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ASSESSING PORTFOLIO PERFORMANCE USING ASSET
PRICING KERNELS

1. Introduction

Most previous studies on portfolio performance evaluation use equilibrium-based
asset pricing models (such as the CAPM and the APT) to estimate the risk-adjusted
performance of actively managed portfolios. These performance metrics are obtained by
comparing the portfolio’s average excess return to the one implied by the selected model
for the same level of risk. This approach uses the (un)conditional forms of these models
and assumes that they are well specified. However, evidence against the empirical
validity of these models (priced anomalies) is mounting. In addition, these models fail to
deliver reliable measures of performance and they can generate misleading inferences.
This is caused essentially by problems related to estimation bias due to the presence of
timing information (Dybvig and Ross, 1985; Admati and Ross, 1985; and Grinblatt and
Titman, 1989) and to the choice and efficiency of benchmarks where rankings can
change with different benchmarks (Roll, 1977, 1978). These problems led to the
development of an asset pricing model-free measure to assess portfolio performance.

This alternative methodology relies on the general asset pricing framework
(GAPF) based on the stochastic discount factor (SDF) representation for asset prices.
According to Harrison and Kreps (1979), this methodology requires weaker market
conditions of either the law of one price or no arbitrage conditions. The GAPF implies
that any gross return discounted by a market-wide random variable has a constant
conditional expectation. The GAPF nests all common (un)conditional asset pricing
models (such as the CAPM, APT, ICAPM, Multifactor Models, CCAPM, or Option
Models) depending on the specification of the stochastic discount factor. Moreover, the
GAPF allows for an integration of the role of conditioning information with different
structures (Hansen and Richard, 1987).

The GAP framework initially was applied to portfolio performance evaluation by
Grinblatt and Titman (1989) via their positive period weighting measure (PPWM) where
the SDF is the marginal utility of the return on an efficient portfolio. Subsequently, this



methodology is applied and further developed by Glosten and Jagannathan (1994),
Grinblatt and Titman (1994), Chen and Knez (1996), Kryzanowski and Lalancette
(1996), Bansal and Harvey (1996), He et al. (1999), Goldbaum (1999), Dahlquist and
Soderlind (1999), and Farnsworth et al. (2002).

In this paper, we introduce a conditional asset pricing kernel adapted to
performance evaluation. It efficiently accounts for time variation in expected returns and
risk. This stochastic discount factor or SDF depends on some parameters and on the
returns on an efficient portfolio, and satisfies some regularity conditions. This approach
has the advantage of not being dependent on any asset pricing model or any distributional
assumptions. The proposed SDF is efficient by construction, given that it prices all the
benchmarks and assets. Further, the multiplicative structure of conditioning information
is explored and applied. This framework is suitable for performing unconditional
evaluations of fixed-weight strategies and (un)conditional evaluations of dynamic
strategies.

At the empirical level, we develop the appropriate framework for the estimation
of the performance measures. More importantly, we advocate the use of a flexible
estimation methodology using the (un)conditional Generalized Method of Moments
(GMM) of Hansen (1982). We construct the empirical performance measures and their
associated tests, and use this methodology to assess the performance of a set of Canadian
equity mutual funds over the period, November 1989 through December 1999. We also
test the sensitivity of the performance measures to changes in the level of relative risk
aversion of the uninformed investor.

The remainder of the paper is organized as follows: Section 2 presents the general
asset pricing framework. In section 3, we derive the asset pricing kernel in the presence
of time-varying returns. We conduct a (un)conditional portfolio performance evaluation
using the developed normalized pricing operator in section 4. In section 5, we develop
and explain the econometric methodology and the construction of the tests. Section 6
introduces the sample and the data used herein. Section 7 presents and discusses the main
empirical results. Finally, section 8 summarizes the findings and discusses their

implications.



2. General Asset Pricing Framework (GAPF)

The fundamental theorem in asset pricing theory states that the price of a security
is determined by the conditional expectations of its discounted future payoffs in
frictionless markets. The stochastic discount factor (SDF) is a random variable that
reflects the fundamental economy-wide sources of risk.' The basic asset pricing equation
is written as:

(1) Pi,t :EI(MI‘HX[,I‘H)’ 3_11 i:L'"’N
The conditional expectation is defined with respect to the sub-sigma field on the set of

states of nature, Q,, which represents the information available to investors at time .
P, is the price of asset 7 at time 7, X, ., is the payoff of asset i at time 7 +1, and M ,, is

the stochastic discount factor or the pricing kernel.®> The prices, payoffs and discount
factors can be real or nominal. We generally assume that the asset payoffs have finite
second moments. As shown by Luttmer (1996), (1) becomes an inequality when
transaction costs or any other market frictions are introduced.

If a riskless asset with a unit payoff exists, then its price is equal to the
conditional mean of the pricing kernel:

1

(2) Ez(Mzﬂ) :P_/',z = R

1+l
When the security payoff is a gross return, the price is one. Then equation (1) is
equivalent to:

3) E,M, R, ,.,)=1 all i=1.,N
where R, ., represents a gross return (payoff divided by price) on asset i at time 7 +1.

If we define r..., =R

i+ i+l

- R,,, as an excess return, it will have a zero price. The

pricing equation then becomes:

(4) E (M, r,,)=0, al i=1,.,N

"It is a generalization of the standard discount factor under uncertainty. It is stochastic because it varies
across the states of nature.

* The SDF has various other names. It is often called the intertemporal marginal rate of substitution in the
consumption-based model, the equivalent martingale measure for allowing the change of measure from the



The SDF representation integrates both the absolute and the relative pricing
approaches and has several advantages. First, it is general and convenient for pricing
stocks, bonds, derivatives and real assets. Second, the SDF representation is simple and
flexible in that it nests all asset pricing models by introducing explicit assumptions on the
functional form of the pricing kernel and on the payoff distributions.” Third, the SDF
representation leads to a reliable analysis of passively and actively managed portfolios by
avoiding the limitations of the traditional models by providing robust measures. Fourth,
by construction, the SDF representation offers a suitable framework when performing
econometric tests of such models using the GMM approach of Hansen (1982). Fifth, the
SDF representation accommodates conditioning information and exploits its implications
and the predictions of the underlying model in a simple way.

Kan and Zhou (1999) identify an empirical flaw associated with the SDF
methodology when the asset returns are generated by a linear factor structure. They argue
that the SDF methodology ignores the full dynamics of asset returns (does not
incorporate the data generating process in the moment conditions), and that some noisy
or unsystematic factors may satisfy the SDF equation. Specifically, Kan and Zhou show
that under such assumptions, the model parameters (risk premiums) are poorly estimated
(less efficient compared to those estimated with classical regression methods), and that
the power of the specification tests is significantly reduced due to the misspecification of
the second moment matrix of the moment conditions. The evidence on this last problem
is corroborated in Kan and Zhang (1999) for GMM tests of SDF models with useless
factors. Jagannathan and Wang (2000) and Cochrane (2000) contradict these results by
demonstrating that the GMM/SDF estimation is as efficient as the traditional time-series

and cross-sectional regressions asymptotically and in finite samples.

actual or objective probabilities to the risk-neutral probabilities, or the state price density when the Arrow-
Debreu or state-contingent price is scaled by the associated state probability.

? These models include the CAPM of Sharpe (1964), the APT of Ross (1976), the CCAPM of Lucas (1978)
and Breeden (1979), the ICAPM of Merton (1973), the multifactor models of Chen, Roll, and Ross (1986)
and Fama and French (1993), and the Nonlinear APM of Hansen and Singleton (1982).



3. Time-Varying Returns and Asset Pricing Kernels

When investment opportunities are time-varying, the stochastic discount factors
or the period weights can be interpreted as the conditional marginal utilities of an
investor with isoelastic preferences described by a power utility function that exhibits
constant relative risk aversion (CRRA) given by:

1

U(Wt)::/

1_
VVIV

where W, is the level of wealth at 7, and ) is the relative risk aversion coefficient.

In a single-period model, the uninformed investor who holds the benchmark
portfolio (the risky asset) maximizes the conditional expectation of the utility of his

terminal wealth:

) E[UW,.)1Q,]

The conditional expectation is based upon the information set Q. .

The investor with such preferences decides on the fraction @, of wealth to allocate to the

risky asset (the benchmark portfolio). Any remaining wealth is invested in a riskless

security. The return on wealth is given by:

(6)

Rw,t+1 = asz,zﬂ +(1- a, )R/’,z+1 =aq, (Rb,t+1 - R_/',z+1) + R_/',z+1 =an, . + R_/',z+1
where:

R, ., : the gross return on the benchmark portfolio from 7 to 7 +1;

¥+ - the excess return on the benchmark portfolio from 7 to 7 +1;

R, ., the gross risk-free rate from ¢ to # +1 but is known one period in advance at
time ¢; and

a, : is the proportion of total wealth invested in the benchmark portfolio.

The optimal risky asset allocation (portfolio policy) is no longer a constant
parameter when asset returns are predictable. Fama and French (1988, 1989), Ferson and
Harvey (1991), Bekaert and Hodrick (1992), Schwert (1989), and Kandel and Stambaugh

(1996), among others, document evidence of significant return predictability for long and



short horizons, where the means and variances of asset returns are time-varying and
depend on some key variables (such as lagged returns, dividend yield, term structure
variables, and interest rate variables). Moreover, more recent papers by Brennan et al.
(1997), Campbell and Viceira (1999), Brandt (1999), Barberis (2000), and Ait-Sahalia
and Brandt (2001) invoke different assumptions on the intertemporal preferences of
investors and on stock return dynamics. They show that the optimal portfolio weight is a
function of the state variable(s) that forecast the expected returns when stock returns are
predictable. It follows that the optimal portfolio weight is a random variable measurable
with respect to the set of state or conditioning variables and consistent with a conditional
Euler equation:*
(7) a,=a(Q,)
Thus, considering a constant optimal portfolio weight when returns are predictable
affects the construction of any measure based on this variable, and distorts inferences
related to the use of such a measure. In addition, the functional form and the
parameterization of the optimal portfolio allocation depend on the relationship between
asset returns and the predicting variables. Brandt (1999) conducts a standard non-
parametric estimation of the time-varying portfolio choice using four conditioning
variables (dividend yield, default premium, term premium, and lagged excess return).
Assuming initial wealth at time ¢ is equals to one, the conditional optimization
problem as in Brandt (1999), Ferson and Siegel (2001), and Ait-Sahalia and Brandt

(2001) for the uninformed investor is:

(8) [* = arg max E[U(atrb,tﬂ + Rf,t+1) | Q[]

al‘
The first order condition gives:

) E[U'(atrb,tﬂ + R_/’,t+1)rb,t+1 1Q,1= El(a,r, . + R_/’,t+1)_yrb,t+1 1Q,1=0
This is a conditional Euler equation. Now define, M/, =(a,7,,., + R, ,.,)".

It is a strictly positive conditional stochastic discount factor (or conditional marginal
utility) consistent with the no-arbitrage principle. This ensures that, if a particular fund

has a higher positive payoff than another fund, then it must have a higher positive

* Ingersoll (1987) shows that with mean-variance preferences the optimal risky asset allocation is a
nonlinear function of the first and second conditional moments of asset returns.



performance. Grinblatt and Titman (1989) and Chen and Knez (1996) stress the

importance of this positivity property in providing reliable performance measures.°
. c [C— jk{;;l c
We can normalize M, such that: (10) O, =—F——=M R, . Then
E (M;,) .

E,(O/,)=1. This scaling is more convenient and is consistent with the original

derivation of the PPWM of Grinblatt and Titman (1989) and Cumby and Glen (1990).
The new conditional normalized pricing kernel plays a central role in the construction of
the portfolio performance measure.
The unconditional normalized pricing kernel is given by:
M

t+1 — u

— — =M R, ., where @ is a constant parameter.
E(M )

(11) Qtu+1 =

Let X

t+1°

i =(u,c), be the (un)conditional portfolio performance measure

depending on the use of the appropriate stochastic discount factor. It is an admissible
positive performance measure with respect to the Chen and Knez (1996) definition.’
Specifically:

12) A, = E(Q[“Hrym) = E(ry,tﬂ) +COV(Q;A+1,I"y,[+1), such that E(Qt“ﬂrb,tﬂ) =0 and

E(Q)) =1

(13) A, =E (Ot m) = E (r,,.)+Cov,(Of,7, 41) » such that E,(Of,7,,) =0 and
Et(QtCH) = l .

In equations (12) and (13), r, ., is the excess return on any particular portfolio y.

It follows that the expected performance measure reflects an average value plus
an adjustment for the riskiness of the portfolio measured by the covariance of its excess

return with the appropriate normalized pricing kernel. Specifically:

> In this sense, the traditional Jensen alpha is implied by the CAPM pricing kernel when the positivity
condition is not satisfied everywhere (Dybvig and Ross, 1985).

% In general, when the pricing kernel can be negative with certain positive probability, a truncation is
adopted. The truncation provides a similar representation for an option on a payoff with a zero strike price.
7 According to Chen and Knez (1996), a performance measure is admissible when it satisfies four minimal
conditions: it assigns zero performance to each portfolio in the defined reference set, and it is linear,
continuous, and nontrivial.



@ary,m t R, 0 )

(14) o, = —,
' El(ar,,., *R, )]

@, * R_/',,z+1)_y
Et [(at Tyu+1 + R_/’,z+1 )—y]

(15) Om = a,=a(Q,)

The condition E,(Q/.7;,+) =0, or equivalently £ (Q/,R,,.,) =R, ,,, guarantees that

the benchmark portfolio is efficient for the uniformed investor. In the case where R, ., is

a vector of gross returns on K efficient benchmark portfolios, the condition becomes:

E (Q/ Ry, 1) =R, 1, where 1, is a K-vector of ones. This condition guarantees that

the benchmark portfolios are efficient for uninformed investors. The restriction on the

conditional mean of the pricing kernel ensures correct pricing of the risk-free asset.

4. Performance Evaluation of Passively and Actively Managed
Portfolios

4.1 Unconditional Framework

When uninformed investors do not incorporate public information, the portfolio
weights are fixed or constant. The gross return on such a portfolio is:

R, .. =wR,,,with wl, =1, R is a N-vector of gross security returns, and 1, is a N-

p.t+l
vector of ones. We assume that the portfolio weights w are chosen one period before. The

corresponding unconditional performance measure is:

(16) A';ﬂ = E(Qluﬂl"p,lﬂ) = E(QIMHRMH) - R_/,»,IJrl =0, where E(Qtuﬂ) =1 and
E(Q/ 1) = 0.
A’;ﬂ = E(Qzu+1Rp,z+1) - R_/’,z+1 = W'E(QzuﬂRl,zﬂ) - R_/’,z+1 = W’R/’,zﬂ 1N - R_/’,z+1 =0

O = Q(rb,tﬂ ,a)

It follows that the risk-adjusted return on the passive portfolio held by the uninformed
investor is equal to the risk-free rate.
The unconditional normalized pricing kernel (the PPWM) is able to price any

asset or portfolio whose returns are attainable from all possible linear combinations of



the original N assets (fixed-weight trading strategies). It will not price correctly any

returns outside this defined return space.

The parameters of Q) are chosen such that E(Q/7,,.,)=0. If 7, is of

dimension K, then E(Q/7,,.,) =04 and E(Q/)=1. Informed investors, such as

possibly some mutual fund managers, trade based on some private information or signals
implying non-constant weights for their portfolios.>” The gross return on the actively

managed portfolio is:

R, . =W(Q)R, ., with w(Q])1, =1
where Q7 and Q“ represent public and private information sets, respectively.

The unconditional performance measure is given by:
(17) A T EQ/a7n) = E(Qu R, ) = Ry = EMWQ) QLR ) — Ry
When informed investors optimally exploit their private information or signals, this
measure is expected to be strictly positive. According to Chen and Knez (1996), this
measure reflects the price of the information and the manager’s skills in using it.
Conversely, inferior performance is related to the non-optimal use of the private

information.
4.2 Conditional Framework

When uninformed investors use publicly known information in constructing their
portfolios, the weights are a function of the information variables. The gross return is
given by:

R, =W(Q7)R,,,,, with w(Q7)1, =1,and Q7 0 Q

pittl

The conditional SDF prices the portfolio such that:
(18) A = E, (th+1rp,t+1) =E, (th+1Rp,t+l) R, ., =0

Azcﬂ =E, (W(sz )’Q;+1R1,z+1) - R_/’,z+1
=w(Q))'E, (ch+1R1,z+1) R, = W(Qtp)’Rf,HllN R, = 0

¥ The information may either concern individual stocks and/or the overall market.
? There is no restriction on the weight function. It may be nonlinear including any option-like trading
strategies (Merton, 1981; and Glosten and Jagannathan, 1994).



O = Q(rb,tﬂ’sz’a)
Consistent with the semi-strong form of the efficient market hypothesis, this neutral

performance reflects the fact that the use of publicly known information will not produce

any superior risk-adjusted returns.
4.3 Model of Conditioning Information

We define Z, 1Q” where Z, is a L-vector of conditioning variables containing

unity as its first element. These conditional expectations can be analyzed in two different
ways. First, we can create general managed portfolios, and then examine the implications
for the unconditional expectations as in Cochrane (1996). Second, as in Glosten and
Jagannathan (1994), we can explicitly specify or approximate the conditional moments
by incorporating the time-variation into the expected asset returns and volatilities.'® This
latter approach has the disadvantage of being sensitive to any misspecification in the
conditional moments. Also, it can lead to estimation problems given the increase in the
number of parameters to be estimated compared to the number of available observations.
Consequently, we focus on the first approach using different models of conditioning
information to characterize the managed portfolios.

Hansen and Singleton (1982) and Hansen and Richard (1987) propose including
the conditioning information by scaling the original returns by the instruments.'' This
simple multiplicative approach implies linear trading strategies.'> Moreover, it allows
one to uncover an additional implication of the conditional SDF model that is not
captured by the simple application of the law of iterated expectations. This approach does
not require the specification of the conditional moments. Moreover, we can interpret

these scaled returns as payoffs to managed portfolios or conditional assets. In effect, an

' Tt can be semi- or non-parametric.

' Bekaert and Liu (1999) propose to integrate conditioning information into the conditional pricing kernel
model by determining the optimal scaling factor or the functional form of the conditioning information.
These authors argue that the multiplicative model is not necessarily optimal in terms of exploiting the
conditioning information and in providing the greatest lower bound. However, at the empirical level, this
approach has a notable limitation in that the optimal scaling factor depends on the first and second
conditional moments of the distribution of asset returns leading to an increasing number of parameters to
be estimated and different parameterization of the conditional asset pricing kernel. All of this leads to the
need to estimate a complex system of equations.

"2 It has become a commonly used approach in the asset pricing literature.

10



investor whose trading strategy is based on the value of Z, , where / =1,...,L, will put

Z, dollars into the asset.”’ The investor will receive Z,R,, dollars at the end of the

period, and each period the investor’s portfolio is rebalanced according to the value of
the instrument. Hence, the payoff space is expanded to NL dimensions to represent the
number of trading strategies available to uninformed investors.'*

The conditional performance measure can be written as:
(19) A = E, (ORI UZ, -R, ,1,0Z, =0
(20) Ez (ch+1)Zz = Zt
Assuming stationarity and applying the law of iterated expectations, we have:
(21) E[chﬂ (R1,1+1 D Zz )] = E(R_/',HIIN D Zz)
(22) E(chi-lzz):E(Zz)
where []is the Kronecker product obtained by multiplying every asset return by every
instrument. These two conditions ensure that the conditional mean of the pricing kernel is
one, and that these managed portfolios are correctly priced.

The conditional normalized pricing kernel is able to price any asset or portfolio
whose returns are attainable from dynamic trading strategies of the original NV assets (i.e.,
asset returns scaled with the instruments) with respect to the defined conditioning
information set. The conditional normalized pricing kernel will not price correctly any

returns outside this expanded return space.

The conditional performance for the actively managed portfolio is given by:
(23) A = E, (OiiTuin) = E(O/nR, 10— R, 4
This conditional test determines whether the private information or signal contains useful

information beyond that available publicly, and whether or not this information has been

used profitably.

"> The expected (average) price of this trading strategy is equal to the expected (average) value of the
chosen instrument.

'* The intuition underlying the multiplicative approach is closely related to the evidence of returns
predictability, where some prespecified variables predict asset returns. Such evidence potentially improves
the risk-return tradeoffs available to uninformed investors (this is in comparison to the time-invariant risk-
return tradeoff). Bekaert and Hodrick (1992), Cochrane (1996), and Bekaert and Liu (1999) show that
scaling the original returns by the appropriate instruments improves or sharpens the Hansen-Jagannathan
lower bound on the pricing kernel when we account for conditioning information.

11



Furthermore, the wunconditional evaluation of dynamic performance that is
implied by the conditional normalized pricing kernel is obtained by the simple
application of the law of iterated expectations on the conditional model as in Ferson and
Schadt (1996) and Dahlquist and Soderlind (1999). The parametrization of the
conditional normalized pricing kernel differs from the one associated with the

conditional evaluation and is consistent with these two moment conditions:
(24) EQR ) =R,y
(25) EQL) =1

O = Q(rb,tﬂ Q7L a)
5. Econometric Methodology and Construction of the Tests

In this section we lay out the empirical framework for the estimation of the
performance measures and for the tests of the different hypotheses and specifications
using Hansen’s (1982) generalized method of moments (GMM)."> We also examine and
discuss important issues associated with the estimation procedure and the optimal

weighting matrix (distance matrix).
5.1 The General Methodology

To assess the performance of actively managed portfolios such as mutual funds,
two methods are available and both rely on the GMM approach. The first or two-step
method first estimates the appropriate normalized pricing kernel, and then measures the
risk-adjusted fund performance by multiplying the gross fund return by the estimated
pricing kernel and subtracting off the gross return on the risk-free asset. The performance
estimates obtained in the second step do not account for the sampling errors resulting
from the first-step estimation, and consequently are not fully efficient but are consistent

(Chen and Knez, 1996). The second or one-step method jointly and simultaneously

' This general and flexible technique has become the common approach to estimate and test asset pricing
models that imply conditional moment restrictions, even in the presence of nonstandard distributional
assumptions. It is an alternative to the maximum likelihood approach with no requirement to specify the
law of motion of the underlying variables. Cochrane (2000) provides a comprehensive exposition of the
relationship between the two techniques.

12



estimates the normalized pricing kernel parameters and the performance measures. The
estimates so obtained are more efficient than those from the two-step method, but require
more moment conditions especially when all the funds are included in the evaluation.
Hence, the joint estimation is conducted herein for each individual fund and in a
multivariate framework where all the cross-equation correlations are incorporated. By
construction (using excess returns), this estimation accounts for the restriction on the
mean of the normalized (un)conditional pricing kernels.'® Dahlquist and Soderlind
(1999) and Farnsworth et al. (2002) note the importance of accounting for this restriction

in order to obtain reliable estimates.
5.2 The GMM General Framework

We present and outline the general steps and expressions leading to the estimation
of the performance measures under the GMM approach. Our focus is mainly related to
the general case of conditional GMM estimation relevant for the conditional evaluation
of dynamic trading-based portfolios. The unconditional GMM estimation is applied to
both the unconditional evaluation of dynamic trading and the fixed-weight trading-based
portfolios. It is trivially obtained as a special case from the general one.

Let &= (a y)' be the vector of unknown parameters to be estimated. Our model

implies the following conditional moment restriction:
(26) Et[Qc(rb,Hl’Zt790)rp,t+1] = ON
such that E,[Q°(7;,.,,Z,,6,)] =1.

Now define u;,, = Q° (7, 41,Z,,0)r, 1 Eu(ry,0),7,,0,Z,,6) as a N-vector of residuals or

pricing errors, that depend on the set of unknown parameters, the excess returns on the
benchmark portfolio(s), the conditioning variables, and the excess returns on passive
trading strategy-based portfolios (eventually excess returns on individual assets).

We assume that the dimension of the benchmark excess return is K, and that the
dimension of the conditioning variables (including a constant) is L. Then, the dimension

of the vector of unknown parameters is (KL+1).

'® The mean of the normalized pricing kernel is equal to one and the mean of the non normalized asset
pricing kernel is equal to the inverse of the gross return on the risk-free asset.

13



We then have:
(27) Et [u(rb,zﬂ > rp,1+1 azt ’90 )] = E[u(rb,zﬂ > rp,1+1 > Z, 590)] = ON

Define (741,741, 2,,0) =u;y O Z, =u(r, 4,7, ,1,Z,,0) 0 Z,. Our conditional and

unconditional (by using the law of iterated expectations) moment restrictions can be
written as:'’

(28) Et [h(rb,z+17rp,z+1721590)] = E[h(rb,zﬂarp,zﬂazt 590)] = ONL s and
(29) E[Q°(101:2,,00)Z, = Z,]1= E[Q° (1,11, 2,,6,)Z, = Z,]=0,

The GMM estimation exploits these moment restrictions by setting their sample
analogues equal to zero. This is feasible only when the number of linearly independent
moment conditions is equal to the number of unknown parameters (i.e., the model is
identified).'® If the number of moment conditions exceeds the number of unknown
parameters (the model is overidentified), then the GMM estimation is performed by
setting (KL+1) linear combinations of the NL moment conditions equal to zero. When an
additional moment condition is considered,’”” the number of moments increases to
L(N+1) and the number of parameters remains unchanged. Similarly, when the
estimation of the performance measures is completed in one step, the number of moment
conditions (L(N+1)) and the number of unknown parameters (KL+2) is augmented.
Define:

(30) g,(0) = E[h(ry a1 NGRA ,0)]
Since this does not depend on ¢, it implies that g has a zero at 8 = §,. By the law of

large numbers (through the stationarity assumption), the sample mean of
h(7y 4157, 11, Z,,6) converges to its population mean, or:

P

g:(0) - g,(0)

"7 Some technical assumptions are required for the consistency (strict stationarity and ergodicity of the
process underlying the observable variables) and for the identification of the model (# has a nonsingular
population conditional (unconditional) covariance matrix and the conditional and unconditional
expectations of the first derivatives of 4 have a full raw rank). See Hansen (1982) and Gallant and White
(1988) for more details.

'8 In this case, we can use the traditional method of moments.

' Koenker and Machado (1999) derive restrictions on the growth rate of the number of moment conditions
to ensure the validity of the conventional asymptotic inference for the GMM estimation. In effect, these
restrictions affect the estimation of the optimal weighting matrix.
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1 T
where: (31) g,(0)= ?Zlh(rb,zﬂ’rp,tﬂ’zt ,0)

For large values of 7, the vector g,(f) should be close to zero when evaluated at
6 = 6,. Following Hansen (1982), the GMM estimator of 8, is obtained by selecting &,

to minimize the sample quadratic form J, given by:

(32) S (0) =g, (O)W; g,(6)

where W, is a symmetrical and nonsingular positive semi-definite NLXNL weighting
matrix, which may depend on the sample and converges in probability to a positive
definite (nonrandom) limit W . The weighing matrix underlines the importance of each
moment condition in the estimation.

Hansen (1982) shows that under some regularity conditions, the GMM estimator

A

6, is consistent and asymptotically normal for any fixed w 2 It has an asymptotic
variance-covariance matrix that depends on the limiting weighting matrix. Furthermore,
this estimator is asymptotically efficient in that it has the smallest variance-covariance
matrix in the class of estimators that minimize the quadratic form for fixed W, when W
is chosen to be a consistent estimate of the inverse of the variance-covariance matrix of
the orthogonality conditions.

The general asymptotic variance-covariance matrix of the estimator of 8, is

given by:

(33) Cov(8,) = (D,WD,)™ (D\WS WD, DWD,)™

where:

(34) D, =E (au(rb"ﬂ ’;”;1 Z16) O Z,J represents the expectation of the NL x (KL +1)

matrix of first-derivatives. §, is the asymptotic variance-covariance matrix of g,(8,)

which is defined as: (35) S, = Z:E[h(rb,m,rp,m,Z,,90 YTy - i1 T im i1 Zi6,)'].

j:—oo

When the model is overidentified, (NL>KL+1), (KL+1) restrictions are used in the

estimation, and the remaining “free” restrictions ((N-K)L-1) are used to assess and test
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the goodness of fit of the model (i.e., as a test of the overidentifying restrictions). Let
J, (éT) be the minimized value of the sample quadratic form.”' When the optimal
weighting matrix (inverse of the variance-covariance matrix of the orthogonality
conditions) is used, 7J, (éT) has an asymptotic standard central chi-square distribution
with ((N-K)L-1) degrees of freedom equal to the number of orthogonality conditions
minus the number of parameters to be estimated. This is the well-known Hansen J, -

statistic. This estimation can handle the assumption that the vector of disturbances
exhibits non-normality, conditional heteroskedasticity, and/or serial correlation even with

unknown form.

5.3 The Estimation Procedure and the Optimal Weighting Matrix

The estimates of the portfolio performance measure are obtained from
minimizing the GMM criterion function constructed from a set of moment conditions.
This requires a consistent estimate of the weighting matrix that is a general function of
the true parameters (at least in the efficient case). The dominant approach in the literature

is the iterative procedure® suggested by Ferson and Foerster (1994).

Hansen (1982) proves that the GMM estimator is asymptotically efficient when
the weighting matrix is chosen to be the inverse of the variance-covariance matrix of the

moment conditions.” Specifically:
(36) wh=5;"
where S, is the positive definite spectral density at frequency zero or long run variance-

covariance matrix of (7, ,,,7, .1, Z,,6,) .

%% Also, see Gallant and White (1988) for the general theory of these estimators.

! Jagannathan and Wang (1996) show that 7 times the minimized GMM criterion function is
asymptotically distributed as a weighted sum of central chi-squared random variables.

** Tt consists of updating the weighting matrix based on a previous step estimation of the parameters, and
then updating the estimator. This is repeated until convergence for a prespecified criterion and for a large
number of steps. Ferson and Foerster (1994) and Cochrane (1996) find that this iterative approach has
better small sample properties than the two-step procedure, and is robust to small variations in the model
specifications.

* The choice of the weighting matrix only affects the efficiency of the GMM estimator. Newey (1993)
shows that the estimator’s consistency only depends on the correct specification of the residuals and the
information or conditioning variables.
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In this case, the asymptotic variance-covariance matrix of the estimator is given
by:
(37) Cov(6;) = (D;S;' D)™
This variance-covariance matrix is unknown and should be replaced by a consistent
sample estimate. The consistent sample estimate of the variance-covariance matrix is a
function of consistent sample estimates of D, and S, that are given by ﬁT and S’T,
respectively.

A consistent sample estimate of D, is obtained by replacing the expectation

operator with the sample average operator, and replacing 8, with éT to get:

A~ 1 L au(rbzﬂ’r t+1’Zt’éT)
38 D - > P, DZ
( ) T TZ ae’ t

A robust and consistent sample estimate of S, is obtained by using an estimator of the

spectral density at zero frequency to h(rb,[ﬂ,rp,[ﬂ,Z[,@T). This GMM efficient

estimation of portfolio performance measures is the most frequently used approach, and
is used in Chen and Knez (1996), Kryzanowski et al. (1997), Dahlquist and Soderlind
(1999), and Farnsworth et al. (2002).

To estimate the optimal weighing matrix and to calculate the asymptotic standard
errors for the GMM estimates, a consistent estimate of the empirical variance-covariance

matrix of the moments is required. This variance-covariance matrix is defined as the

zero-frequency spectral density of the pricing errors vector (7, ,,,,7,41,Z,,6,). From

this perspective, a consistent estimate of this spectral density is used to construct a
heteroskedastic and autocorrelation consistent (HAC) or robust variance-covariance
matrix in the presence of heteroskedasticity and autocorrelation of unknown forms.*
Newey and West (1987a) propose the (modified) Bartlett kernel to construct a
robust estimator for the variance-covariance matrix.”> Chen and Knez (1996),

Kryzanowski et al. (1997), Dahlquist and Soderlind (1999), and Farnsworth et al. (2002)

** Priestly (1981) provides an overview discussion of the estimation of spectral density functions.
** The higher-order sample autocovariances are downweighted (linear declining weights), and those with
order exceeding a certain parameter inclusively receive zero weight.
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construct robust t-statistics using this method in their estimation of the performance

measurcs.

6. Sample and Data

6.1 Mutual Fund Returns

The sample of mutual funds is drawn from the Financial Post mutual fund
database. The sample consists of 95 Canadian equity funds that have no more than 5% of
their values missing over the period from November 30, 1989, through December 31,
1999. The 122 monthly returns for each fund are calculated using the monthly changes in
the net asset value per share, and are adjusted for capital gains and dividend payments.
Since the sample only includes surviving funds, a survivorship bias in favor of better
performance exists in the results obtained below. Estimates of this survivorship bias will
be assessed in future research.

A preliminary process (screening rules) to select the sample of funds is conducted
to achieve consistency with the construction of the stochastic discount factor. In effect,
the restrictions on the fund type are closely related to the type of securities (and
essentially the benchmark variables) used to estimate the SDF.

As in most previous studies (Chen and Knez, 1996; Ferson and Schadt, 1996;
Kryzanowski et al., 1997; and Farnsworth et al., 2002), we use only equity funds for the
tests of abnormal performance. In effect, we cannot price or evaluate the performance of
other types of funds with an equity based-asset pricing kernel.

Table 1 presents some summary statistics on these funds. Panel A gives statistics
on the cross-sectional distribution of the 95 mutual funds. The average annual fund
returns vary from —3.08% (Cambridge Growth of Sagit Investment Management) to
18.03% (AIC Advantage of AIC Limited) with a mean of 9.86%. The fund annual
volatilities or standard deviations range from 6.00% (Canadian Protected of Guardian
Timing Services) to 31.05% (Cambridge Special Equity of Sagit Investment
Management). Over the same sample, the average annual TSE 300 index return is

11.17% and market volatility is 14.53%.

18



[Please insert table 1 about here.]

In panel B of table 1, portfolios of funds grouped by investment objectives are
obtained from equally weighted portfolios using the 95 funds in the sample. The funds
fall into six investment objective categories: aggressive growth (27 funds), growth (50
funds), growth and income (12 funds), income (3 funds), balanced (1 fund), and specialty
(2 funds). The highest mean return is found in the group of aggressive growth funds and
the lowest mean return is found within the group of growth and income funds (if we
exclude the one balanced fund). As expected, aggressive growth (specialty) funds have
the highest (lowest) unconditional volatility of 13.39% (11.02%). The first-order

autocorrelations of the fund returns are greater than 0.1 for 30 of the 95 funds.
6.2 Information Variables

A set of six instrumental variables is selected based on evidence of their
predictive power in studies of stock return predictability. All the data series are drawn
from Statistics Canada’s CANSIM database. We consider the lagged values of the
following variables:

(1) DY is the dividend yield of the TSE 300 index (Fama and French, 1988, Ferson and
Schadt, 1996, Kryzanowski et al., 1997, Christopherson et al., 1997, and Farnsworth et
al., 2001).

(i) TB1 and TB3 are respectively the Canadian one-month and three-month T-Bill rates
(Fama and Schwert, 1977; and Ferson and Korajczyk, 1995).

(i) RISK is the risk premium as measured by the yield spread between the long-term
corporate (McLeod, Young, Weir bond index) and long-term government of Canada
bonds (Chen, Roll, and Ross, 1986; Kryzanowski and Zhang, 1992; and Kryzanowski
and Koutoulas, 1996).

(iv) TERM is the slope of the term structure as measured by the yield spread between
long-tem government of Canada bonds and the one period lagged three-month Treasury
bill rate (Ferson and Harvey, 1991; and Chen and Knez, 1996).

(v) TSEX-EW, TSEX-VW and TSE300X are the equally-weighted, value-weighted, and
the TSE 300 index excess returns respectively (Harvey, 1989).
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(vi) DUMJ is a dummy variable for the month of January (Ferson and Schadt, 1996;
Kryzanowski et al., 1997; and Farnsworth et al., 2002).

Descriptive statistics and autocorrelations, and a correlation analysis of these
variables are provided in panels A and B of table 2, respectively. The correlations

between all the instruments range from —0.82 to 0.84.

[Please insert table 2 about here.]

In the empirical estimation of the performance measures, we restrict the use of the
information variables to one or two (DY and/or TB1). These two variables account for

most of the time variation in mutual fund excess returns as explained in the next section.
6.3 Predictability of Mutual Fund Excess Returns

In order to motivate the implementation of the conditional methodology, we
conduct a predictability analysis of two groups of portfolios of mutual fund (excess)
returns. The first group includes six equally-weighted portfolios of funds constructed
using individual fund returns within each investment objective. The second group is
composed of six size-weighted portfolios of funds constructed using the individual fund
returns and the corresponding total net asset values within each investment objective.
Time-series regressions of these portfolios of funds excess (of one-month Treasury bill
rate) returns on a set of five instruments (the lagged values of the dividend yield, the risk
premium, the slope of the term structure, the one-month Treasury bill rate, and the
dummy variable for the month of January) are performed. The predictive power of the
instruments is assessed using the Wald test proposed by Newey and West (1987b).

The results reported in table 3 indicate significant levels of predictability for the
equally-weighted and size-weighted portfolios of funds excess returns. The null
hypothesis that all the slope coefficients associated with the selected instruments are
zeros, is largely rejected. The evidence of high predictability in the stocks composing the
funds in the portfolios may explain these patterns. These figures are higher than the ones
obtained with the portfolios of funds returns and with the passive portfolio excess returns
(results not reported). Furthermore, the coefficients associated with the dividend yield on

the TSE 300 index and the yield on the one-month Treasury bill are significant for most
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of the portfolios (results not reported). These findings provide strong support for
undertaking a conditional performance analysis where the use of the conditional asset
pricing kernel eliminates the predictability (based on the set of predetermined

information variables) in the mutual fund excess returns.

[Please insert table 3 about here.]

6.4 Passive Strategies

Passive or basis (reference) assets must reflect the investment opportunities set of
investors and portfolio managers. In the empirical implementation of the performance
measures, the type and the number of assets to be considered are important issues. In
effect, assets included must be consistent with the type of funds (essentially equity) under
consideration. We construct ten size-based portfolios representing passive buy and hold
strategies (stock market). All the stocks on the TSE/Western monthly database are
considered. In a first step, we compute the market value of each stock by multiplying the
December-end price by the number of shares outstanding. The stocks are ranked on the
basis of their market values at the end of the previous year. Ten decile portfolios are then
formed each year with an approximately equal number of securities in each portfolio.
The securities with the smallest capitalization are placed in portfolio one (see
Kryzanowski et al. (1997) for a similar construction).

Panels A and B in table 4 provide descriptive statistics and autocorrelations and
the correlation matrix for these ten portfolios, respectively. The annualized average
returns on the size portfolios range from 1.27% (sixth portfolio) to 58.58% (first
portfolio). All the series indicate a low degree of persistence where all the first-order

autocorrelations are less than 0.236.

[Please insert table 4 about here.]
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6.5 Benchmark Assets

Three proxies of the benchmark asset are retained; namely, the TSE 300, TSE
equally-weighted, and TSE value-weighted indices. This permits us to test the sensitivity

of the performance statistics with respect to the selected benchmarks.
6.6 Optimal Risky Asset Allocation Specifications

In a conditional setting, the optimal risky asset allocation (the uninformed
investor portfolio’s policy) is a function of the conditional moments of asset returns.
With the assumption that these conditional moments are linear in the state variables that
predict the stock returns, a linear structure is retained (Ait-Sahalia and Brandt, 2001).
Hence two linear specifications are adopted and integrated into the construction of the
performance measures; namely: *°

(39) a=7Za

t t

where a is a vector of unknown parameters, and Z, is a vector of instruments (including

a constant) with a dimension equal to two or three depending on the retained variables
(DY only or DY and TB1). When unconditional evaluation is conducted, the uninformed

investor’s portfolio policy is a constant.
7. Empirical Results on Performance

We use the (un)conditional pricing kernel models to assess the risk-adjusted
performance of the 95 equity funds under consideration. In particular, we determine the
average and the median performance of all funds, its sign and significance, its total and
per group of funds variability, and its sensitivity to the procedure for forming portfolios
of funds and to the selected benchmark portfolio. We place emphasis on the use of two
portfolio formation procedures: an equally weighted and a size or value-weighted
structure. Size is defined as the total net asset value of the fund.

We examine the performance of two groups of portfolios of funds. The first group

includes six equally-weighted portfolios of funds constructed using individual fund

%% Ait-Sahalia and Brandt (2001) use a single linear index to characterize the relationship between the
portfolio weight and the state variables.
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returns within each investment objective. The second group is composed of six size-
weighted portfolios of funds constructed using the individual fund returns and the
corresponding total net asset values within each investment objective.

Finally, we address the issue of the sensitivity of the performance metrics to

changes in the level of relative risk aversion of the uninformed investor.
7.1 Implementation and Estimation Issues

The (un)conditional estimation of the asset pricing kernel parameters and
performance measures is conducted simultaneously. This one-step method is superior
and more efficient that the two-step method, although Farnsworth et al. (2002)
demonstrate that both approaches yield the same numerical results. Considering the
limited number of observations, the joint estimation uses subgroups of individual funds
(one to eight) in addition to the ten size-based passive strategies. This has the advantage
of controlling for the number of moment conditions in order to minimize computational

problems.
7.2 Unconditional Performance Evaluation

Table 5 reports the performance results for the twelve equally weighted and size-
weighted portfolios of mutual funds using the three benchmark variables. Panel A shows
that all equally-weighted portfolios (except the income, balanced, and the specialty ones)
have consistently positive and significant abnormal performance. The average lambda is
0.0762% per month, and the growth/income funds contribute the most with a highly
significant lambda of 0.2591% using the value-weighted TSE index as a benchmark. The
performance of the balanced and specialty portfolios is negative but not significant
(except when using the equally-weighted TSE index as a benchmark). The same analyses
conducted on the six size-weighted portfolios of funds (panel B) produces comparable
and more significant results. The lambdas of the aggressive growth (27 funds) and
growth (50 funds) portfolios are highly significant and are 0.2463% and 0.2626%,
respectively. The overall average lambda is 0.1282% per month. An equally-weighted

formation of portfolios of funds appears to underestimate unconditional performance.

[Please insert table 5 about here.]

23



The performance of individual funds is summarized in table 6 (panels A and B)
for the two portfolio performance formation procedures. The results indicate that the
equally-weighted portfolios of performances based on the value-weighted TSE index as a
benchmark have a positive mean and median lambda (0.1931% and 0.1778%,
respectively) with an average p-value of 27.55%. In addition, the aggressive growth,
growth, growth/income, and income portfolios exhibit positive but not significant
abnormal performance. The aggregate significance levels must be interpreted with care
since they are averages of individual levels. Moreover, the lambdas are symmetrically
distributed with fat tails.

These results differ from those reported for U.S. funds (Chen and Knez, 1996;
Ferson and Schadt, 1996; and Farnsworth et al., 2002), and are consistent with the
evidence in Kryzanowski et al. (1997) where the unconditional average Jensen alpha is
positive but not significant over the period 1981-1988 and for all fund groups.

When the individual fund performances are weighted by the total net asset value
of the fund, the average lambda increases and becomes less insignificant (0.2224% at the
level of 22.46%) using the value-weighted TSE index. This performance improvement is
obtained for the aggressive growth, growth, income, and specialty portfolios. These

observations are confirmed when the two other benchmarks are used.

[Please insert table 6 about here.]

To better understand the sources of this positive average performance, we
examine the distribution of the p-values for all funds and per fund group (all based on
heteroskedasticity and autocorrelation consistent t-statistics) for the three benchmarks.
Based on table 7, almost 43% of the funds have p-values less than 5%, and only three
funds exhibit significant negative performance using the value-weighted TSE index as
the benchmark. There is a predominance of funds with good performance across all fund
groups except for the sole balanced fund that has a negative but non-significant lambda.
These figures increase using the equally-weighted TSE index as the benchmark. Six
funds have negative and significant lambdas, and 43 funds have positive and significant
lambdas. These differences are essentially caused by the performance of some

growth/income funds. Moreover, the p-values based on the Bonferroni inequality indicate
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that the positive extreme t-statistics are significant for all funds and across all fund
groups with the exception of the balanced fund.”’ This rejects the joint hypothesis of zero
lambdas. However, the conservative p-value corresponding to the minimum t-statistic for
all funds, using the TSE 300 and the value-weighted TSE indices, are 0.577 and 0.458,

respectively.

[Please insert table 7 about here.]

Overall, this positive significant unconditional performance may reflect the
presence of private and/or public information correlated with future returns. A
conditional performance evaluation controlling for the effects of public information is

necessary to better assess the performance of fund managers.
7.3 Conditional Performance Evaluation

The conditional model is estimated under two specifications for the conditioning
structure. First, we consider only the dividend yield on the TSE 300 index in the
construction of the conditional performance measures. Second, the information set
consists of the dividend yield and the yield on the one-month T-bill. This approach is
useful for examining the sensitivity of the performance measures to the conditional
specification. Moreover, we provide Wald tests (Newey and West, 1987b) on the
coefficients of the time-varying alpha in order to assess the validity of the conditional

approach.
7.3.1. Conditioning with the Dividend Yield Only

When the conditional asset pricing kernel model is used with one instrumental
variable (the dividend yield), the average performance of 0.0710% weakens but remains
positive and significant for the equally-weighted portfolios of mutual funds for the value-
weighted TSE index if we exclude the balanced and the specialty portfolios (see panel A
in table 8). This is explained by the significant decrease in the performance of the

growth, growth/income and income portfolios. In contrast, the performance of the

*7 1t uses the maximum or the minimum one-tailed p-value from the t-statistic distribution for all funds and
fund groups multiplied by the corresponding number of funds.
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aggressive growth portfolio increases and becomes more significant (0.2715%). The
unique balanced (Industrial Pension of Mackenzie Financial Corporation) maintains its
negative and non-significant lambda (-0.0127%). This result is robust to the use of the
second benchmark. The performance analyses using the size-weighted portfolios of funds
reveal a clear deterioration of the average performance (0.0465%) (see panel B). This is
explained by the low performance of the aggressive growth portfolio, and the
surprisingly negative lambda of the growth/income portfolio. Overall, the conditional
model has more impact on the size-weighted portfolios than on the equally-weighted

portfolios.

[Please insert table 8 about here.]

The previous conclusions are corroborated by examining the performance of
individual funds. Based on table 9, the average fund performance is negatively affected
using the conditional model. In addition, the distribution of the lambdas becomes less
symmetric and with less observations in the tails. These results differ from the empirical
evidence for U.S. funds reported in Chen and Knez (1996) and Ferson and Schadt (1996)
that the inclusion of public information positively impacts the performance statistics. The
changes in the point estimates of performance from the unconditional to conditional
frameworks reported herein are parallel to the ones observed in Bansal and Harvey

(1996) and Kryzanowski et al. (1997).

[Please insert table 9 about here.]

The most notable source of the deteriorating conditional lambdas is the poor
performance of the individual growth and growth/income funds. Overall 42 (15) funds
have negative (significantly negative) lambdas using the value-weighted TSE index as a
benchmark. The number of funds with positive and significant performance decreases
from 42 to 38. Moreover, all the Bonferroni p-values, corresponding to the extreme t-
statistics (maximum and minimum) reject the null hypothesis of joint zero lambdas (see

table 10, panels A and B).

[Please insert table 10 about here. ]
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7.3.2. Conditioning with the Dividend Yield and Yield on the One-Month T-Bill

The information set now is extended to two instrumental variables by adding the
yield on the one-month T-bill to the set with the dividend yield. Based on the results
reported in table 11 (panels A and B), the performance values become negative but non
significant, except for the income and specialty portfolios where the lambda is negative
and significant, and for the aggressive growth group which exhibits decreased positive
performance. The average lambda for the equally-weighted portfolios of funds is —
0.1159% using the value-weighted TSE index as a benchmark. Moreover, the Wald tests
based on the methodology of Newey and West (1987b) validate the conditional
approach. The Wald statistics reject the null hypothesis of no time variation in the
optimal allocation of risky assets for all portfolios. These figures are verified using the

size-weighted portfolios of funds, where the average size-weighted lambda is —0.1312%.

[Please insert table 11 about here. ]

Based on panels A and B of table 12, the performance of the individual funds and
portfolios of performances support the previous conclusions obtained from the portfolios
of funds. The distribution of the conditional lambdas is now asymmetric with less
extreme observations compared to the unconditional and one instrument based

conditional lambdas.

[Please insert table 12 about here. ]

Based on table 13 (panels A and B), the number of funds with significant
negative lambdas increases to 36. This compares to 3 and 15 funds using the
unconditional and one instrument based conditional estimations. The number of
significant positive lambdas decreases to 16. This is less than half of the number (38)
obtained with the unconditional asset pricing kernel model. These figures are caused by
the negative performance of aggressive growth, growth, and growth/income funds.
Moreover, the Bonferroni test is significant for all fund groups except for the maximum
t-statistic associated with the income group (3 funds). This rejects the joint null

hypothesis of zero conditional lambdas.

[Please insert table 13 about here. ]
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The overall results indicate that when public information, such as the dividend
yield and the yield on one-month T-bills, are integrated into the construction of the asset
pricing kernel and the performance measures, it becomes more difficult for the fund
managers to realize excess returns. This leads to poorer fund performance. This partially
confirms the theoretical conclusions of Chen and Knez (1996) who advocate that the
performance results can change in either direction in the presence of conditioning

information, due to an infinity of admissible (un)conditional stochastic discount factors.
7.4 Performance and Relative Risk Aversion

We also test the sensitivity of the performance measures to changes in the level of
the relative risk aversion of the uninformed investor using the twelve equally-weighted
and value-weighted portfolios of funds under the (un)conditional specifications. We seek
an answer to the question, how is the ability of fund managers to realize excess returns
related to the changes in the risk preferences of uninformed investors? These preferences
are important since they affect the construction of the benchmark model and are expected
to impact performance. To this end, we estimate the unconditional and the two
conditional measures for various levels of the relative risk aversion coefficient, and we
examine potential patterns or associations between the two variables.

The results for the unconditional tests are reported in table 14. They suggest that
the performance metrics are decreasing in the coefficient of relative risk aversion. The
average performance for the equally-weighted portfolios of funds (panel A) is 0.088%
with gamma equal to 3, 0.087% with gamma equal to 4, 0.085% with gamma equal to 5,
and 0.083% with gamma equal to 7 when the TSE 300 index is used as the benchmark.
However, this negative association is reversed for the two main portfolios, the aggressive
growth and the growth portfolios using the equally weighted and the value weighted TSE
indices. These patterns persist using the size-weighted portfolios of mutual funds (panel
B). Overall, we may conclude that unconditional performance is sensitive to changes in
the level of relative risk aversion, and this association depends on the selected
benchmark. This could be explained by the correlation between the use of public and/or

private information and the changes in the risk attitudes of the uninformed investor.

[Please insert table 14 about here. ]
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The results based on the conditional model with one instrumental variable (the
dividend yield on the TSE 300 index) are presented in table 15 (panels A and B). They
show, on average, a weak positive link between lambda and gamma. This is especially
the case for the size-weighted growth portfolio. Its performance improves from 0.108%
when gamma is equal to 3, to 0.116% when gamma is equal to 7, when the value-
weighted TSE index is used as the benchmark. The only major exceptions are the
equally-weighted and size-weighted aggressive growth portfolios. Their performances
deteriorate, as the uninformed investor becomes more risk averse. It seems that a
conditional framework with one instrumental variable impacts the nature of the
relationship between fund performance and relative risk aversion, and has little effect on

the aggressive growth style managers.

[Please insert table 15 about here. ]

To test the robustness of this last conclusion, we use the extended conditional
model with two instrumental variables. The results reported in table 16 are consistent for
the aggressive growth portfolios showing a negative association. In contrast, the
performance of the growth portfolios indicate weak sensitivity to changes in gamma.
These two empirical observations suggest that there is a weak negative average link

between conditional performance and relative risk aversion.

[Please insert table 16 about here. ]

It is difficult to make unambiguous statements about the direction of the
sensitivity of performance to changes in the relative risk aversion of the uninformed
investor based on the results for all these models. However, the risk-adjusted
performance of aggressive growth oriented managers is negatively related to changes in

the risk preferences of uninformed investors.

8. Conclusion

In this paper we use the general asset-pricing framework (SDF representation) to
derive a conditional asset-pricing kernel that is relevant for evaluating the performance of

actively managed portfolios. Our approach takes into consideration the predictability of

29



asset returns and accounts for conditioning information. Hence, three performance
measures are constructed and are related respectively to the unconditional evaluation of
fixed-weight strategies, unconditional evaluation of dynamic strategies, and conditional
evaluation of dynamic strategies.

We develop the appropriate empirical framework to estimate and implement the
proposed performance measures and their associated tests by using the GMM method.
We assess the risk-adjusted performance of a sample of 95 Canadian equity mutual funds
by applying the developed models. The results indicate that there is evidence of abnormal
unconditional performance, and that on average the conditional performance is negative.
Significant negative performance is found for the growth, growth/income, income, and
specialty portfolios. The aggressive growth and the balanced portfolios exhibit positive
but non-significant lambdas.

The tests of the sensitivity of the performance measures to changes in the relative
risk aversion of the uninformed investor reveal a weak link between the two variables.
Aggressive growth managers are exceptions, and their risk-adjusted performance
deteriorates, as the uninformed investor becomes more risk averse.

Our approach may be extended and improved in two ways. The first way is to
examine potential relationships between the performance measures and some business
cycle indicators or variables. This may differentiate and improve the active portfolio
management process during periods of expansions and recessions. Second, at an
econometric level, the (unfeasible) full efficient conditional GMM estimation, which is
based on general interactions between functions of conditioning variables and pricing
errors, can be conducted (feasible) using nonparametric estimates for the optimal set of

instruments as suggested in Newey (1993).
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Tablel: Summary Statistics for the Mutual Funds

This table reports the summary statistics for the mutual fund returns using monthly data from November
1989 to December 1999, a total of 122 observations. Panel A provides the statistics on the distribution of
the mean, standard deviation, minimum, maximum, skewness, and kurtosis for the sample of 95 equity
mutual funds. Panel B gives the number of funds per category, the average and the standard deviation of
returns for the equally-weighted portfolios of funds grouped by investment objective.

Panel A: Individual Mutual Funds

Statistics Mean Return  Std. Dev. Minimum Maximum Skewness Kurtosis
Mean 0.008 0.041 -0.180 0.123 -0.695 4.105
Std. Dev. 0.003 0.010 0.034 0.059 0.603 1.884
Minimum -0.003 0.017 -0.238 0.060 -1.562 0.305
1% -0.001 0.026 -0.232 0.062 -1.514 0.356
2.5% 0.001 0.028 -0.227 0.065 -1.476 0.967
5% 0.004 0.032 -0.218 0.072 -1.401 1.298
10% 0.006 0.033 -0.208 0.078 -1.231 1.714
25% 0.007 0.037 -0.200 0.091 -1.048 2.900
Median 0.008 0.040 -0.188 0.109 -0.870 4.192
75% 0.009 0.042 -0.167 0.130 -0.518 5.089
90% 0.011 0.049 -0.146 0.158 0.097 6.014
95% 0.014 0.057 -0.115 0.267 0.462 7.225
97.5% 0.014 0.067 -0.084 0.314 0.732 8.308
99% 0.015 0.077 -0.051 0.370 1.350 9.675
Maximum 0.015 0.090 -0.046 0.393 2.054 10.434

Panel B: Investment Objective Portfolios

Objective N Mean Return Std. Dev.
Aggressive Growth 27 0.008 0.039
Growth 50 0.008 0.036
Growth and Income 12 0.008 0.033
Income 3 0.008 0.034
Balanced 1 0.006 0.034
Specialty 2 0.009 0.032
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Table 3: Mutual Fund Excess Return Predictability

This table reports statistics on the mutual fund return predictability based on time series predictive
regressions of two groups of portfolios of mutual fund excess returns on five lagged instrumental variables
(dividend yield, risk premium, slope of the term structure, one-month Treasury bill rate, and dummy
variable for January). The first group includes six equally-weighted portfolios of funds constructed using
individual fund returns within each investment objective (EWAG, EWG, EWGI, EWI, EWBL, and
EWSP). The second group is composed of six size-weighted portfolios of funds constructed using the
individual fund returns and the corresponding total net asset values within each investment objective
(SWAG, SWG, SWGI, SWI, SWBL, and SWSP). The estimation is conducted using the GMM method.

The X2 column presents the Newey and West (1987b) tests of the hypothesis that all the slope coefficients
are zeros. The next column includes the corresponding p-value. The data cover the period from November
1989 to December 1999, for a total of 122 observations.

Fund Portfolio Number of Funds X p-value
EWAG 27 15.343 0.009
EWG 50 16.467 0.006
EWGI 12 17.531 0.004
EWI 3 14.633 0.012
EWBL 1 26.828 0.000
EWSP 2 19.726 0.001
SWAG 27 15.268 0.009
SWG 50 16.250 0.006
SWGI 12 16.978 0.005
SWI 3 13.018 0.023
SWBL 1 26.828 0.000
SWSP 2 26.410 0.000
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Table 7: Summary Statistics for the Unconditional Pricing Kernel based Performance
Estimates for the Six Fund Groups based on Individual Fund Performances

This table presents summary statistics for the unconditional performance measures per fund group and for all funds.
Panel A presents these results using the TSE 300 index as the benchmark. Panel B presents these results using the
equally-weighted TSE index as the benchmark. Panel C presents these results using the value-weighted TSE index

as the benchmark. N is the number funds in each group. All the p-values are based on a GMM estimation using the
Bartlett kernel. Information related to the funds with significant (5% level) performance and with positive significant
performance is provided in the table. The Bonferroni p-values are the minimum and the maximum one-tailed p-values
from the t-distribution across all of the funds and all of the fund groups, multiplied by the defined number of funds.

Panel A: TSE 300 Index
Bonferroni p- Bonferroni p-
Percent of funds  Number of funds with  value (Min. value (Max.

Fund Group N Maxp Minp with p <5% lambda >0 and p <5% t) t)

Aggressive Growth 27  0.894 0.000 48.15% 11 0.245 0.000
Growth 50  0.980 0.000 42.00% 21 1.000 0.000
Growth/Income 12 0984 0.000 41.67% 4 0.073 0.000
Income 3 0.812 0.000 33.33% 1 na 0.005
Balanced 1 0.633 0.633 0.00% 0 na 0.316
Specialty 2 0.437 0.114 0.00% 0 0.057 na

All 95 0984 0.000 42.11% 37 0.577 0.000

Panel B: Equally-Weighted TSE Index
Bonferroni p- Bonferroni p-
Percent of funds  Number of funds with  value (Min. value (Max.

Fund Group N Maxp Minp with p <5% lambda >0 and p <5% t) t)
Aggressive Growth 27 0947 0.000 48.15% 12 0.012 0.000
Growth 50 0971 0.000 46.00% 22 1.000 0.000
Growth/Income 12 0.283 0.000 83.33% 8 0.000 0.000
Income 3 0.740 0.000 33.33% 1 0.635 0.000
Balanced 1 0.012 0.012 100.00% 0 0.006 na
Specialty 2 0.065 0.004 50.00% 0 0.004 na
All 95  0.971 0.000 51.58% 43 0.001 0.000

Panel C: Equally-Weighted TSE Index
Bonferroni p- Bonferroni p-
Percent of funds  Number of funds with  value (Min. value (Max.

Fund Group N Maxp Minp with p <5% lambda >0 and p <5% t) t)
Aggressive Growth 27 0931 0.000 48.15% 11 0.237 0.000
Growth 50  0.948 0.000 42.00% 21 1.000 0.000
Growth/Income 12 0.866 0.000 50.00% 5 0.058 0.000
Income 3 0.824 0.000 33.33% 1 na 0.006
Balanced 1 0.563 0.563 0.00% 0 0.281 na
Specialty 2 0.392 0.092 0.00% 0 0.092 na
All 95  0.948 0.000 43.16% 38 0.458 0.000
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Table 8: Portfolios of Funds Performance Measures using the Conditional Pricing Kernel
One Instrumental Variable (DY) and GMM Estimation

This table reports the performance measures per investment objective using the conditional pricing kernel for the two selected
benchmarks (TSE 300 and value-weighted TSE indexes). Only the dividend yield (DY) is used as a instrumental variable.
Simultaneous system estimation, including the ten size-based passive strategies, is conducted using the GMM method. Panel A (B)
provides information on the performance of six equally (size)-weighted portfolios of mutual funds. The twelve portfolios of funds are:
The aggressive growth portfolio is an equally (size)-weighted portfolio of 27 funds, the growth portfolio is an equally (size)-weighted
portfolio of 50 funds, the growth/income is an equally (size)-weighted portfolio of 12 funds, the income portfolio is an equally
(size)-weighted portfolio of 3 funds, the balanced portfolio represents the only balanced fund, and the specialty portfolio is an equally
(size)-weighted portfolio of 2 funds. All represents the average of all the statistics of the twelve portfolios. Information related to

the estimated performance, the t-statistics, the p-values, and the J-statistic (using the Bartlett kernel) is provided in the table. The
J-Statistic is the minimized value of the sample quadratic form constructed using the moment conditions and the optimal weighting

matrix. Size is defined as the total net asset value of the fund. TSE 300 is the TSE 300 index and TSEVW is the value-weighted TSE

index. Monthly data is used from November 1989 to December 1999, a total of 122 observations per portfolio of funds.

Panel A: Equally-Weighted Portfolios of Mutual Funds

Benchmark Variable TSE 300 TSEVW

Fund Group Lambda t(Lambda) p-value J-Stat Lambda t(Lambda) p-value J-Stat
Aggressive Growth 0.0031 5.669 0.000 0.1791 0.0028 5.182 0.000 0.1789
Growth 0.0010 2.264 0.024  0.1792 0.0009 2.056 0.040 0.1791
Growth/Income 0.0015 3.050 0.002  0.1794 0.0013 2.638 0.008 0.1793
Income -0.0006 -0.938 0.348  0.1792 -0.0008 -1.139 0.255 0.1791
Balanced -0.0002 -0.261 0.794  0.1797 -0.0001 -0.161 0.872 0.1797
Specialty 0.0004 0.322 0.748  0.1790 0.0002 0.139 0.889 0.1788
All 0.0009 1.684 0.319  0.1792 0.0007 1.453 0.344 0.1792
Panel B: Size-Weighted Portfolios of Mutual Funds

Benchmark Variable TSE 300 TSEVW

Fund Group Lambda t(Lambda) p-value J-Stat Lambda t(Lambda) p-value J-Stat
Aggressive Growth 0.0029 5.079 0.000  0.1793 0.0025 4.396 0.000 0.1791
Growth 0.0013 2.907 0.004  0.1792 0.0011 2.541 0.011 0.1791
Growth/Income 0.0000 0.067 0.947  0.1800 -0.0001 -0.261 0.794 0.1799
Income -0.0004 -0.532 0.595 0.1791 -0.0005 -0.770 0.442 0.1790
Balanced -0.0002 -0.261 0.794  0.1797 -0.0001 -0.162 0.872 0.1797
Specialty 0.0002 0.232 0.817  0.1789 -0.0001 -0.064 0.949 0.1788
All 0.0006 1.249 0.526  0.1794 0.0005 0.947 0.511 0.1793
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Table 10: Summary Statistics for the Conditional Pricing Kernel based Performance Estimates
for the Six Fund Groups based on Individual Fund Performances with One
Instrumental Variable (DY)

This table presents summary statistics for the conditional performance measures per fund group and for all funds.

The dividend yield (DY) is used as a instrumental variable. Panel A (B) presents the results using the TSE 300 index
(value-weighted TSE index) as the benchmark. N is the number of individual funds within each group. All the p-values
are based on a GMM estimation using the Bartlett kernel. Information related to the funds with significant (5% level)
performance and with positive significant performance is provided in the table. The Bonferroni p-values are the
minimum and the maximum one-tailed p-values from the t-distribution across all of the funds and all of the fund

groups, multiplied by the defined number of funds.

Panel A: TSE 300 Index

Bonferroni Bonferroni

Percent of funds Number of funds with p-value p-value
Fund Group N Max p Min p with p <5% lambda > 0 and p <5% (Min. t) (Max. t)
Aggressive Growth 27 0.938 0.000 62.96% 16 0.000 0.000
Growth 50 0.959 0.000 60.00% 22 0.000 0.000
Growth/Income 12 0.715 0.000 75.00% 6 0.000 0.000
Income 3 0.439 0.000 33.33% 0 0.001 0.537
Balanced 1 0.796 0.796 0.00% 0 0.398 na
Specialty 2 0.415 0.168 0.00% 0 na 0.168
All 95 0.959 0.000 60.00% 44 0.000 0.000

Panel B: Value-Weighted TSE Index

Bonferroni Bonferroni

Percent of funds Number of funds with p-value p-value
Fund Group N Max p Min p with p <5% lambda > 0 and p <5% (Min. t) (Max. t)
Aggressive Growth 27 0.904 0.000 55.56% 14 0.000 0.000
Growth 50 0.912 0.000 62.00% 22 0.000 0.000
Growth/Income 12 0.655 0.000 83.33% 6 0.000 0.000
Income 3 0.574 0.000 33.33% 0 0.000 0.861
Balanced 1 0.872 0.872 0.00% 0 0.436 na
Specialty 2 0.648 0.133 0.00% 0 na 0.132
All 95 0.912 0.000 60.00% 42 0.000 0.000
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Table 11: Portfolios of Funds Performance Measures using the Conditional Pricing Kernel
Two Instrumental Variables (DY and TB1) and GMM Estimation

This table reports the performance measures per investment objective using the conditional pricing kernel for the two selected
benchmarks (TSE 300 and TSE value-weighted indexes). The dividend yield (DY) and the yield on the one-month T-bill (TB1) are used
as instrumental variables. Simultaneous system estimation, including the ten size-based passive strategies, is conducted using the GMM
method. Panel A (B) provides information on the performance estimates of six equally (size)-weighted portfolios of mutual funds.

The twelve portfolios of funds are: The aggressive growth portfolio is an equally (size)-weighted portfolio of 27 funds, the growth
portfolio is an equally (size)-weighted portfolio of 50 funds, the growth/income portfolio is an equally (size)-weighted portfolio of 12
funds, the income portfolio is an equally (size)-weighted portfolio of 3 funds, the balanced portfolio represents the only balanced fund,
and the specialty portfolio is an equally (size)-weighted portfolio of 2 funds. All represents the average of all the statistics of each of

the six portfolios. Information related to the estimated performance, the t-statistics, the p-values, and the J-statistic (using the

Bartlett kernel) is provided in the table. Wald corresponds to the p-value based on the Newey and West (1987b) Wald test of the marginal
significance of the two conditioning variables. The J-Statistic is the minimized value of the sample quadratic form constructed using

the moment conditions and the optimal weighting matrix. Size is defined as the total net asset value of the fund. TSE 300 is the

TSE 300 index and TSEVW is the value-weighted TSE index. Monthly data is used from November 1989 to December 1999, a total

of 122 observations per portfolio of funds.

Panel A: Equally-Weighted Portfolios of Mutual Funds

Benchmark Variable TSE 300 TSEVW

Fund Group Lambda t(Lambda) p-value Wald J-Stat | Lambda t(Lambda) p-value Wald J-Stat
Aggressive Growth 0.0003 0.764 0.445 0.000 0.1826 | 0.0001 0.139 0.890  0.000 0.1811
Growth -0.0009  -1.653 0.099  0.000 0.1818 | -0.0007 -1.500 0.134  0.000 0.1797
Growth/Income -0.0008  -1.435 0.152  0.000 0.1828 | -0.0005 -0.959 0.338  0.000 0.1804
Income -0.0024  -3.965 0.000  0.000 0.1827 | -0.0021 -3.407 0.001 0.000 0.1801
Balanced 0.0018 2.306 0.021  0.000 0.1864 | 0.0008 0.951 0.342  0.000 0.1857
Specialty -0.0053 -4.460 0.000  0.000 0.1897 | -0.0044 -3.643 0.000  0.000 0.1896
All -0.0012  -1.407 0.119  0.000 0.1843 | -0.0012 -1.403 0.284  0.000 0.1828

Panel B: Size-Weighted Portfolios of Mutual Funds

Benchmark Variable TSE 300 TSEVW

Fund Group Lambda t(Lambda) p-value Wald J-Stat | Lambda t(Lambda) p-value Wald J-Stat
Aggressive Growth 0.0011 2.672 0.008  0.000 0.1829 | 0.0008 1.994 0.046  0.000 0.1814
Growth -0.0005 -0.987 0.324  0.000 0.1819 | -0.0002 -0.495 0.621 0.000 0.1804
Growth/Income -0.0010  -1.580 0.114  0.000 0.1826 | -0.0008 -1.420 0.156  0.000 0.1804
Income -0.0028 -4.415 0.000  0.000 0.1824 | -0.0025 -3.968 0.000  0.000 0.1798
Balanced 0.0018 2.306 0.021  0.000 0.1864 | 0.0008 0.951 0.342  0.000 0.1857
Specialty -0.0060  -7.442 0.000  0.000 0.1880 | -0.0059 -7.386 0.000  0.000 0.1871
All -0.0012  -1.574 0.078  0.000 0.1840 | -0.0013 -1.721 0.194  0.000 0.1825
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Table 13: Summary Statistics for the Conditional Pricing Kernel based Performance Estimates
for the Six Fund Groups based on Individual Fund Performances with Two
Instrumental Variables (DY and TB1)

This table presents summary statistics for the conditional performance measures per fund group and for all funds.

The dividend yield (DY) and the yield on the one-month T-bill (TB1) are used as instrumental variables. Panel A (B)
presents the results using the TSE 300 index (value-weighted TSE index) as the benchmark. N is the number of individual
funds within each group. All the p-values are based on a GMM estimation using the Bartlett kernel. Information

related to the funds with significant (5% level) performance and with positive significant performance is provided in

the table. The Bonferroni p-values are the minimum and the maximum one-tailed p-values from the t-distribution

across all of the funds and all of the fund groups, multiplied by the defined number of funds.

Panel A: TSE 300 Index

Bonferroni p- Bonferroni p-

Percent of funds Number of funds with ~ value (Min. value (Max.

Fund Group N Maxp Min p with p <5% lambda > 0 and p <5% t) t)

Aggressive Growth 27  0.858 0.000 55.56% 11 0.000 0.000
Growth 50 0971 0.000 58.00% 8 0.000 0.000
Growth/Income 12 0978 0.000 66.67% 1 0.000 0.000
Income 3 0.402 0.000 66.67% 0 0.000 0.603
Balanced 1 0.021 0.021 100.00% 1 na 0.010
Specialty 2 0.138 0.000 50.00% 0 0.000 na

All 95 0978 0.000 58.95% 21 0.000 0.000

Panel B: Value-Weighted TSE Index

Bonferroni p- Bonferroni p-

Percent of funds Number of funds with ~ value (Min. value (Max.
Fund Group N Maxp Min p with p <5% lambda > 0 and p <5% t) t)
Aggressive Growth 27  0.869 0.000 48.15% 8 0.000 0.000
Growth 50 0934 0.000 58.00% 7 0.000 0.000
Growth/Income 12 0.787 0.000 58.33% 1 0.000 0.000
Income 3 0.944 0.000 66.67% 0 0.000 na
Balanced 1 0.342 0.342 0.00% 0 na 0.829
Specialty 2 0.500 0.000 50.00% 0 0.000 na
All 95 0944 0.000 54.74% 16 0.000 0.000
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