \L 9.90x(S VERSETZEN \U 7.5P(x)(i(x) for all subsets of the possible outcomes {x1,...,xn} = {x| P(x)>0}, i(():=0. As i(2P) shows the complete information lack structure of P it is called the information lack structure function of the probability distribution P,

For continuous distributions this can be defined analogously using an information lack density function. 

It is seen that the information lack depends on the subjective probability distribution P which is a priori given. If there is not any information about the probabilities of the stochastic outcomes, like in Example 1(ii), it can reasonably be assumed that the decision‑maker takes a Laplace distribution. If there is some vague information a probability distribution P can be assumed which takes medium values under the condition of that vague information. Let us note that secure one-point distributions always have an information lack of 0, and let us also note that information lacks cannot be arbitrarily connected with the probabilities. For example, it is impossible that one single information lack is positive while all the others are 0. 

Preferences on information structures are determined by an assessment of the information lack structure functions i(2P). Such order relations are not obvious, but later a real measure will be defined which is suitable for the assessment of the information lack structure and which therefore can be interpreted as the required information level I(P). The following examples give an illustration of Def. 1:

Example 2:
(i)
Let P1 be the probability distribution of Example 1(i). Then we get:


i(r) = i(b) = i(y) = 0; i(P1) = 0.

(ii)
Let P2 be the probability distribution of Example 1(ii). Then we get:


i(r) = i(b) = i(y) = 1; i(P2) = 1.

(iii)
Let P3 be the probability distribution of Example 1(iii). Then we get:


i(r) = 1; i(b) = i(y) = VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.602 VERSETZEN \U 3.95; i(P3) = VERSETZEN \U 5.902VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.603 VERSETZEN \U 3.95.

(iv)
Consider an urn with 90 ballots. Each ballot can be red, black or yellow. It is known that the number of yellow ballots is twice the number of black ballots. For the concerning probability distribution P4 we get:


P4(r) = VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.603 VERSETZEN \U 3.95, P4(b) = VERSETZEN \U 5.902VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.609 VERSETZEN \U 3.95, P4(y) = VERSETZEN \U 5.904VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.609 VERSETZEN \U 3.95. 


i(r) = 1, i(b) = VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.603 VERSETZEN \U 3.95, i(y) = VERSETZEN \U 5.902VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.603 VERSETZEN \U 3.95, i(P4) = VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.603 VERSETZEN \U 3.95 + VERSETZEN \U 5.90

VERSETZEN \R 4.252VERSETZEN \L 7.35   VERSETZEN \D 9.90

VERSETZEN \L 9.527 VERSETZEN \U 3.95 + VERSETZEN \U 5.90

VERSETZEN \R 4.258VERSETZEN \L 7.35   VERSETZEN \D 9.90

VERSETZEN \L 9.527 VERSETZEN \U 3.95 = VERSETZEN \U 5.9019VERSETZEN \L 10.50   VERSETZEN \D 9.90

VERSETZEN \L 9.527 VERSETZEN \U 3.95.

(v)
Consider an urn with 90 ballots. Each ballot can be red, black or yellow. It is known that the number of yellow ballots is less than twice the number of black ballots. For the concerning probability distribution P5 we get:


P5(r) = VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.603 VERSETZEN \U 3.95, P5(b) = VERSETZEN \U 5.905VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.609 VERSETZEN \U 3.95, P5(y) = VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.609 VERSETZEN \U 3.95. 


i(r) = 1, i(b) = 1, i(y) = VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.603 VERSETZEN \U 3.95; i(P5) = VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.603 VERSETZEN \U 3.95 + VERSETZEN \U 5.905VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.609 VERSETZEN \U 3.95 + VERSETZEN \U 5.90

VERSETZEN \R 4.251VERSETZEN \L 7.35   VERSETZEN \D 9.90

VERSETZEN \L 9.527 VERSETZEN \U 3.95 = VERSETZEN \U 5.9025VERSETZEN \L 10.50   VERSETZEN \D 9.90

VERSETZEN \L 9.527 VERSETZEN \U 3.95. 

(vi)
Consider an urn with 90 ballots; 45 of them are red or green, the others black or yellow. For the concerning probability distribution P6 we get:


P6(r) = P6(g) = P6(b) = P6(y) = VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.604 VERSETZEN \U 3.95;


i(r) = i(g) = i(b) = i(y) = VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.602 VERSETZEN \U 3.95; i(P6) = VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.602 VERSETZEN \U 3.95. 


Here we see that in the case of a positive information lack probabilities can be assumed which would be impossible if there were full information about the probabilities. 

(vii)
Consider an urn with an equal number of red and green ballots, it is also possible that this urn is empty; and consider a second urn with an equal number of black and yellow ballots which might also be empty. The ballots of both urns are collected in a third urn which shall not be empty. For the probability distribution P7 of that urn we get:


P7(r) = P7(g) = P7(b) = P7(y) = VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.604 VERSETZEN \U 3.95;


i(r) = i(g) = i(b) = i(y) = VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.602 VERSETZEN \U 3.95; i(P7) = VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.602 VERSETZEN \U 3.95. 


The information lacks are the same as in (vi). We thus see that the same information lacks can result from rather different stochastic situations. 

If single probability distributions are randomly connected to a more complex one, the information lack of the latter distribution essentially depends on the vagueness of the new connecting probabilities:

Remark 1:
Let P1 and P2 be two probability distributions with information lacks i(P1) and i(P2). Consider a new probability distribution R := qP1+(1-q)P2 , with q([0,1]. 

                q    1-q

Let Q := [ q1   q2 ] be the probability distribution which decides whether a stochastic outcome of P1 or P2 will be realized. 

(i)
If i(q1) = i(q2) = 0 we get:  i(R) = q2i(P1)+(1-q)2i(P2).

(ii)
If i(q1) = i(q2) = 1 we get:  VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.602  VERSETZEN \U 3.95[i(P1)+i(P2)] ( i(R) ( 1.

Proof: 

(i)
If any probability distribution is weighted with a secure number q then i(x) reduces to q(i(x), and x occurs with a probability of q(P(x).

(ii)
If there is not any information about Q then q = 1-q = VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.602 VERSETZEN \U 3.95 will be assumed. Thus every probability from P1 and P2 will be weighted with the factor VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.602 VERSETZEN \U 3.95, and as the original information lacks are not reduced VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.602  VERSETZEN \U 3.95[i(P1)+i(P2)] is a lower boundary for i(R). As there are additional information lacks probabilities with an original lack intervall of [pd , pu] will have a larger lack intervall [0 , pu] which implies VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.602 VERSETZEN \U 3.95 [i(P1)+i(P2)] < i(R) as long as there are results x with Pmin(x)>0. 

Usually a decision-maker can be assumed to ceteris paribus preferring small information lacks. But this might not hold if information lacks are irrelevant for the decision because the outcomes will be the same.

Example 3:
(i)
Consider the probability distribution P1 of the urn of Example 1(i) with 30 red, 30 black and 30 yellow ballots.

(ii)
Consider the probability distribution P8 of an urn with 90 ballots, 30 being red, the others black or yellow. Then we have i(r) = 0, i(b) = i(y) = VERSETZEN \U 5.902VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.603 VERSETZEN \U 3.95. 
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] , but i(P1) = 0 < i(P8) = VERSETZEN \U 5.904VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.609 VERSETZEN \U 3.95. 

Now let us assume that one ballot is casted out of the urn and that an insurer has to pay an amount of 1000 if and only if the ballot is red. The insurer will be indifferent between (i) and (ii), and thus he would demand the same premium. 

As the outcomes of the black and the yellow ballots are the same they can be clustered to a new stochastic event (b ( y) with P( (b ( y) ) = VERSETZEN \U 5.902VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.603 VERSETZEN \U 3.95 and i( (b ( y) ) = 0. We see that the information lack of a clustered event can be less than the information lacks of all its single events. 

Information lacks are only as relevant for the decision as the possible outcome differences can be, and only those outcome differences are relevant for the impacts of vague information about the probabilities which belong to a cluster of events that are connected with each other by information lacks. As different events can lead to equal monetary outcomes still the distribution of the single, unique events x is regarded, with m(x) being their monetary result. We therefore define for probability distributions of stochastic events which are assessed by real outcomes:

Def.2:
(i)
Let k be a nonempty subset of stochastic events x. k is called an information lack cluster, if for all x,y(k: i(x) is not independent of i(y). This means: More (or less) information about p(x) includes more (or less) information about p(y). 

(ii)
The set K of all information lack clusters k is called the information lack partition. 

(iii)
Let the assumptions of Def.1 hold, let x,y be stochastic events, m(x),m(y)(R their corresponding outcomes, and let k be an information lack cluster. Then


E(P) := (VERSETZEN \D 7.5

VERSETZEN \L 9.90  k   VERSETZEN \U 7.5(VERSETZEN \D 7.5

VERSETZEN \L 9.90x(S  VERSETZEN \U 7.5(VERSETZEN \D 7.5
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is called the entropy of the probability distribution P. 

Thus all events build a cluster which together will be realized with a probability without information lack. From that definition events x having no information lack form information lack clusters k = {x} of their own, but as i(x) = 0, for the entropy definition they might also be put to other information lack clusters. The following example gives an illustration of that definition:

Example 4:
Let us again consider some former probability distributions of Example 2 and let us assume that there is always a claim payment if a special ballot is casted out of the urn. Otherwise there is no claim. The special ballot is determined by the colours. 

(i)
E(P1) = 0 for any claim distribution concerned to P1. 

(ii)
The possible entropy levels for P2 are the following ones: 


If there is never a claim or if there is always a claim of C, then E(P2) = 0


If there is only a claim of C when the ballot is red, then E(P2) = VERSETZEN \U 5.904VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.609 VERSETZEN \U 3.95C = 0,444C.


The same holds for the case of a black or a yellow ballot.


If there is a claim of C when the ballot is red or black, then E(P2) = VERSETZEN \U 5.904VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.609 VERSETZEN \U 3.95C, too, and the same holds for every combination of two colours. 


If in the cases of no claim alternatively a claim of D is considered with D<C we get E(P2) = VERSETZEN \U 5.904VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.609 VERSETZEN \U 3.95(C-D).


Generally we get: If a red ballot causes a claim of C, a black ballot a claim of D and yellow ballot a claim of E we get:  E(P2) = VERSETZEN \U 5.902VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.609 VERSETZEN \U 3.95 [ |C-D| + |C-E| + |D-E| ].

(iii)
For P3 we get:


Let there be a claim of C if and only if the ballot is 


-   red. Then we get: E(P3) = VERSETZEN \U 5.90 VERSETZEN \R 3.954VERSETZEN \L 11.30     VERSETZEN \D 11.30

VERSETZEN \L 15.609 FORMEL \O()2VERSETZEN \U 5.40 C = 0,314C.


-   black. Then we get: E(P3) = VERSETZEN \U 5.901+ FORMEL \O()2VERSETZEN \L 18.40      VERSETZEN \D 9.90

VERSETZEN \L 14.15 9 VERSETZEN \U 3.95 C = 0,268C.


-   red or yellow. Then we get: E(P3) = VERSETZEN \U 5.901+ FORMEL \O()2VERSETZEN \L 18.40      VERSETZEN \D 9.90

VERSETZEN \L 14.15 9 VERSETZEN \U 3.95 C = 0,268C.


-   black or yellow. Then we get: E(P3) = VERSETZEN \U 5.90 VERSETZEN \R 3.954VERSETZEN \L 11.30     VERSETZEN \D 11.30

VERSETZEN \L 15.609 FORMEL \O()2VERSETZEN \U 5.40 C = 0,314C. 


We see that if claims happen when a red ballot is casted the entropy is less than in (ii) because the additional information in (iii) makes "medium probability values" for black and yellow ballots more probable which also makes a "medium probability value" for claims more probable. Naturally the entropy is smaller when claims coincide with black ballots as the information lack is smaller. 

(iv)
For P6 we get:


There are two information lack clusters k1 = {r,g} and k2 = {b,y}. 


Let there be a claim of C if and only if the ballot is


-   red. Then we get E(P6) = VERSETZEN \U 5.90

VERSETZEN \R 4.251VERSETZEN \L 7.35   VERSETZEN \D 9.90

VERSETZEN \L 10.2016 VERSETZEN \U 3.95C. 


-   red or green. Then we get E(P6) = 0. 


-   red or black. Then we get E(P6) = VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.608 VERSETZEN \U 3.95C. 


Although it is possible in the last case that the probability of a claim can be both 0 and 1 - and many other numbers - the entropy is rather small. The reason is that the risks that there are both many red and many black ballots are independent. The stochastical independence gives a non-vague information about the probability distribution reducing the entropy which is only concerned to information lacks inside of the clusters.

(v)
For P7 we get:


Let there be a claim of C if and only if the ballot is


-   red. Then we get E(P7) = VERSETZEN \U 5.90

VERSETZEN \R 4.253VERSETZEN \L 7.35   VERSETZEN \D 9.90

VERSETZEN \L 10.2016 VERSETZEN \U 3.95C. 


-   red or green. Then we get E(P7) = VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.604 VERSETZEN \U 3.95C. 


-   red or black. Then we get E(P7) = VERSETZEN \U 5.901VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.604 VERSETZEN \U 3.95C. 


The entropy is higher than in (iv) because there is only one information lack cluster. But the entropy is also smaller than in (iii) because here the additional information is more substantial. 

(vi)
For P8 we get:


Let there be a claim of C if and only if the ballot is 


-   red. Then we get: E(P8) = 0.


-   black. Then we get: E(P8) = VERSETZEN \U 5.90

VERSETZEN \R 4.254VERSETZEN \L 7.35   VERSETZEN \D 9.90

VERSETZEN \L 9.527 VERSETZEN \U 3.95C.


-   red or yellow. Then we get: E(P8) = VERSETZEN \U 5.90

VERSETZEN \R 4.254VERSETZEN \L 7.35   VERSETZEN \D 9.90

VERSETZEN \L 9.527 VERSETZEN \U 3.95C.


-   black or yellow. Then we get: E(P8) = 0. 

From its definition we see that the entropy can be determined from the data of the decision model and the knowledge about the information lacks. Instead of the difficult information lack structure function of Def. 1(iii) the entropy can be used as a reasonable measure of the information level I(P). So subjective utilities u depend on the stochastic event P and the entropy E(P). 

It can be assumed that at least risk averse decision-makers prefer a small entropy to a large one, but even risk neutral and risk sympathetic decision-makers might also prefer a small entropy when they want to have a clear basis for their decision under risk. Nevertheless it can reasonably argued that risk sympathetic decision-makers should be assumed to prefer a higher entropy, with risk neutral decision-makers who only maximize the expected outcomes analogously being indifferent concerning entropy. In any case we see that entropy can generally be taken into account for decision-making which shall be considered in the following chapter.

4.) Risk Ordering with Respect to Entropy Minimization

Every decision in a risky situation enforces the decision-maker to assess the probability distributions corresponding to his possible actions. As we have seen every probability distribution has a specific information lack value which has been defined in Def. 1(ii). On the basis of the information lacks entropy levels have been defined in Def. 2(iii). Reasonably  risk averse decision-makers can ceteris paribus be assumed to prefer a small entropy to a higher one. 

As risk aversion can be regarded as a normal behaviour in the following only risk averse decision-makers are considered. In this case the following decision axiom can be postulated:

Axiom 1:

Let P be the convex set of all probability distributions on the stochastic events, E(P) the entropy of a probability distribution P and _ the decision-maker's preference relation on all elements (P,E(P)) with P(P. Then we have for P=Q, P,Q(P :

(P,E(P)) _ (Q,E(Q)) ( E(P) ( E(Q). 

The minimization of the entropy is a competing aim to other aims and has to be taken into account when the decision-maker's expected utility is maximized. But let us note that the entropy minimization can also be integrated in other models of risk ordering. Especially the actuarial premium principles can be extended:
)
Def. 3:
Let P be the set of all nonnegative random variables X. Then any function

(:  P
( R

     X
( ((X,E(X))

is called a premium principle with respect to entropy minimization. 

Two simple extensions of well-known premium principles are:

Example 5:
(i)
((X,E(X)) := (1+()EX + (E(X), (,(>0, is called the expectation principle with respect to entropy minimization.
(ii)
((X,E(X)) := EX + (Var X + (E(X), (,(>0, is called the variance principle with respect to entropy minimization.
The integration of entropy minimization into expected utility is more difficult. Let us have a look to the axioms of expected utility theory concerned to stochastic events (P,E(P)):
)
There is no problem to assume that there is a preference order relation _ on the set of the elements (P,E(P)) which is not the complete indifference. But there are severe problems extending the Archimedean and the Independence Axiom: 

Formulating these axioms new randomly combined distributions are considered: 

If (P1,E(P1)) and (P2,E(P2)) are given, then a new distribution q((P1,E(P1))+(1-q)(P2,E(P2)), with q([0,1], is considered. As we have already seen in Remark 1 the information level of this new distribution essentially depends on the information lack of the distribution 

         q  1-q

Q := [ q1   q2 ] , q([0,1].

But even if i(Q)=0 is assumed there is the fundamental problem that convex combined probability distributions cannot be reasonably assessed by their components if there is a positive information lack. 

For example, with i(Q)=0  we see for E(P1)=E*: 

q((P1,E*)+(1-q)(P1,E*) = (P1,(q3+(1-q)3)E*) ( (P1,E*) ,  if E*>0, q({0,1}, 

with (P1,(q3+(1-q)3)E*) _ (P1,E*). 

Only if there are not any information lacks there are no axiomatic problems so that the Archimedean and the Independence Axiom can be assumed to be fulfilled. 

So the expected utility maximization criterion can only be postulated on subsets of events forming an information lack cluster. Then there is neither any information lack nor any entropy. All other utilities cannot easily be determined and have to be calculated in any way on the basis of the probability distribution, the information lacks and the entropy. 

Though this result might be unsufficient for practical applications it avoids the general neglection of different information about the probability distributions in expected utility theory. 

Example 6:
Let us again consider the probability distribution P8 of Examples 3(ii) and 4(vi). If there is a claim C when 

(i)
a red ballot is casted we have the risk 


  VERSETZEN \U 3.402VERSETZEN \D 2.25

VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.103    VERSETZEN \U 12.151VERSETZEN \D 2.25

VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.103VERSETZEN \U 8.75

[ 0   C ]  =: R


with E(P8) = 0. 

(ii)
a black ballot is casted we have the same risk with E(P8) = VERSETZEN \U 5.90

VERSETZEN \R 4.254VERSETZEN \L 7.35   VERSETZEN \D 9.90

VERSETZEN \L 9.527 VERSETZEN \U 3.95C. 

(iii)
a red or a yellow ballot is casted we have the risk 


  VERSETZEN \U 3.401VERSETZEN \D 2.25

VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.103    VERSETZEN \U 12.152VERSETZEN \D 2.25

VERSETZEN \L 5.10  VERSETZEN \D 9.90

VERSETZEN \L 5.103VERSETZEN \U 8.75

[ 0   C ]  =: S


with E(P8) = VERSETZEN \U 5.90

VERSETZEN \R 4.254VERSETZEN \L 7.35   VERSETZEN \D 9.90

VERSETZEN \L 9.527 VERSETZEN \U 3.95C.

(iv)
a black or a yellow ballot is casted we have the same risk with E(P8) = 0. 

In accordance with Axiom 1 we get: The risk situation (i) is preferred to the situation (ii), and the situation (iv) is preferred to the situation (iii). 

If the entropy were not taken into account expected utility would enforce to assume (i) ~ (ii) and (iii) ~ (iv).  As the preferences (i) _ (ii) and (iii) _ (iv) can usually be assumed this can only be explained by inconsistent probability assumptions or by the fact that the preference between "red" and "black" is dependent on what happens with "yellow". This has been called the Ellsberg Paradoxon which is a famous argument against expected utility. But now there is no paradoxon any longer.
) 

The disadvantage of the inclusion of information lacks is that utilities of risks with positive information lacks cannot be easily determined. In the following the consequences for insurance pricing shall be considered.

5.) Prices for the Insurance of Risks with Information Lacks and a Positive Entropy

If a decision model on the basis of subsets of stochastic events with no information lack is considered the expected utility maximization criterion can be regarded as a rational method of risk ordering. Utility values can be determined for every single subset of those events. 

Let X be a random variable on a set of information lack clusters. For any C(R X+C shall be interpreted in a way that all possible monetary outcomes of events in that clusters are additively transformed by C. Then the minimum premium Pbuy(X) an insurer has to receive for covering that risk X is determined by the zero utility premium principle. It is implicitly defined by the equation Eu(W+Pbuy-X) = u(W), with u being the insurer's utility function and W his initial wealth. The maximum premium Psell(X) an insuree is willing to pay for the insurance of that risk X can be determined by the certainty equivalent Psell(X) = W-u-1(Eu(W-X)), with u being the insuree's utility function and W his initial wealth. 

These two prices ignore the uncertainty in the single information lack clusters. As we have seen a positive information lack will enforce a higher value both of Pbuy and Psell, and the loadings can suitably be determined by the entropy level. Now the consequences for the insurance premiums shall be analyzed. 

Insurance business is characterized by collecting single risks to a collective one. If effects of risk compensations are taken into account the price for covering the total collective risk will be less than the sum of the prices for covering single risks. So there is an advantage of collecting risks which may reduce the original premium amounts which is called the subadditivity property. Thus a real premium amount usually cannot be determined on its own but only if the connections to all other risks in the insurer's portfolio are taken into account.

Similarly in financial market models like the famous Capital Asset Pricing Model the price for a single asset cannot be determined knowing its original probability distribution but only under consideration of risk reductions by risk diversification.
) 

Analogously the insurer's premium loadings which are caused by information lacks cannot be regarded separately. But let us note that the information lack which is assessed by the entropy is negligible for a collective risk:

If single risks are collected it can usually be assumed that the information lacks of one risk do not include any information about the information lacks of another risk. An additional information lack might occur if the insurer has only a vague information about the correlation of the single risks, but it does not seem to be realistic to assume that there is never any information about the correlation of the single risks. Thus the entropy of a collective risk will be less than the entropy of the single risks. 

Example 7:
Let the actuarial standard assumption of a collective of n independent risks hold, with the information of independence being secure. Let E1,...En be the entropy levels of the single risks. Then we get for the entropy E of the collective risk:

E = VERSETZEN \U 5.90

VERSETZEN \R 4.251VERSETZEN \L 7.35   VERSETZEN \D 12.45

VERSETZEN \L 7.65n3 VERSETZEN \U 6.50(E1+...+En). 

Let us note that this entropy reduction also holds if the risks are not independent; the only necessary condition is that the information about the correlations has no information lack. 

As the entropy of a collective risk will usually converge to zero very fast it can be neglected so that there is no need for an insurer to demand a special premium loading. Thus the insurer's necessary premium amounts can be determined by the well-known actuarial methods. 

As an insuree typically does not have the chance for building a large personal collective of risks it can be assumed that the entropy of a risk is still important for his decisions. So he is willing to pay a higher price for insuring his risk when there is an information lack than in the case of a secure probability information. Consequently an insurer is able to demand a higher premium. 

This implies the following interesting result: The existence of full insurance contracts can be explained even in the case when both the insurer and the insuree have the same level of risk aversion, and this might sometimes even hold when the insurer is more risk averse than the insuree. The existence of insurance then can be explained by the fact that entropy diminishes in an insurer's portfolio. 

6.) Consideration of the Result in the View of Fuzzy Set Theory

As it has been pointed out in the previous chapters different degrees of information can at least be important for individual risk ordering. Different kinds of vagueness about the relevant information can be modelled by fuzzy methods which are more and more frequently applied. There is a large number of attempts for the assessment of such vagueness. Generally membership functions are defined which represent the possible values of a fuzzy variable.
) 

The different information about the probabilities can also be represented by fuzzy variables, but if this is done separately it cannot be guaranteed that the basic properties of probabilities will hold. For instance, it might be that the fuzzy probabilities of all single events do not sum up to 1. Thus the actuarial models cannot be applied which is a great disadvantage.
) 

In our model the Kolmogorov Axioms of probability theory hold so that there is no general problem for the application of the results in actuarial science. The information lack of a probability distribution can be interpreted as a degree of fuzziness. In our model we do not distinguish between different degrees of possibilities that a probability has a special value as it can be done by membership functions, but there would be no fundamental problem to extend our model in this way. But as our model is able to explain risk orderings with respect to preferring precise information and the existence of full insurance contracts in the case of equal risk aversion this does not seem to be necessary. 
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