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Abstract 

 

The Stochastic Discount Factor (SDF) representation or asset pricing kernel approach 
provides a general and convenient framework to price various financial assets. We use 
this general asset pricing framework to derive a conditional asset pricing kernel that 
accounts efficiently for time variation in expected returns and risk. Our model is suitable 
to perform unconditional evaluations of fixed-weight strategies and (un)conditional 
evaluations of dynamic strategies. We develop the appropriate empirical framework for 
the estimation of the performance measures and their associated tests using the GMM of 
Hansen (1982). We examine the performance of Canadian equity mutual funds over the 
period, November 1989 through December 1999. The results indicate that there is 
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aversion of the uninformed investor. 
 

Keywords: SDF, (un)conditional models, mutual fund returns, performance measures, 
generalized method of moments 

JEL Classification: G11, G12 

 

                                                        
* Ayadi is an assistant professor, Department of Accounting and Finance, Faculty of Business, Brock University, St. 
Catharines, ON, Canada, L2S 3A1. (905) 688-5550 ext. 3917, e-mail: mohamed.ayadi@broku.ca; Kryzanowski is a 
professor and Ned Goodman Chair in Investment Finance, John Molson School of Business, Concordia University, 
Montreal, QC, Canada, H3G 1M8. (514) 848-2782 e-mail: lkryzan@vax2.concordia.ca. Financial support from Ned 
Goodman Chair in Investment Finance, FCAR (Fonds pour la formation des Chercheurs et l�Aide à la Recherche), and 
SSHRC (Social Sciences and Humanities Research Council of Canada) are gratefully acknowledged. We would like to 
thank Jonathan Berk, Don Cyr, Howard Nemiroff, Tim Simin, Lorne Switzer, and seminar participants at Concordia 
University, HEC School of Business (Montreal), Brock University, 2001 NFA (Halifax), 2001 FMA (Toronto), and 
2002 MFA Conference (Chicago) for their many helpful comments. The usual disclaimer applies. Please do not quote 
without the authors� permission. 



 1

ASSESSING PORTFOLIO PERFORMANCE USING ASSET 
PRICING KERNELS 

1. Introduction 

Most previous studies on portfolio performance evaluation use equilibrium-based 

asset pricing models (such as the CAPM and the APT) to estimate the risk-adjusted 

performance of actively managed portfolios. These performance metrics are obtained by 

comparing the portfolio�s average excess return to the one implied by the selected model 

for the same level of risk. This approach uses the (un)conditional forms of these models 

and assumes that they are well specified. However, evidence against the empirical 

validity of these models (priced anomalies) is mounting. In addition, these models fail to 

deliver reliable measures of performance and they can generate misleading inferences. 

This is caused essentially by problems related to estimation bias due to the presence of 

timing information (Dybvig and Ross, 1985; Admati and Ross, 1985; and Grinblatt and 

Titman, 1989) and to the choice and efficiency of benchmarks where rankings can 

change with different benchmarks (Roll, 1977, 1978). These problems led to the 

development of an asset pricing model-free measure to assess portfolio performance. 

This alternative methodology relies on the general asset pricing framework 

(GAPF) based on the stochastic discount factor (SDF) representation for asset prices. 

According to Harrison and Kreps (1979), this methodology requires weaker market 

conditions of either the law of one price or no arbitrage conditions. The GAPF implies 

that any gross return discounted by a market-wide random variable has a constant 

conditional expectation. The GAPF nests all common (un)conditional asset pricing 

models (such as the CAPM, APT, ICAPM, Multifactor Models, CCAPM, or Option 

Models) depending on the specification of the stochastic discount factor. Moreover, the 

GAPF allows for an integration of the role of conditioning information with different 

structures (Hansen and Richard, 1987). 

The GAP framework initially was applied to portfolio performance evaluation by 

Grinblatt and Titman (1989) via their positive period weighting measure (PPWM) where 

the SDF is the marginal utility of the return on an efficient portfolio. Subsequently, this 
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methodology is applied and further developed by Glosten and Jagannathan (1994), 

Grinblatt and Titman (1994), Chen and Knez (1996), Kryzanowski and Lalancette 

(1996), Bansal and Harvey (1996), He et al. (1999), Goldbaum (1999), Dahlquist and 

Soderlind (1999), and Farnsworth et al. (2002). 

In this paper, we introduce a conditional asset pricing kernel adapted to 

performance evaluation. It efficiently accounts for time variation in expected returns and 

risk. This stochastic discount factor or SDF depends on some parameters and on the 

returns on an efficient portfolio, and satisfies some regularity conditions. This approach 

has the advantage of not being dependent on any asset pricing model or any distributional 

assumptions. The proposed SDF is efficient by construction, given that it prices all the 

benchmarks and assets. Further, the multiplicative structure of conditioning information 

is explored and applied. This framework is suitable for performing unconditional 

evaluations of fixed-weight strategies and (un)conditional evaluations of dynamic 

strategies. 

At the empirical level, we develop the appropriate framework for the estimation 

of the performance measures. More importantly, we advocate the use of a flexible 

estimation methodology using the (un)conditional Generalized Method of Moments 

(GMM) of Hansen (1982). We construct the empirical performance measures and their 

associated tests, and use this methodology to assess the performance of a set of Canadian 

equity mutual funds over the period, November 1989 through December 1999. We also 

test the sensitivity of the performance measures to changes in the level of relative risk 

aversion of the uninformed investor. 

The remainder of the paper is organized as follows: Section 2 presents the general 

asset pricing framework. In section 3, we derive the asset pricing kernel in the presence 

of time-varying returns. We conduct a (un)conditional portfolio performance evaluation 

using the developed normalized pricing operator in section 4. In section 5, we develop 

and explain the econometric methodology and the construction of the tests. Section 6 

introduces the sample and the data used herein. Section 7 presents and discusses the main 

empirical results. Finally, section 8 summarizes the findings and discusses their 

implications. 
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2. General Asset Pricing Framework (GAPF) 

The fundamental theorem in asset pricing theory states that the price of a security 

is determined by the conditional expectations of its discounted future payoffs in 

frictionless markets. The stochastic discount factor (SDF) is a random variable that 

reflects the fundamental economy-wide sources of risk.1 The basic asset pricing equation 

is written as: 

(1)    NiXMEP tittti ,...,1all),( 1,1, == ++  

The conditional expectation is defined with respect to the sub-sigma field on the set of 

states of nature, tΩ , which represents the information available to investors at time t. 

tiP , is the price of asset i at time t, 1, +tiX is the payoff of asset i at time t +1, and 1+tM  is 

the stochastic discount factor or the pricing kernel.2 The prices, payoffs and discount 

factors can be real or nominal. We generally assume that the asset payoffs have finite 

second moments. As shown by Luttmer (1996), (1) becomes an inequality when 

transaction costs or any other market frictions are introduced. 

If a riskless asset with a unit payoff exists, then its price is equal to the 

conditional mean of the pricing kernel: 

(2)     
1,

,1
1)(

+
+ ==

tf
tftt R

PME  

When the security payoff is a gross return, the price is one. Then equation (1) is 

equivalent to: 

(3)    NiRME titt ,...,1all,1)( 1,1 ==++  

where 1, +tiR represents a gross return (payoff divided by price) on asset i at time t +1. 

If we define 1,1,1, +++ −≡ tftiti RRr  as an excess return, it will have a zero price. The 

pricing equation then becomes: 

(4)    NirME titt ,...,1all,0)( 1,1 ==++  

                                                        
1 It is a generalization of the standard discount factor under uncertainty. It is stochastic because it varies 
across the states of nature. 
2 The SDF has various other names. It is often called the intertemporal marginal rate of substitution in the 
consumption-based model, the equivalent martingale measure for allowing the change of measure from the 
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The SDF representation integrates both the absolute and the relative pricing 

approaches and has several advantages. First, it is general and convenient for pricing 

stocks, bonds, derivatives and real assets. Second, the SDF representation is simple and 

flexible in that it nests all asset pricing models by introducing explicit assumptions on the 

functional form of the pricing kernel and on the payoff distributions.3 Third, the SDF 

representation leads to a reliable analysis of passively and actively managed portfolios by 

avoiding the limitations of the traditional models by providing robust measures. Fourth, 

by construction, the SDF representation offers a suitable framework when performing 

econometric tests of such models using the GMM approach of Hansen (1982). Fifth, the 

SDF representation accommodates conditioning information and exploits its implications 

and the predictions of the underlying model in a simple way. 

Kan and Zhou (1999) identify an empirical flaw associated with the SDF 

methodology when the asset returns are generated by a linear factor structure. They argue 

that the SDF methodology ignores the full dynamics of asset returns (does not 

incorporate the data generating process in the moment conditions), and that some noisy 

or unsystematic factors may satisfy the SDF equation. Specifically, Kan and Zhou show 

that under such assumptions, the model parameters (risk premiums) are poorly estimated 

(less efficient compared to those estimated with classical regression methods), and that 

the power of the specification tests is significantly reduced due to the misspecification of 

the second moment matrix of the moment conditions. The evidence on this last problem 

is corroborated in Kan and Zhang (1999) for GMM tests of SDF models with useless 

factors. Jagannathan and Wang (2000) and Cochrane (2000) contradict these results by 

demonstrating that the GMM/SDF estimation is as efficient as the traditional time-series 

and cross-sectional regressions asymptotically and in finite samples. 

 

 

 

                                                                                                                                                                     
actual or objective probabilities to the risk-neutral probabilities, or the state price density when the Arrow-
Debreu or state-contingent price is scaled by the associated state probability. 
3 These models include the CAPM of Sharpe (1964), the APT of Ross (1976), the CCAPM of Lucas (1978) 
and Breeden (1979), the ICAPM of Merton (1973), the multifactor models of Chen, Roll, and Ross (1986) 
and Fama and French (1993), and the Nonlinear APM of Hansen and Singleton (1982). 
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3. Time-Varying Returns and Asset Pricing Kernels 

When investment opportunities are time-varying, the stochastic discount factors 

or the period weights can be interpreted as the conditional marginal utilities of an 

investor with isoelastic preferences described by a power utility function that exhibits 

constant relative risk aversion (CRRA) given by: 

γ

γ
−

−
= 1

1
1)( tt WWU  

where tW  is the level of wealth at t, and γ  is the relative risk aversion coefficient. 

In a single-period model, the uninformed investor who holds the benchmark 

portfolio (the risky asset) maximizes the conditional expectation of the utility of his 

terminal wealth: 

(5)     ]|)([ 1 ttWUE Ω +  

The conditional expectation is based upon the information set tΩ . 

The investor with such preferences decides on the fraction tα  of wealth to allocate to the 

risky asset (the benchmark portfolio). Any remaining wealth is invested in a riskless 

security. The return on wealth is given by: 

(6) 

 1,1,1,1,1,1,1,1, )()1( ++++++++ +=+−=−+= tftbttftftbttfttbttw RrRRRRRR αααα  

where: 

1, +tbR : the gross return on the benchmark portfolio from t to t +1; 

1, +tbr : the excess return on the benchmark portfolio from t to t +1; 

1, +tfR : the gross risk-free rate from t to t +1 but is known one period in advance at 

time t; and 

tα : is the proportion of total wealth invested in the benchmark portfolio. 

The optimal risky asset allocation (portfolio policy) is no longer a constant 

parameter when asset returns are predictable. Fama and French (1988, 1989), Ferson and 

Harvey (1991), Bekaert and Hodrick (1992), Schwert (1989), and Kandel and Stambaugh 

(1996), among others, document evidence of significant return predictability for long and 
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short horizons, where the means and variances of asset returns are time-varying and 

depend on some key variables (such as lagged returns, dividend yield, term structure 

variables, and interest rate variables). Moreover, more recent papers by Brennan et al. 

(1997), Campbell and Viceira (1999), Brandt (1999), Barberis (2000), and Aït-Sahalia 

and Brandt (2001) invoke different assumptions on the intertemporal preferences of 

investors and on stock return dynamics. They show that the optimal portfolio weight is a 

function of the state variable(s) that forecast the expected returns when stock returns are 

predictable. It follows that the optimal portfolio weight is a random variable measurable 

with respect to the set of state or conditioning variables and consistent with a conditional 

Euler equation:4 

(7)     )( tt Ω≡αα  

Thus, considering a constant optimal portfolio weight when returns are predictable 

affects the construction of any measure based on this variable, and distorts inferences 

related to the use of such a measure. In addition, the functional form and the 

parameterization of the optimal portfolio allocation depend on the relationship between 

asset returns and the predicting variables. Brandt (1999) conducts a standard non-

parametric estimation of the time-varying portfolio choice using four conditioning 

variables (dividend yield, default premium, term premium, and lagged excess return). 

Assuming initial wealth at time t is equals to one, the conditional optimization 

problem as in Brandt (1999), Ferson and Siegel (2001), and Aït-Sahalia and Brandt 

(2001) for the uninformed investor is: 

(8)   ]|)([maxarg 1,1,
*

ttftbtt RrUE
t

Ω+= ++αα
α

 

The first order condition gives: 

(9)  0]|)[(]|)([ 1,1,1,1,1,1, =Ω+=Ω+′ +
−

+++++ ttbtftbtttbtftbt rRrErRrUE γαα  

This is a conditional Euler equation. Now define, γα −
+++ +≡ )( 1,1,1 tftbt

c
t RrM . 

It is a strictly positive conditional stochastic discount factor (or conditional marginal 

utility) consistent with the no-arbitrage principle. This ensures that, if a particular fund 

has a higher positive payoff than another fund, then it must have a higher positive 

                                                        
4 Ingersoll (1987) shows that with mean-variance preferences the optimal risky asset allocation is a 
nonlinear function of the first and second conditional moments of asset returns. 
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performance. Grinblatt and Titman (1989) and Chen and Knez (1996) stress the 

importance of this positivity property in providing reliable performance measures.5,6 

We can normalize c
tM 1+  such that: (10) 

)( 1

1
1 c

tt

c
tc

t ME
M

Q
+

+
+ ≡ 1,1 ++= tf

c
t RM . Then 

1)( 1 =+
c
tt QE . This scaling is more convenient and is consistent with the original 

derivation of the PPWM of Grinblatt and Titman (1989) and Cumby and Glen (1990). 

The new conditional normalized pricing kernel plays a central role in the construction of 

the portfolio performance measure. 

The unconditional normalized pricing kernel is given by:  

(11) 
)( 1

1
1 u

t

u
tu

t ME
M

Q
+

+
+ ≡ 1,1 ++= tf

u
t RM , where α  is a constant parameter. 

Let ),(,1 cuii
t =+λ , be the (un)conditional portfolio performance measure 

depending on the use of the appropriate stochastic discount factor. It is an admissible 

positive performance measure with respect to the Chen and Knez (1996) definition.7 

Specifically: 

(12) ),(Cov)()( 1,11,1,11 ++++++ +== ty
u
ttyty

u
t

u
t rQrErQEλ , such that 0)( 1,1 =++ tb

u
t rQE  and 

1)( 1 =+
u
tQE . 

(13) ),(Cov)()( 1,11,1,11 ++++++ +== ty
c
tttytty

c
tt

c
t rQrErQEλ , such that 0)( 1,1 =++ tb

c
tt rQE  and 

1)( 1 =+
c
tt QE . 

In equations (12) and (13), 1, +tyr  is the excess return on any particular portfolio y. 

It follows that the expected performance measure reflects an average value plus 

an adjustment for the riskiness of the portfolio measured by the covariance of its excess 

return with the appropriate normalized pricing kernel. Specifically: 

                                                        
5 In this sense, the traditional Jensen alpha is implied by the CAPM pricing kernel when the positivity 
condition is not satisfied everywhere (Dybvig and Ross, 1985). 
6 In general, when the pricing kernel can be negative with certain positive probability, a truncation is 
adopted. The truncation provides a similar representation for an option on a payoff with a zero strike price. 
7 According to Chen and Knez (1996), a performance measure is admissible when it satisfies four minimal 
conditions: it assigns zero performance to each portfolio in the defined reference set, and it is linear, 
continuous, and nontrivial. 
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(14)    
])[(

)(

1,1,

1,1,
1 γ

γ

α
α

−
++

−
++

+ +
+

≡
tftb

tftbu
t RrE

Rr
Q , 

(15)   
])[(

)(

1,1,

1,,1,
1 γ

γ

α
α

−
++

−
++

+ +
+

≡
tftbtt

tftbtc
t RrE

Rr
Q , )( tt Ω≡ αα  

The condition 0)( 1,1 =++ tb
c
tt rQE , or equivalently 1,1,1 )( +++ = tftb

c
tt RRQE , guarantees that 

the benchmark portfolio is efficient for the uniformed investor. In the case where 1, +tbR  is 

a vector of gross returns on K efficient benchmark portfolios, the condition becomes: 

Ktftb
c
tt RRQE 1)( 1,1,1 +++ = , where K1 is a K-vector of ones. This condition guarantees that 

the benchmark portfolios are efficient for uninformed investors. The restriction on the 

conditional mean of the pricing kernel ensures correct pricing of the risk-free asset. 

4. Performance Evaluation of Passively and Actively Managed 
Portfolios 

4.1 Unconditional Framework 

When uninformed investors do not incorporate public information, the portfolio 

weights are fixed or constant. The gross return on such a portfolio is: 

1,11, ++ ′= ttp RwR , with 11 =′ Nw , 1R  is a N-vector of gross security returns, and N1  is a N-

vector of ones. We assume that the portfolio weights w are chosen one period before. The 

corresponding unconditional performance measure is: 

(16) 0)()( 1,1,11,11 =−== ++++++ tftp
u
ttp

u
t

u
t RRQErQEλ , where 1)( 1 =+

u
tQE  and 

0)( 1,1 =++ tb
u
t rQE . 

01)()( 1,1,1,1,111,1,11 =−′=−′=−= +++++++++ tfNtftft
u
ttftp

u
t

u
t RRwRRQEwRRQEλ  

),( 1,1 α++ ≡ tb
u
t rQQ  

It follows that the risk-adjusted return on the passive portfolio held by the uninformed 

investor is equal to the risk-free rate. 

The unconditional normalized pricing kernel (the PPWM) is able to price any 

asset or portfolio whose returns are attainable from all possible linear combinations of 
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the original N assets (fixed-weight trading strategies). It will not price correctly any 

returns outside this defined return space. 

The parameters of u
tQ 1+  are chosen such that 0)( 1,1 =++ tb

u
t rQE . If 1, +tbr  is of 

dimension K, then Ktb
u
t rQE 0)( 1,1 =++  and 1)( 1 =+

u
tQE . Informed investors, such as 

possibly some mutual fund managers, trade based on some private information or signals 

implying non-constant weights for their portfolios.8,9 The gross return on the actively 

managed portfolio is: 

1,11, )( ++ ′Ω= t
a
tta RwR , with 11)( =′Ω N

a
tw  

where pΩ  and aΩ  represent public and private information sets, respectively. 

The unconditional performance measure is given by: 

(17)  1,1,111,1,11,11 ))(()()( +++++++++ −′Ω=−== tft
u
t

a
ttfta

u
tta

u
t

u
t RRQwERRQErQEλ  

When informed investors optimally exploit their private information or signals, this 

measure is expected to be strictly positive. According to Chen and Knez (1996), this 

measure reflects the price of the information and the manager�s skills in using it. 

Conversely, inferior performance is related to the non-optimal use of the private 

information. 

4.2 Conditional Framework 

When uninformed investors use publicly known information in constructing their 

portfolios, the weights are a function of the information variables. The gross return is 

given by: 

1,11, )( ++ ′Ω= t
p
ttp RwR , with 11)( =′Ω N

p
tw , and a

t
p
t Ω⊂Ω  

The conditional SDF prices the portfolio such that: 

(18)   0)()( 1,1,11,11 =−== ++++++ tftp
c
tttp

c
tt

c
t RRQErQEλ  

1,1,111 ))(( ++++ −′Ω= tft
c
t

p
tt

c
t RRQwEλ

01)()()( 1,1,1,1,11 =−′Ω=−′Ω= +++++ tfNtf
p
ttft

c
tt

p
t RRwRRQEw  

                                                        
8 The information may either concern individual stocks and/or the overall market. 
9 There is no restriction on the weight function. It may be nonlinear including any option-like trading 
strategies (Merton, 1981; and Glosten and Jagannathan, 1994). 
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),,( 1,1 αp
ttb

c
t rQQ Ω≡ ++  

Consistent with the semi-strong form of the efficient market hypothesis, this neutral 

performance reflects the fact that the use of publicly known information will not produce 

any superior risk-adjusted returns. 

4.3 Model of Conditioning Information 

We define p
ttZ Ω∈ where tZ  is a L-vector of conditioning variables containing 

unity as its first element. These conditional expectations can be analyzed in two different 

ways. First, we can create general managed portfolios, and then examine the implications 

for the unconditional expectations as in Cochrane (1996). Second, as in Glosten and 

Jagannathan (1994), we can explicitly specify or approximate the conditional moments 

by incorporating the time-variation into the expected asset returns and volatilities.10 This 

latter approach has the disadvantage of being sensitive to any misspecification in the 

conditional moments. Also, it can lead to estimation problems given the increase in the 

number of parameters to be estimated compared to the number of available observations. 

Consequently, we focus on the first approach using different models of conditioning 

information to characterize the managed portfolios. 

Hansen and Singleton (1982) and Hansen and Richard (1987) propose including 

the conditioning information by scaling the original returns by the instruments.11 This 

simple multiplicative approach implies linear trading strategies.12 Moreover, it allows 

one to uncover an additional implication of the conditional SDF model that is not 

captured by the simple application of the law of iterated expectations. This approach does 

not require the specification of the conditional moments. Moreover, we can interpret 

these scaled returns as payoffs to managed portfolios or conditional assets. In effect, an 

                                                        
10 It can be semi- or non-parametric. 
11 Bekaert and Liu (1999) propose to integrate conditioning information into the conditional pricing kernel 
model by determining the optimal scaling factor or the functional form of the conditioning information. 
These authors argue that the multiplicative model is not necessarily optimal in terms of exploiting the 
conditioning information and in providing the greatest lower bound. However, at the empirical level, this 
approach has a notable limitation in that the optimal scaling factor depends on the first and second 
conditional moments of the distribution of asset returns leading to an increasing number of parameters to 
be estimated and different parameterization of the conditional asset pricing kernel. All of this leads to the 
need to estimate a complex system of equations. 
12 It has become a commonly used approach in the asset pricing literature. 
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investor whose trading strategy is based on the value of ltZ , where Ll ,...,1= , will put 

ltZ  dollars into the asset.13 The investor will receive 1+tlt RZ  dollars at the end of the 

period, and each period the investor�s portfolio is rebalanced according to the value of 

the instrument. Hence, the payoff space is expanded to NL dimensions to represent the 

number of trading strategies available to uninformed investors.14 

The conditional performance measure can be written as: 

(19)   01)( 1,1,111 =⊗−⊗= ++++ tNtftt
c
tt

c
t ZRZRQEλ  

(20)     tt
c
tt ZZQE =+ )( 1  

Assuming stationarity and applying the law of iterated expectations, we have: 

(21)    )1()]([ 1,1,11 tNtftt
c
t ZREZRQE ⊗=⊗ +++  

(22)     )()( 1 tt
c
t ZEZQE =+  

where ⊗ is the Kronecker product obtained by multiplying every asset return by every 

instrument. These two conditions ensure that the conditional mean of the pricing kernel is 

one, and that these managed portfolios are correctly priced. 

The conditional normalized pricing kernel is able to price any asset or portfolio 

whose returns are attainable from dynamic trading strategies of the original N assets (i.e., 

asset returns scaled with the instruments) with respect to the defined conditioning 

information set. The conditional normalized pricing kernel will not price correctly any 

returns outside this expanded return space. 

The conditional performance for the actively managed portfolio is given by: 

(23)    1,1,11,11 )()( ++++++ −== tfta
c
ttta

c
tt

c
t RRQErQEλ  

This conditional test determines whether the private information or signal contains useful 

information beyond that available publicly, and whether or not this information has been 

used profitably. 

                                                        
13 The expected (average) price of this trading strategy is equal to the expected (average) value of the 
chosen instrument. 
14 The intuition underlying the multiplicative approach is closely related to the evidence of returns 
predictability, where some prespecified variables predict asset returns. Such evidence potentially improves 
the risk-return tradeoffs available to uninformed investors (this is in comparison to the time-invariant risk-
return tradeoff). Bekaert and Hodrick (1992), Cochrane (1996), and Bekaert and Liu (1999) show that 
scaling the original returns by the appropriate instruments improves or sharpens the Hansen-Jagannathan 
lower bound on the pricing kernel when we account for conditioning information. 
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Furthermore, the unconditional evaluation of dynamic performance that is 

implied by the conditional normalized pricing kernel is obtained by the simple 

application of the law of iterated expectations on the conditional model as in Ferson and 

Schadt (1996) and Dahlquist and Soderlind (1999). The parametrization of the 

conditional normalized pricing kernel differs from the one associated with the 

conditional evaluation and is consistent with these two moment conditions: 

(24)     Ntft
c
t RRQE 1)( 1,1,11 +++ =  

(25)      1)( 1 =+
c
tQE  

),,( 1,1 αp
ttb

c
t rQQ Ω≡ ++  

5. Econometric Methodology and Construction of the Tests 

In this section we lay out the empirical framework for the estimation of the 

performance measures and for the tests of the different hypotheses and specifications 

using Hansen�s (1982) generalized method of moments (GMM).15 We also examine and 

discuss important issues associated with the estimation procedure and the optimal 

weighting matrix (distance matrix). 

5.1 The General Methodology 

To assess the performance of actively managed portfolios such as mutual funds, 

two methods are available and both rely on the GMM approach. The first or two-step 

method first estimates the appropriate normalized pricing kernel, and then measures the 

risk-adjusted fund performance by multiplying the gross fund return by the estimated 

pricing kernel and subtracting off the gross return on the risk-free asset. The performance 

estimates obtained in the second step do not account for the sampling errors resulting 

from the first-step estimation, and consequently are not fully efficient but are consistent 

(Chen and Knez, 1996). The second or one-step method jointly and simultaneously 

                                                        
15 This general and flexible technique has become the common approach to estimate and test asset pricing 
models that imply conditional moment restrictions, even in the presence of nonstandard distributional 
assumptions. It is an alternative to the maximum likelihood approach with no requirement to specify the 
law of motion of the underlying variables. Cochrane (2000) provides a comprehensive exposition of the 
relationship between the two techniques. 
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estimates the normalized pricing kernel parameters and the performance measures. The 

estimates so obtained are more efficient than those from the two-step method, but require 

more moment conditions especially when all the funds are included in the evaluation. 

Hence, the joint estimation is conducted herein for each individual fund and in a 

multivariate framework where all the cross-equation correlations are incorporated. By 

construction (using excess returns), this estimation accounts for the restriction on the 

mean of the normalized (un)conditional pricing kernels.16 Dahlquist and Soderlind 

(1999) and Farnsworth et al. (2002) note the importance of accounting for this restriction 

in order to obtain reliable estimates. 

5.2 The GMM General Framework 

We present and outline the general steps and expressions leading to the estimation 

of the performance measures under the GMM approach. Our focus is mainly related to 

the general case of conditional GMM estimation relevant for the conditional evaluation 

of dynamic trading-based portfolios. The unconditional GMM estimation is applied to 

both the unconditional evaluation of dynamic trading and the fixed-weight trading-based 

portfolios. It is trivially obtained as a special case from the general one. 

Let )( ′≡ γαθ  be the vector of unknown parameters to be estimated. Our model 

implies the following conditional moment restriction: 

(26)     Ntpttb
c

t rZrQE 0]),,([ 1,01, =++ θ  

such that 1)],,([ 01, =+ θttb
c

t ZrQE . 

Now define ),,,(),,( 1,1,1,1,1 θθ ttptbtpttb
cc

t ZrrurZrQu +++++ ≡=  as a N-vector of residuals or 

pricing errors, that depend on the set of unknown parameters, the excess returns on the 

benchmark portfolio(s), the conditioning variables, and the excess returns on passive 

trading strategy-based portfolios (eventually excess returns on individual assets). 

We assume that the dimension of the benchmark excess return is K, and that the 

dimension of the conditioning variables (including a constant) is L. Then, the dimension 

of the vector of unknown parameters is (KL+1). 
                                                        
16 The mean of the normalized pricing kernel is equal to one and the mean of the non normalized asset 
pricing kernel is equal to the inverse of the gross return on the risk-free asset. 
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We then have: 

(27)   Nttptbttptbt ZrruEZrruE 0)],,,([)],,,([ 01,1,01,1, == ++++ θθ  

Define tttptbt
c
tttptb ZZrruZuZrrh ⊗=⊗= +++++ ),,,(),,,( 1,1,11,1, θθ . Our conditional and 

unconditional (by using the law of iterated expectations) moment restrictions can be 

written as:17 

(28)   NLttptbttptbt ZrrhEZrrhE 0)],,,([)],,,([ 01,1,01,1, == ++++ θθ , and 

(29)  Lttttb
c

ttttb
c

t ZZZrQEZZZrQE 0]),,([]),,([ 01,01, =−=− ++ θθ  

The GMM estimation exploits these moment restrictions by setting their sample 

analogues equal to zero. This is feasible only when the number of linearly independent 

moment conditions is equal to the number of unknown parameters (i.e., the model is 

identified).18 If the number of moment conditions exceeds the number of unknown 

parameters (the model is overidentified), then the GMM estimation is performed by 

setting (KL+1) linear combinations of the NL moment conditions equal to zero. When an 

additional moment condition is considered,19 the number of moments increases to 

L(N+1) and the number of parameters remains unchanged. Similarly, when the 

estimation of the performance measures is completed in one step, the number of moment 

conditions (L(N+1)) and the number of unknown parameters (KL+2) is augmented. 

Define: 

(30)    )],,,([)( 1,1,0 θθ ttptb ZrrhEg ++=  

Since this does not depend on t, it implies that 0g has a zero at 0θθ = . By the law of 

large numbers (through the stationarity assumption), the sample mean of 

),,,( 1,1, θttptb Zrrh ++  converges to its population mean, or: 

)()( 0 θθ gg
p

T →  

                                                        
17 Some technical assumptions are required for the consistency (strict stationarity and ergodicity of the 
process underlying the observable variables) and for the identification of the model (h has a nonsingular 
population conditional (unconditional) covariance matrix and the conditional and unconditional 
expectations of the first derivatives of h have a full raw rank). See Hansen (1982) and Gallant and White 
(1988) for more details. 
18 In this case, we can use the traditional method of moments. 
19 Koenker and Machado (1999) derive restrictions on the growth rate of the number of moment conditions 
to ensure the validity of the conventional asymptotic inference for the GMM estimation. In effect, these 
restrictions affect the estimation of the optimal weighting matrix. 
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where: (31)   ∑
=

++=
T

t
ttptbT Zrrh

T
g

1
1,1, ),,,(1)( θθ  

For large values of T, the vector )(θTg  should be close to zero when evaluated at 

0θθ = . Following Hansen (1982), the GMM estimator of 0θ  is obtained by selecting Tθ�  

to minimize the sample quadratic form TJ  given by: 

(32)     )()()( θθθ TTTT gWgJ ′≡  

where TW  is a symmetrical and nonsingular positive semi-definite NL×NL weighting 

matrix, which may depend on the sample and converges in probability to a positive 

definite (nonrandom) limit W . The weighing matrix underlines the importance of each 

moment condition in the estimation. 

Hansen (1982) shows that under some regularity conditions, the GMM estimator 

Tθ�  is consistent and asymptotically normal for any fixed W .20 It has an asymptotic 

variance-covariance matrix that depends on the limiting weighting matrix. Furthermore, 

this estimator is asymptotically efficient in that it has the smallest variance-covariance 

matrix in the class of estimators that minimize the quadratic form for fixed W , when W  

is chosen to be a consistent estimate of the inverse of the variance-covariance matrix of 

the orthogonality conditions. 

The general asymptotic variance-covariance matrix of the estimator of 0θ  is 

given by: 

(33)   1
00000

1
00 ))(()()�(Cov −− ′′′= WDDWDWSDWDDTθ  

where: 

(34) 







⊗

′∂
∂

= ++
t

ttptb Z
Zrru

ED
θ

θ ),,,( 01,1,
0  represents the expectation of the )1( +× KLNL  

matrix of first-derivatives. 0S  is the asymptotic variance-covariance matrix of )( 0θTg  

which is defined as: (35) ∑
+∞

−∞=
−+−+−++ ′=

j
jtjtpjtbttptb ZrrhZrrhES ]),,,(),,,([ 01,1,01,1,0 θθ . 

When the model is overidentified, (NL>KL+1), (KL+1) restrictions are used in the 

estimation, and the remaining �free� restrictions ((N-K)L-1) are used to assess and test 
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the goodness of fit of the model (i.e., as a test of the overidentifying restrictions). Let 

)�( TTJ θ  be the minimized value of the sample quadratic form.21 When the optimal 

weighting matrix (inverse of the variance-covariance matrix of the orthogonality 

conditions) is used, )�( TTJT θ  has an asymptotic standard central chi-square distribution 

with ((N-K)L-1) degrees of freedom equal to the number of orthogonality conditions 

minus the number of parameters to be estimated. This is the well-known Hansen TJ -

statistic. This estimation can handle the assumption that the vector of disturbances 

exhibits non-normality, conditional heteroskedasticity, and/or serial correlation even with 

unknown form. 

5.3 The Estimation Procedure and the Optimal Weighting Matrix 

The estimates of the portfolio performance measure are obtained from 

minimizing the GMM criterion function constructed from a set of moment conditions. 

This requires a consistent estimate of the weighting matrix that is a general function of 

the true parameters (at least in the efficient case). The dominant approach in the literature 

is the iterative procedure22 suggested by Ferson and Foerster (1994). 

Hansen (1982) proves that the GMM estimator is asymptotically efficient when 

the weighting matrix is chosen to be the inverse of the variance-covariance matrix of the 

moment conditions.23 Specifically: 

(36)      1
0

* −= SW  

where 0S  is the positive definite spectral density at frequency zero or long run variance-

covariance matrix of ),,,( 01,1, θttptb Zrrh ++ . 

                                                                                                                                                                     
20 Also, see Gallant and White (1988) for the general theory of these estimators. 
21 Jagannathan and Wang (1996) show that T times the minimized GMM criterion function is 
asymptotically distributed as a weighted sum of central chi-squared random variables. 
22 It consists of updating the weighting matrix based on a previous step estimation of the parameters, and 
then updating the estimator. This is repeated until convergence for a prespecified criterion and for a large 
number of steps. Ferson and Foerster (1994) and Cochrane (1996) find that this iterative approach has 
better small sample properties than the two-step procedure, and is robust to small variations in the model 
specifications. 
23 The choice of the weighting matrix only affects the efficiency of the GMM estimator. Newey (1993) 
shows that the estimator�s consistency only depends on the correct specification of the residuals and the 
information or conditioning variables. 



 17

In this case, the asymptotic variance-covariance matrix of the estimator is given 

by: 

(37)     1
0

1
00 )()�(Cov −−′= DSDTθ  

This variance-covariance matrix is unknown and should be replaced by a consistent 

sample estimate. The consistent sample estimate of the variance-covariance matrix is a 

function of consistent sample estimates of 0D  and 0S  that are given by TD�  and TS� , 

respectively. 

A consistent sample estimate of 0D  is obtained by replacing the expectation 

operator with the sample average operator, and replacing 0θ  with Tθ� to get: 

(38)    ∑
=

++ ⊗
′∂

∂
=

T

t
t

Tttptb
T Z

Zrru
T

D
1

1,1, )�,,,(1�
θ

θ
 

A robust and consistent sample estimate of 0S  is obtained by using an estimator of the 

spectral density at zero frequency to )�,,,( 1,1, Tttptb Zrrh θ++ . This GMM efficient 

estimation of portfolio performance measures is the most frequently used approach, and 

is used in Chen and Knez (1996), Kryzanowski et al. (1997), Dahlquist and Soderlind 

(1999), and Farnsworth et al. (2002). 

To estimate the optimal weighing matrix and to calculate the asymptotic standard 

errors for the GMM estimates, a consistent estimate of the empirical variance-covariance 

matrix of the moments is required. This variance-covariance matrix is defined as the 

zero-frequency spectral density of the pricing errors vector ),,,( 01,1, θttptb Zrrh ++ . From 

this perspective, a consistent estimate of this spectral density is used to construct a 

heteroskedastic and autocorrelation consistent (HAC) or robust variance-covariance 

matrix in the presence of heteroskedasticity and autocorrelation of unknown forms.24 

Newey and West (1987a) propose the (modified) Bartlett kernel to construct a 

robust estimator for the variance-covariance matrix.25 Chen and Knez (1996), 

Kryzanowski et al. (1997), Dahlquist and Soderlind (1999), and Farnsworth et al. (2002) 

                                                        
24 Priestly (1981) provides an overview discussion of the estimation of spectral density functions. 
25 The higher-order sample autocovariances are downweighted (linear declining weights), and those with 
order exceeding a certain parameter inclusively receive zero weight. 
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construct robust t-statistics using this method in their estimation of the performance 

measures. 

6. Sample and Data 

6.1 Mutual Fund Returns 

The sample of mutual funds is drawn from the Financial Post mutual fund 

database. The sample consists of 95 Canadian equity funds that have no more than 5% of 

their values missing over the period from November 30, 1989, through December 31, 

1999. The 122 monthly returns for each fund are calculated using the monthly changes in 

the net asset value per share, and are adjusted for capital gains and dividend payments. 

Since the sample only includes surviving funds, a survivorship bias in favor of better 

performance exists in the results obtained below. Estimates of this survivorship bias will 

be assessed in future research. 

A preliminary process (screening rules) to select the sample of funds is conducted 

to achieve consistency with the construction of the stochastic discount factor. In effect, 

the restrictions on the fund type are closely related to the type of securities (and 

essentially the benchmark variables) used to estimate the SDF. 

As in most previous studies (Chen and Knez, 1996; Ferson and Schadt, 1996; 

Kryzanowski et al., 1997; and Farnsworth et al., 2002), we use only equity funds for the 

tests of abnormal performance. In effect, we cannot price or evaluate the performance of 

other types of funds with an equity based-asset pricing kernel. 

Table 1 presents some summary statistics on these funds. Panel A gives statistics 

on the cross-sectional distribution of the 95 mutual funds. The average annual fund 

returns vary from �3.08% (Cambridge Growth of Sagit Investment Management) to 

18.03% (AIC Advantage of AIC Limited) with a mean of 9.86%. The fund annual 

volatilities or standard deviations range from 6.00% (Canadian Protected of Guardian 

Timing Services) to 31.05% (Cambridge Special Equity of Sagit Investment 

Management). Over the same sample, the average annual TSE 300 index return is 

11.17% and market volatility is 14.53%. 
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[Please insert table 1 about here.] 

In panel B of table 1, portfolios of funds grouped by investment objectives are 

obtained from equally weighted portfolios using the 95 funds in the sample. The funds 

fall into six investment objective categories: aggressive growth (27 funds), growth (50 

funds), growth and income (12 funds), income (3 funds), balanced (1 fund), and specialty 

(2 funds). The highest mean return is found in the group of aggressive growth funds and 

the lowest mean return is found within the group of growth and income funds (if we 

exclude the one balanced fund). As expected, aggressive growth (specialty) funds have 

the highest (lowest) unconditional volatility of 13.39% (11.02%). The first-order 

autocorrelations of the fund returns are greater than 0.1 for 30 of the 95 funds. 

6.2 Information Variables 

A set of six instrumental variables is selected based on evidence of their 

predictive power in studies of stock return predictability. All the data series are drawn 

from Statistics Canada�s CANSIM database. We consider the lagged values of the 

following variables: 

(i) DY is the dividend yield of the TSE 300 index (Fama and French, 1988, Ferson and 

Schadt, 1996, Kryzanowski et al., 1997, Christopherson et al., 1997, and Farnsworth et 

al., 2001). 

(ii) TB1 and TB3 are respectively the Canadian one-month and three-month T-Bill rates 

(Fama and Schwert, 1977; and Ferson and Korajczyk, 1995). 

(iii) RISK is the risk premium as measured by the yield spread between the long-term 

corporate (McLeod, Young, Weir bond index) and long-term government of Canada 

bonds (Chen, Roll, and Ross, 1986; Kryzanowski and Zhang, 1992; and Kryzanowski 

and Koutoulas, 1996). 

(iv) TERM is the slope of the term structure as measured by the yield spread between 

long-tem government of Canada bonds and the one period lagged three-month Treasury 

bill rate (Ferson and Harvey, 1991; and Chen and Knez, 1996). 

(v) TSEX-EW, TSEX-VW and TSE300X are the equally-weighted, value-weighted, and 

the TSE 300 index excess returns respectively (Harvey, 1989). 
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(vi) DUMJ is a dummy variable for the month of January (Ferson and Schadt, 1996; 

Kryzanowski et al., 1997; and Farnsworth et al., 2002). 

Descriptive statistics and autocorrelations, and a correlation analysis of these 

variables are provided in panels A and B of table 2, respectively. The correlations 

between all the instruments range from �0.82 to 0.84. 

[Please insert table 2 about here.] 

In the empirical estimation of the performance measures, we restrict the use of the 

information variables to one or two (DY and/or TB1). These two variables account for 

most of the time variation in mutual fund excess returns as explained in the next section. 

6.3 Predictability of Mutual Fund Excess Returns 

In order to motivate the implementation of the conditional methodology, we 

conduct a predictability analysis of two groups of portfolios of mutual fund (excess) 

returns. The first group includes six equally-weighted portfolios of funds constructed 

using individual fund returns within each investment objective. The second group is 

composed of six size-weighted portfolios of funds constructed using the individual fund 

returns and the corresponding total net asset values within each investment objective. 

Time-series regressions of these portfolios of funds excess (of one-month Treasury bill 

rate) returns on a set of five instruments (the lagged values of the dividend yield, the risk 

premium, the slope of the term structure, the one-month Treasury bill rate, and the 

dummy variable for the month of January) are performed. The predictive power of the 

instruments is assessed using the Wald test proposed by Newey and West (1987b). 

The results reported in table 3 indicate significant levels of predictability for the 

equally-weighted and size-weighted portfolios of funds excess returns. The null 

hypothesis that all the slope coefficients associated with the selected instruments are 

zeros, is largely rejected. The evidence of high predictability in the stocks composing the 

funds in the portfolios may explain these patterns. These figures are higher than the ones 

obtained with the portfolios of funds returns and with the passive portfolio excess returns 

(results not reported). Furthermore, the coefficients associated with the dividend yield on 

the TSE 300 index and the yield on the one-month Treasury bill are significant for most 
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of the portfolios (results not reported). These findings provide strong support for 

undertaking a conditional performance analysis where the use of the conditional asset 

pricing kernel eliminates the predictability (based on the set of predetermined 

information variables) in the mutual fund excess returns. 

[Please insert table 3 about here.] 

6.4 Passive Strategies 

Passive or basis (reference) assets must reflect the investment opportunities set of 

investors and portfolio managers. In the empirical implementation of the performance 

measures, the type and the number of assets to be considered are important issues. In 

effect, assets included must be consistent with the type of funds (essentially equity) under 

consideration. We construct ten size-based portfolios representing passive buy and hold 

strategies (stock market). All the stocks on the TSE/Western monthly database are 

considered. In a first step, we compute the market value of each stock by multiplying the 

December-end price by the number of shares outstanding. The stocks are ranked on the 

basis of their market values at the end of the previous year. Ten decile portfolios are then 

formed each year with an approximately equal number of securities in each portfolio. 

The securities with the smallest capitalization are placed in portfolio one (see 

Kryzanowski et al. (1997) for a similar construction). 

Panels A and B in table 4 provide descriptive statistics and autocorrelations and 

the correlation matrix for these ten portfolios, respectively. The annualized average 

returns on the size portfolios range from 1.27% (sixth portfolio) to 58.58% (first 

portfolio). All the series indicate a low degree of persistence where all the first-order 

autocorrelations are less than 0.236. 

[Please insert table 4 about here.] 
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6.5 Benchmark Assets 

Three proxies of the benchmark asset are retained; namely, the TSE 300, TSE 

equally-weighted, and TSE value-weighted indices. This permits us to test the sensitivity 

of the performance statistics with respect to the selected benchmarks. 

6.6 Optimal Risky Asset Allocation Specifications 

In a conditional setting, the optimal risky asset allocation (the uninformed 

investor portfolio�s policy) is a function of the conditional moments of asset returns. 

With the assumption that these conditional moments are linear in the state variables that 

predict the stock returns, a linear structure is retained (Aït-Sahalia and Brandt, 2001). 

Hence two linear specifications are adopted and integrated into the construction of the 

performance measures; namely: 26 

(39)     αα tt Z ′=  

where α  is a vector of unknown parameters, and tZ  is a vector of instruments (including 

a constant) with a dimension equal to two or three depending on the retained variables 

(DY only or DY and TB1). When unconditional evaluation is conducted, the uninformed 

investor�s portfolio policy is a constant. 

7. Empirical Results on Performance 

We use the (un)conditional pricing kernel models to assess the risk-adjusted 

performance of the 95 equity funds under consideration. In particular, we determine the 

average and the median performance of all funds, its sign and significance, its total and 

per group of funds variability, and its sensitivity to the procedure for forming portfolios 

of funds and to the selected benchmark portfolio. We place emphasis on the use of two 

portfolio formation procedures: an equally weighted and a size or value-weighted 

structure. Size is defined as the total net asset value of the fund. 

We examine the performance of two groups of portfolios of funds. The first group 

includes six equally-weighted portfolios of funds constructed using individual fund 

                                                        
26 Aït-Sahalia and Brandt (2001) use a single linear index to characterize the relationship between the 
portfolio weight and the state variables.                                                                                                                                                 
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returns within each investment objective. The second group is composed of six size-

weighted portfolios of funds constructed using the individual fund returns and the 

corresponding total net asset values within each investment objective. 

Finally, we address the issue of the sensitivity of the performance metrics to 

changes in the level of relative risk aversion of the uninformed investor. 

7.1 Implementation and Estimation Issues 

The (un)conditional estimation of the asset pricing kernel parameters and 

performance measures is conducted simultaneously. This one-step method is superior 

and more efficient that the two-step method, although Farnsworth et al. (2002) 

demonstrate that both approaches yield the same numerical results. Considering the 

limited number of observations, the joint estimation uses subgroups of individual funds 

(one to eight) in addition to the ten size-based passive strategies. This has the advantage 

of controlling for the number of moment conditions in order to minimize computational 

problems. 

7.2 Unconditional Performance Evaluation 

Table 5 reports the performance results for the twelve equally weighted and size-

weighted portfolios of mutual funds using the three benchmark variables. Panel A shows 

that all equally-weighted portfolios (except the income, balanced, and the specialty ones) 

have consistently positive and significant abnormal performance. The average lambda is 

0.0762% per month, and the growth/income funds contribute the most with a highly 

significant lambda of 0.2591% using the value-weighted TSE index as a benchmark. The 

performance of the balanced and specialty portfolios is negative but not significant 

(except when using the equally-weighted TSE index as a benchmark). The same analyses 

conducted on the six size-weighted portfolios of funds (panel B) produces comparable 

and more significant results. The lambdas of the aggressive growth (27 funds) and 

growth (50 funds) portfolios are highly significant and are 0.2463% and 0.2626%, 

respectively. The overall average lambda is 0.1282% per month. An equally-weighted 

formation of portfolios of funds appears to underestimate unconditional performance. 

[Please insert table 5 about here.] 
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The performance of individual funds is summarized in table 6 (panels A and B) 

for the two portfolio performance formation procedures. The results indicate that the 

equally-weighted portfolios of performances based on the value-weighted TSE index as a 

benchmark have a positive mean and median lambda (0.1931% and 0.1778%, 

respectively) with an average p-value of 27.55%. In addition, the aggressive growth, 

growth, growth/income, and income portfolios exhibit positive but not significant 

abnormal performance. The aggregate significance levels must be interpreted with care 

since they are averages of individual levels. Moreover, the lambdas are symmetrically 

distributed with fat tails. 

These results differ from those reported for U.S. funds (Chen and Knez, 1996; 

Ferson and Schadt, 1996; and Farnsworth et al., 2002), and are consistent with the 

evidence in Kryzanowski et al. (1997) where the unconditional average Jensen alpha is 

positive but not significant over the period 1981-1988 and for all fund groups. 

When the individual fund performances are weighted by the total net asset value 

of the fund, the average lambda increases and becomes less insignificant (0.2224% at the 

level of 22.46%) using the value-weighted TSE index. This performance improvement is 

obtained for the aggressive growth, growth, income, and specialty portfolios. These 

observations are confirmed when the two other benchmarks are used. 

[Please insert table 6 about here.] 

To better understand the sources of this positive average performance, we 

examine the distribution of the p-values for all funds and per fund group (all based on 

heteroskedasticity and autocorrelation consistent t-statistics) for the three benchmarks. 

Based on table 7, almost 43% of the funds have p-values less than 5%, and only three 

funds exhibit significant negative performance using the value-weighted TSE index as 

the benchmark. There is a predominance of funds with good performance across all fund 

groups except for the sole balanced fund that has a negative but non-significant lambda. 

These figures increase using the equally-weighted TSE index as the benchmark. Six 

funds have negative and significant lambdas, and 43 funds have positive and significant 

lambdas. These differences are essentially caused by the performance of some 

growth/income funds. Moreover, the p-values based on the Bonferroni inequality indicate 
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that the positive extreme t-statistics are significant for all funds and across all fund 

groups with the exception of the balanced fund.27 This rejects the joint hypothesis of zero 

lambdas. However, the conservative p-value corresponding to the minimum t-statistic for 

all funds, using the TSE 300 and the value-weighted TSE indices, are 0.577 and 0.458, 

respectively. 

[Please insert table 7 about here.] 

Overall, this positive significant unconditional performance may reflect the 

presence of private and/or public information correlated with future returns. A 

conditional performance evaluation controlling for the effects of public information is 

necessary to better assess the performance of fund managers. 

7.3 Conditional Performance Evaluation 

The conditional model is estimated under two specifications for the conditioning 

structure. First, we consider only the dividend yield on the TSE 300 index in the 

construction of the conditional performance measures. Second, the information set 

consists of the dividend yield and the yield on the one-month T-bill. This approach is 

useful for examining the sensitivity of the performance measures to the conditional 

specification. Moreover, we provide Wald tests (Newey and West, 1987b) on the 

coefficients of the time-varying alpha in order to assess the validity of the conditional 

approach. 

7.3.1. Conditioning with the Dividend Yield Only 

When the conditional asset pricing kernel model is used with one instrumental 

variable (the dividend yield), the average performance of 0.0710% weakens but remains 

positive and significant for the equally-weighted portfolios of mutual funds for the value-

weighted TSE index if we exclude the balanced and the specialty portfolios (see panel A 

in table 8). This is explained by the significant decrease in the performance of the 

growth, growth/income and income portfolios. In contrast, the performance of the 

                                                        
27 It uses the maximum or the minimum one-tailed p-value from the t-statistic distribution for all funds and 
fund groups multiplied by the corresponding number of funds. 
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aggressive growth portfolio increases and becomes more significant (0.2715%). The 

unique balanced (Industrial Pension of Mackenzie Financial Corporation) maintains its 

negative and non-significant lambda (-0.0127%). This result is robust to the use of the 

second benchmark. The performance analyses using the size-weighted portfolios of funds 

reveal a clear deterioration of the average performance (0.0465%) (see panel B). This is 

explained by the low performance of the aggressive growth portfolio, and the 

surprisingly negative lambda of the growth/income portfolio. Overall, the conditional 

model has more impact on the size-weighted portfolios than on the equally-weighted 

portfolios. 

[Please insert table 8 about here.] 

The previous conclusions are corroborated by examining the performance of 

individual funds. Based on table 9, the average fund performance is negatively affected 

using the conditional model. In addition, the distribution of the lambdas becomes less 

symmetric and with less observations in the tails. These results differ from the empirical 

evidence for U.S. funds reported in Chen and Knez (1996) and Ferson and Schadt (1996) 

that the inclusion of public information positively impacts the performance statistics. The 

changes in the point estimates of performance from the unconditional to conditional 

frameworks reported herein are parallel to the ones observed in Bansal and Harvey 

(1996) and Kryzanowski et al. (1997). 

[Please insert table 9 about here.] 

The most notable source of the deteriorating conditional lambdas is the poor 

performance of the individual growth and growth/income funds. Overall 42 (15) funds 

have negative (significantly negative) lambdas using the value-weighted TSE index as a 

benchmark. The number of funds with positive and significant performance decreases 

from 42 to 38. Moreover, all the Bonferroni p-values, corresponding to the extreme t-

statistics (maximum and minimum) reject the null hypothesis of joint zero lambdas (see 

table 10, panels A and B). 

[Please insert table 10 about here.] 
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7.3.2. Conditioning with the Dividend Yield and Yield on the One-Month T-Bill 

The information set now is extended to two instrumental variables by adding the 

yield on the one-month T-bill to the set with the dividend yield. Based on the results 

reported in table 11 (panels A and B), the performance values become negative but non 

significant, except for the income and specialty portfolios  where the lambda is negative 

and significant, and for the aggressive growth group which exhibits decreased positive 

performance. The average lambda for the equally-weighted portfolios of funds is �

0.1159% using the value-weighted TSE index as a benchmark. Moreover, the Wald tests 

based on the methodology of Newey and West (1987b) validate the conditional 

approach. The Wald statistics reject the null hypothesis of no time variation in the 

optimal allocation of risky assets for all portfolios. These figures are verified using the 

size-weighted portfolios of funds, where the average size-weighted lambda is �0.1312%. 

[Please insert table 11 about here.] 

Based on panels A and B of table 12, the performance of the individual funds and 

portfolios of performances support the previous conclusions obtained from the portfolios 

of funds. The distribution of the conditional lambdas is now asymmetric with less 

extreme observations compared to the unconditional and one instrument based 

conditional lambdas. 

[Please insert table 12 about here.] 

Based on table 13 (panels A and B), the number of funds with significant 

negative lambdas increases to 36. This compares to 3 and 15 funds using the 

unconditional and one instrument based conditional estimations. The number of 

significant positive lambdas decreases to 16. This is less than half of the number (38) 

obtained with the unconditional asset pricing kernel model. These figures are caused by 

the negative performance of aggressive growth, growth, and growth/income funds. 

Moreover, the Bonferroni test is significant for all fund groups except for the maximum 

t-statistic associated with the income group (3 funds). This rejects the joint null 

hypothesis of zero conditional lambdas. 

[Please insert table 13 about here.] 
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The overall results indicate that when public information, such as the dividend 

yield and the yield on one-month T-bills, are integrated into the construction of the asset 

pricing kernel and the performance measures, it becomes more difficult for the fund 

managers to realize excess returns. This leads to poorer fund performance. This partially 

confirms the theoretical conclusions of Chen and Knez (1996) who advocate that the 

performance results can change in either direction in the presence of conditioning 

information, due to an infinity of admissible (un)conditional stochastic discount factors. 

7.4 Performance and Relative Risk Aversion 

We also test the sensitivity of the performance measures to changes in the level of 

the relative risk aversion of the uninformed investor using the twelve equally-weighted 

and value-weighted portfolios of funds under the (un)conditional specifications. We seek 

an answer to the question, how is the ability of fund managers to realize excess returns 

related to the changes in the risk preferences of uninformed investors? These preferences 

are important since they affect the construction of the benchmark model and are expected 

to impact performance. To this end, we estimate the unconditional and the two 

conditional measures for various levels of the relative risk aversion coefficient, and we 

examine potential patterns or associations between the two variables. 

The results for the unconditional tests are reported in table 14. They suggest that 

the performance metrics are decreasing in the coefficient of relative risk aversion. The 

average performance for the equally-weighted portfolios of funds (panel A) is 0.088% 

with gamma equal to 3, 0.087% with gamma equal to 4, 0.085% with gamma equal to 5, 

and 0.083% with gamma equal to 7 when the TSE 300 index is used as the benchmark. 

However, this negative association is reversed for the two main portfolios, the aggressive 

growth and the growth portfolios using the equally weighted and the value weighted TSE 

indices. These patterns persist using the size-weighted portfolios of mutual funds (panel 

B). Overall, we may conclude that unconditional performance is sensitive to changes in 

the level of relative risk aversion, and this association depends on the selected 

benchmark. This could be explained by the correlation between the use of public and/or 

private information and the changes in the risk attitudes of the uninformed investor. 

[Please insert table 14 about here.] 
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The results based on the conditional model with one instrumental variable (the 

dividend yield on the TSE 300 index) are presented in table 15 (panels A and B). They 

show, on average, a weak positive link between lambda and gamma. This is especially 

the case for the size-weighted growth portfolio. Its performance improves from 0.108% 

when gamma is equal to 3, to 0.116% when gamma is equal to 7, when the value-

weighted TSE index is used as the benchmark. The only major exceptions are the 

equally-weighted and size-weighted aggressive growth portfolios. Their performances 

deteriorate, as the uninformed investor becomes more risk averse. It seems that a 

conditional framework with one instrumental variable impacts the nature of the 

relationship between fund performance and relative risk aversion, and has little effect on 

the aggressive growth style managers. 

[Please insert table 15 about here.] 

To test the robustness of this last conclusion, we use the extended conditional 

model with two instrumental variables. The results reported in table 16 are consistent for 

the aggressive growth portfolios showing a negative association. In contrast, the 

performance of the growth portfolios indicate weak sensitivity to changes in gamma. 

These two empirical observations suggest that there is a weak negative average link 

between conditional performance and relative risk aversion. 

[Please insert table 16 about here.] 

It is difficult to make unambiguous statements about the direction of the 

sensitivity of performance to changes in the relative risk aversion of the uninformed 

investor based on the results for all these models. However, the risk-adjusted 

performance of aggressive growth oriented managers is negatively related to changes in 

the risk preferences of uninformed investors. 

8. Conclusion 

In this paper we use the general asset-pricing framework (SDF representation) to 

derive a conditional asset-pricing kernel that is relevant for evaluating the performance of 

actively managed portfolios. Our approach takes into consideration the predictability of 



 30

asset returns and accounts for conditioning information. Hence, three performance 

measures are constructed and are related respectively to the unconditional evaluation of 

fixed-weight strategies, unconditional evaluation of dynamic strategies, and conditional 

evaluation of dynamic strategies. 

We develop the appropriate empirical framework to estimate and implement the 

proposed performance measures and their associated tests by using the GMM method. 

We assess the risk-adjusted performance of a sample of 95 Canadian equity mutual funds 

by applying the developed models. The results indicate that there is evidence of abnormal 

unconditional performance, and that on average the conditional performance is negative.  

Significant negative performance is found for the growth, growth/income, income, and 

specialty portfolios. The aggressive growth and the balanced portfolios exhibit positive 

but non-significant lambdas. 

The tests of the sensitivity of the performance measures to changes in the relative 

risk aversion of the uninformed investor reveal a weak link between the two variables. 

Aggressive growth managers are exceptions, and their risk-adjusted performance 

deteriorates, as the uninformed investor becomes more risk averse. 

Our approach may be extended and improved in two ways. The first way is to 

examine potential relationships between the performance measures and some business 

cycle indicators or variables. This may differentiate and improve the active portfolio 

management process during periods of expansions and recessions. Second, at an 

econometric level, the (unfeasible) full efficient conditional GMM estimation, which is 

based on general interactions between functions of conditioning variables and pricing 

errors, can be conducted (feasible) using nonparametric estimates for the optimal set of 

instruments as suggested in Newey (1993). 



 31

References 

Admati, A. R., and S. A. Ross, 1985, �Measuring Investment Performance in a Rational 
Expectations Equilibrium Model�, Journal of Business, 58, 1-26. 
 
Aït-Sahalia, Y., and M. W. Brandt, 2001, �Variable Selection and Portfolio Choice�, 
Journal of Finance, 56, 1297-1351. 
 
Bansal, R., and C. R. Harvey 1996, �Performance Evaluation in the Presence of Dynamic 
Trading Strategies�, Working Paper, Duke University. 
 
Barberis, N. C., 2000, �Investing for the Long Run when Returns are Predictable�, 
Journal of Finance, 55, 225-264. 
 
Bekeart, G., and R. J. Hodrick, 1992, �Characterizing Predictable Components in Excess 
Returns on Equity and Foreign Exchange Markets�, Journal of Finance, 47, 467-509. 
 
Bekeart, G., and J. Lui, 1999, �Conditioning Information and Variance Bounds on 
Pricing Kernels�, Working Paper (6880), NBER. 
 
Brandt, M. W., 1999, �Estimating Portfolio and Consumption Choice: A Conditional 
Euler Equations Approach�, Journal of Finance, 54, 1609-1645. 
 
Breeden, D., 1979, �An Intertemporal Asset Pricing Model with Stochastic Consumption 
and Investment Opportunities�, Journal of Financial Economics, 7, 265-296. 
 
Brennan, M. J., E. S. Schwartz, and R. Lagnado, 1997, �Strategic Asset Allocation�, 
Journal of Economic Dynamics and Control, 21, 1377-1403. 
 
Campbell, J. Y., and J. H. Cochrane, 2000, �Explaining the Poor Performance of 
Consumption-based Asset Pricing Models�, Journal of Finance, 55, 2863-2878. 
 
Campbell, J. Y., and L. M. Viceira, 1999, �Consumption and Portfolio Decisions when 
Expected Returns are Time-Varying�, Quarterly Journal of Economics, 114, 433-495. 
 
Chen, N. F., R. Roll, and S. A. Ross, 1986, �Economic Forces and the Stock Market�, 
Journal of Business, 59, 383-403. 
 
Chen, Z., and P. J. Knez, 1996, �Portfolio Measurement: Theory and Applications�, 
Review of Financial Studies, 9, 511-555. 
 
Christopherson, J. A., W. E. Ferson, and D. A. Glassman, 1997, �Conditioning Manager 
Alphas on Economic Information: Another Look at the Persistence of Performance�, 
Review of Financial Studies, 11, 111-142. 
 



 32

Cochrane, J. H., 1996, �A Cross-Sectional Test of an Investment-Based Asset Pricing 
Model�, Journal of Political Economy, 104, 572-621. 
 
Cochrane, J. H., 2000, �A Resurrection of the Stochastic Discount Factor/GMM 
Methodology�, Working Paper, University of Chicago. 
 
Cumby, R. E., and J. D. Glen, 1990, �Evaluating the Performance of International 
Mutual Funds�, Journal of Finance, 45, 497-521. 
 
Dahlquist, M., and P. Soderlind, 1999, �Evaluating Portfolio Performance with 
Stochastic Discount Factors�, Journal of Business, 72, 347-384. 
 
Dybvig, P. H., and S. A. Ross, 1985, �Performance Measurement using Differential 
Information and a Security Market Line�, Journal of Finance, 40, 483-496. 
 
Fama, E. F., and K. R. French, 1988, �Dividend Yields and Expected Stock Returns�, 
Journal of Financial Economics, 22, 3-25. 
 
Fama, E. F., and K. R. French, 1989, �Business Conditions and Expected Stock 
Returns�, Journal of Financial Economics, 25, 23-50. 
 
Fama, E. F., and K. R. French, 1993, �Common Risk Factors in the Returns on Stocks 
and Bonds�, Journal of Financial Economics, 33, 3-56. 
 
Farnsworth, H., W. E. Ferson, D. Jackson and S. Todd, 2002, �Performance Evaluation 
with Stochastic Discount Factors�, Journal of Business, 75, Forthcoming. 
 
Ferson, W. E., and S. R. Foerster, 1994, �Small Sample Properties of the GMM in Tests 
of Conditional Asset Pricing Models�, Journal of Financial Economics, 36, 29-55. 
 
Ferson, W. E., and C. R. Harvey, 1991, �The Variation of Economic Risk Premia�, 
Journal of Political Economy, 99, 385-415. 
 
Ferson, W. E., and R. A. Korajczyk, 1995, �Do Arbitrage Pricing Models Explain the 
Predictability of Stock Returns�, Journal of Business, 68, 309-350. 
 
Ferson, W. E., and R. Schadt, 1996, �Measuring Fund Strategy and Performance in 
Changing Economic Conditions�, Journal of Finance, 51, 425-461. 
 
Ferson, W. E., and A. F. Siegel, 2001, �The Efficient Use of Conditioning Information in 
Portfolios�, Journal of Finance, 56, 967-982. 
 
Gallant, A. R., and H. White, 1988, A Unified Theory of Estimation and Inference for 
Nonlinear Dynamic Models, Basil Blackwell, NY. 
 



 33

Glosten, L., and R. Jagannathan, 1994, �A Contingent Claims Approach to Performance 
Evaluation�, Journal of Empirical Finance, 1, 133-166. 
 
Goldbaum, D., 1999, �A Nonparametric Examination of Market Information: 
Application to Technical Trading Rules�, Journal of Empirical Finance, 6, 59-85. 
 
Grinblatt, M., and S. Titman, 1989, �Portfolio Performance Evaluation: Old Issues and 
New Insights�, Review of Financial Studies, 2, 393-422. 
 
Grinblatt, M., and S. Titman, 1994, �A Study of Monthly Mutual Funds Returns and 
Performance Evaluation Techniques�, Journal of Financial and Quantitative Analysis, 
29, 419-444. 
 
Hansen, L. P., 1982, �Large Sample Properties of Generalized Method of Moments 
Estimators�, Econometrica, 50, 1029-1054. 
 
Hansen, L. P., and S. F. Richard, 1987, �The Role of Conditioning Information in 
Deducing Testable Restrictions Implied by Dynamic Asset Pricing Models�, 
Econometrica, 55, 587-613. 
 
Hansen, L. P., and K. J. Singleton, 1982, �Generalized Instrumental Variable Estimation 
of Nonlinear Rational Expectations Models�, Econometrica, 50, 1269-1286. 
 
Harrison, M., and D. Kreps, 1979, �Martingales and Arbitrage in Multiperiod Security 
Markets�, Journal of Economic Theory, 20, 381-408. 
 
He, J., L. Ng, and C. Zhang, 1999, �Asset Pricing Specification Errors and Performance 
Evaluation�, European Finance Review, 3, 205-232. 
 
Ingersoll, J. E., 1987, Theory of Financial Decision Making, Rowman & Littlefield, 
Maryland. 
 
Jagannathan, R., and Z. Wang, 1996, �The Conditional CAPM and the Cross-Section of 
Expected Returns�, Journal of Finance, 51, 3-35. 
 
Jagannathan, R., and Z. Wang, 2000, �Efficiency of the Stochastic Discount Factor 
Method for Estimating Risk Premiums�, Working Paper, Columbia University. 
 
Kan, R., and C. Zhang, 1999, �GMM Tests of Stochastic Discount Factor Models with 
Useless Factors�, Journal of Financial Economic, 54, 103-127. 
 
Kan, R., and G. Zhou, 1999, �A Critique of the Stochastic Discount Factor 
Methodology�, Journal of Finance, 54, 1221-1248. 
 
Kandel, S., and R. F. Stambaugh, 1996, �On the Predictability of Stock Returns: An 
Asset Allocation Perspective�, Journal of Finance, 51, 385-424. 



 34

Koenker, R., and J. A. F. Machado, 1999, �GMM Inference when the Number of 
Moment Conditions is Large�, Journal of Econometrics, 43, 327-344. 
 
Koutoulas G., and L. Kryzanowski, 1996, �Macrofactor Conditional Volatilities, Time-
Varying Risk Premia and Stock Return Behavior�, Financial Review, 31, 169-195. 
 
Kryzanowski, L., and S. Lalancette, 1996, �Conditional Performance Evaluation of 
Portfolios with Linear and Nonlinear Payoffs�, Working Paper, Concordia University. 
 
Kryzanowski, L., S. Lalancette, and M. C. To, 1997, �Performance Attribution using an 
APT with Prespecified Macrofactors and Time-Varying Risk Premia and Betas�, Journal 
of Financial and Quantitative Analysis, 32, 205-224. 
 
Kryzanowski, L., and H. Zhang, 1992, �Economic Forces and Seasonality in Security 
Returns�, Review of Quantitative Finance and Accounting, 1, 227-244. 
 
Lucas, R., 1978, �Asset Prices in Exchange Economy�, Econometrica, 46, 1429-1445. 
 
Luttmer, E. G. L., 1996, �Asset Pricing in Economies with Frictions�, Econometrica, 64, 
1439-1467. 
 
Merton, R. C., 1973, �An Intertemporal Capital Asset Pricing Model�, Econometrica, 41, 
867-887. 
 
Merton, R. C., 1981, �On Market Timing and Investment Performance I: An Equilibrium 
Theory of Market Forecasts�, Journal of Business, 54, 363-406. 
 
Newey, W. K., 1993, �Efficient Estimation of Models with Conditional Moment 
Restriction�, Handbook of Statistics, 11, 519-445. 
 
Newey, W. K., and K. D. West, 1987a, �A Simple Positive Semi-Definite 
Heteroskedasticity and Autocorrelation Consistent Covariance Matrix�, Econometrica, 
55, 703-708. 
 
Newey, W. K., and K. D. West, 1987b, �Hypothesis Testing with Efficient Method of 
Moments Estimation�, International Economic Review, 28, 777-787. 
 
Priestley, M. B., 1981, Spectral Analysis and Time Series, Academic Press, NY. 
 
Roll, R., 1977, �A Critique of the Asset Pricing Theory�s Tests; Part I: On Past and 
Potential Testability of the Theory�, Journal of Financial Economics, 4, 129-176. 
 
Roll, R., 1978, �Ambiguity when Performance is Measured by the Security Market 
Line�, Journal of Finance, 38, 1051-1069. 
 



 35

Ross, S. A., 1976, �Arbitrage Theory of Capital Asset Pricing�, Journal of Economic 
Theory, 13, 341-360. 
 
Schwert, G. W., 1989, �Why Does Stock Market Volatility Change over Time�, Journal 
of Finance, 44, 1115-1153. 
 
Sharpe, W. F., 1964, �Capital Asset Prices: A Theory of Market Equilibrium under 
Conditions of Risks�, Journal of Finance, 19, 425-442. 
 
 



 36

Table1: Summary Statistics for the Mutual Funds 
 
This table reports the summary statistics for the mutual fund returns using monthly data from November 
1989 to December 1999, a total of 122 observations. Panel A provides the statistics on the distribution of 
the mean, standard deviation, minimum, maximum, skewness, and kurtosis for the sample of 95 equity 
mutual funds. Panel B gives the number of funds per category, the average and the standard deviation of 
returns for the equally-weighted portfolios of funds grouped by investment objective. 
 

Panel A: Individual Mutual Funds 

 
Statistics 

 
Mean Return 

 

 
Std. Dev. 

 

 
Minimum 

 
Maximum 

 
Skewness 

 
Kurtosis 

       

Mean 0.008 0.041 -0.180 0.123 -0.695 4.105 
Std. Dev. 0.003 0.010 0.034 0.059 0.603 1.884 
Minimum -0.003 0.017 -0.238 0.060 -1.562 0.305 
1% -0.001 0.026 -0.232 0.062 -1.514 0.356 
2.5% 0.001 0.028 -0.227 0.065 -1.476 0.967 
5% 0.004 0.032 -0.218 0.072 -1.401 1.298 
10% 0.006 0.033 -0.208 0.078 -1.231 1.714 
25% 0.007 0.037 -0.200 0.091 -1.048 2.900 
Median 0.008 0.040 -0.188 0.109 -0.870 4.192 
75% 0.009 0.042 -0.167 0.130 -0.518 5.089 
90% 0.011 0.049 -0.146 0.158 0.097 6.014 
95% 0.014 0.057 -0.115 0.267 0.462 7.225 
97.5% 0.014 0.067 -0.084 0.314 0.732 8.308 
99% 0.015 0.077 -0.051 0.370 1.350 9.675 
Maximum 0.015 0.090 -0.046 0.393 2.054 10.434 

 
Panel B: Investment Objective Portfolios 
 

Objective N Mean Return Std. Dev. 
    
Aggressive Growth 27 0.008 0.039 
Growth 50 0.008 0.036 
Growth and Income 12 0.008 0.033 
Income 3 0.008 0.034 
Balanced 1 0.006 0.034 
Specialty 2 0.009 0.032 
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Table 3: Mutual Fund Excess Return Predictability 
 
This table reports statistics on the mutual fund return predictability based on time series predictive 
regressions of two groups of portfolios of mutual fund excess returns on five lagged instrumental variables 
(dividend yield, risk premium, slope of the term structure, one-month Treasury bill rate, and dummy 
variable for January). The first group includes six equally-weighted portfolios of funds constructed using 
individual fund returns within each investment objective (EWAG, EWG, EWGI, EWI, EWBL, and 
EWSP). The second group is composed of six size-weighted portfolios of funds constructed using the 
individual fund returns and the corresponding total net asset values within each investment objective 
(SWAG, SWG, SWGI, SWI, SWBL, and SWSP). The estimation is conducted using the GMM method. 
The χ2 column presents the Newey and West (1987b) tests of the hypothesis that all the slope coefficients 
are zeros. The next column includes the corresponding p-value. The data cover the period from November 
1989 to December 1999, for a total of 122 observations. 
 
 

 
Fund Portfolio 

 
Number of Funds 

 
χ2 

 
p-value 

    

EWAG 27 15.343 0.009 

EWG 50 16.467 0.006 

EWGI 12 17.531 0.004 

EWI 3 14.633 0.012 

EWBL 1 26.828 0.000 

EWSP 2 19.726 0.001 

SWAG 27 15.268 0.009 

SWG 50 16.250 0.006 

SWGI 12 16.978 0.005 

SWI 3 13.018 0.023 

SWBL 1 26.828 0.000 

SWSP 2 26.410 0.000 
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Table 7: Summary Statistics for the Unconditional Pricing Kernel based Performance
               Estimates for the Six Fund Groups based on Individual Fund Performances

This table presents summary statistics for the unconditional performance measures per fund group and for all funds.
Panel A presents these results using the TSE 300 index as the benchmark. Panel B presents these results using the
equally-weighted TSE index as the benchmark. Panel C presents these results using the value-weighted TSE index 
as the benchmark. N is the number funds in each group. All the p-values are based on a GMM estimation using the 
Bartlett kernel. Information related to the funds with significant (5% level) performance and with positive significant 
performance is provided in the table. The Bonferroni p-values are the minimum and the maximum one-tailed p-values 
from the t-distribution across all of the funds and all of the fund groups, multiplied by the defined number of funds.

Panel A: TSE 300 Index

Fund Group N Max p Min p
Percent of funds 

with p < 5%
Number of funds with 

lambda > 0 and p < 5%

Bonferroni p-
value (Min. 

t)

Bonferroni p-
value (Max. 

t)

Aggressive Growth 27 0.894 0.000 48.15% 11 0.245 0.000
Growth 50 0.980 0.000 42.00% 21 1.000 0.000
Growth/Income 12 0.984 0.000 41.67% 4 0.073 0.000
Income 3 0.812 0.000 33.33% 1 na 0.005
Balanced 1 0.633 0.633 0.00% 0 na 0.316
Specialty 2 0.437 0.114 0.00% 0 0.057 na

All 95 0.984 0.000 42.11% 37 0.577 0.000

Panel B: Equally-Weighted TSE Index

Fund Group N Max p Min p
Percent of funds 

with p < 5%
Number of funds with 

lambda > 0 and p < 5%

Bonferroni p-
value (Min. 

t)

Bonferroni p-
value (Max. 

t)

Aggressive Growth 27 0.947 0.000 48.15% 12 0.012 0.000
Growth 50 0.971 0.000 46.00% 22 1.000 0.000
Growth/Income 12 0.283 0.000 83.33% 8 0.000 0.000
Income 3 0.740 0.000 33.33% 1 0.635 0.000
Balanced 1 0.012 0.012 100.00% 0 0.006 na
Specialty 2 0.065 0.004 50.00% 0 0.004 na

All 95 0.971 0.000 51.58% 43 0.001 0.000

Panel C: Equally-Weighted TSE Index

Fund Group N Max p Min p
Percent of funds 

with p < 5%
Number of funds with 

lambda > 0 and p < 5%

Bonferroni p-
value (Min. 

t)

Bonferroni p-
value (Max. 

t)

Aggressive Growth 27 0.931 0.000 48.15% 11 0.237 0.000
Growth 50 0.948 0.000 42.00% 21 1.000 0.000
Growth/Income 12 0.866 0.000 50.00% 5 0.058 0.000
Income 3 0.824 0.000 33.33% 1 na 0.006
Balanced 1 0.563 0.563 0.00% 0 0.281 na
Specialty 2 0.392 0.092 0.00% 0 0.092 na

All 95 0.948 0.000 43.16% 38 0.458 0.000
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Table 8: Portfolios of Funds Performance Measures using the Conditional Pricing Kernel
              One Instrumental Variable (DY) and GMM Estimation

This table reports the performance measures per investment objective using the conditional pricing kernel for the two selected
benchmarks (TSE 300 and value-weighted TSE indexes). Only the dividend yield (DY) is used as a instrumental variable.
Simultaneous system estimation, including the ten size-based passive strategies, is conducted using the GMM method. Panel A (B) 
provides information on the performance of six equally (size)-weighted portfolios of mutual funds. The twelve portfolios of funds are: 
The aggressive growth portfolio is an equally (size)-weighted portfolio of 27 funds, the growth portfolio is an equally (size)-weighted
portfolio of 50 funds, the growth/income is an equally (size)-weighted portfolio of 12 funds, the income portfolio is an equally
(size)-weighted portfolio of 3 funds, the balanced portfolio represents the only balanced fund, and the specialty portfolio is an equally
(size)-weighted portfolio of 2 funds. All represents the average of all the statistics of the twelve portfolios. Information related to
the estimated performance, the t-statistics, the p-values, and the J-statistic (using the Bartlett kernel) is provided in the table. The
J-Statistic is the minimized value of the sample quadratic form constructed using the moment conditions and the optimal weighting 
matrix. Size is defined as the total net asset value of the fund. TSE 300 is the TSE 300 index and TSEVW is the value-weighted TSE
index. Monthly data is used from November 1989 to December 1999, a total of 122 observations per portfolio of funds.

Panel A: Equally-Weighted Portfolios of Mutual Funds

Benchmark Variable TSE 300 TSEVW

Fund Group Lambda t(Lambda) p-value J-Stat Lambda t(Lambda) p-value J-Stat

Aggressive Growth 0.0031 5.669 0.000 0.1791 0.0028 5.182 0.000 0.1789
Growth 0.0010 2.264 0.024 0.1792 0.0009 2.056 0.040 0.1791
Growth/Income 0.0015 3.050 0.002 0.1794 0.0013 2.638 0.008 0.1793
Income -0.0006 -0.938 0.348 0.1792 -0.0008 -1.139 0.255 0.1791
Balanced -0.0002 -0.261 0.794 0.1797 -0.0001 -0.161 0.872 0.1797
Specialty 0.0004 0.322 0.748 0.1790 0.0002 0.139 0.889 0.1788

All 0.0009 1.684 0.319 0.1792 0.0007 1.453 0.344 0.1792

Panel B: Size-Weighted Portfolios of Mutual Funds

Benchmark Variable TSE 300 TSEVW

Fund Group Lambda t(Lambda) p-value J-Stat Lambda t(Lambda) p-value J-Stat

Aggressive Growth 0.0029 5.079 0.000 0.1793 0.0025 4.396 0.000 0.1791
Growth 0.0013 2.907 0.004 0.1792 0.0011 2.541 0.011 0.1791
Growth/Income 0.0000 0.067 0.947 0.1800 -0.0001 -0.261 0.794 0.1799
Income -0.0004 -0.532 0.595 0.1791 -0.0005 -0.770 0.442 0.1790
Balanced -0.0002 -0.261 0.794 0.1797 -0.0001 -0.162 0.872 0.1797
Specialty 0.0002 0.232 0.817 0.1789 -0.0001 -0.064 0.949 0.1788

All 0.0006 1.249 0.526 0.1794 0.0005 0.947 0.511 0.1793
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Table 10: Summary Statistics for the Conditional Pricing Kernel based Performance Estimates
                for the Six Fund Groups based on Individual Fund Performances with One 
                Instrumental Variable (DY)

This table presents summary statistics for the conditional performance measures per fund group and for all funds.
The dividend yield (DY) is used as a instrumental variable. Panel A (B) presents the results using the TSE 300 index 
(value-weighted TSE index) as the benchmark. N is the number of individual funds within each group. All the p-values
are based on a GMM estimation using the Bartlett kernel. Information related to the funds with significant (5% level)
performance and with positive significant performance is provided in the table. The Bonferroni p-values are the
minimum and the maximum one-tailed p-values from the t-distribution across all of the funds and all of the fund 
groups, multiplied by the defined number of funds.

Panel A: TSE 300 Index

Fund Group N Max p Min p
Percent of funds 

with p < 5%
Number of funds with 

lambda > 0 and p < 5%

Bonferroni 
p-value 
(Min. t)

Bonferroni 
p-value 
(Max. t)

Aggressive Growth 27 0.938 0.000 62.96% 16 0.000 0.000
Growth 50 0.959 0.000 60.00% 22 0.000 0.000
Growth/Income 12 0.715 0.000 75.00% 6 0.000 0.000
Income 3 0.439 0.000 33.33% 0 0.001 0.537
Balanced 1 0.796 0.796 0.00% 0 0.398 na
Specialty 2 0.415 0.168 0.00% 0 na 0.168

All 95 0.959 0.000 60.00% 44 0.000 0.000

Panel B: Value-Weighted TSE Index

Fund Group N Max p Min p
Percent of funds 

with p < 5%
Number of funds with 

lambda > 0 and p < 5%

Bonferroni 
p-value 
(Min. t)

Bonferroni 
p-value 
(Max. t)

Aggressive Growth 27 0.904 0.000 55.56% 14 0.000 0.000
Growth 50 0.912 0.000 62.00% 22 0.000 0.000
Growth/Income 12 0.655 0.000 83.33% 6 0.000 0.000
Income 3 0.574 0.000 33.33% 0 0.000 0.861
Balanced 1 0.872 0.872 0.00% 0 0.436 na
Specialty 2 0.648 0.133 0.00% 0 na 0.132

All 95 0.912 0.000 60.00% 42 0.000 0.000
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Table 11: Portfolios of Funds Performance Measures using the Conditional Pricing Kernel
                Two Instrumental Variables (DY and TB1) and GMM Estimation

This table reports the performance measures per investment objective using the conditional pricing kernel for the two selected
benchmarks (TSE 300 and TSE value-weighted indexes). The dividend yield (DY) and the yield on the one-month T-bill (TB1) are used
as instrumental variables. Simultaneous system estimation, including the ten size-based passive strategies, is conducted using the GMM 
method. Panel A (B) provides information on the performance estimates of six equally (size)-weighted portfolios of mutual funds.
The twelve portfolios of funds are: The aggressive growth portfolio is an equally (size)-weighted portfolio of 27 funds, the growth 
portfolio is an equally (size)-weighted portfolio of 50 funds, the growth/income portfolio is an equally (size)-weighted portfolio of 12   
funds, the income portfolio is an equally (size)-weighted portfolio of 3 funds, the balanced portfolio represents the only balanced fund, 
and the specialty portfolio is an equally (size)-weighted portfolio of 2 funds. All represents the average of all the statistics of each of
the six portfolios. Information related to the estimated performance, the t-statistics, the p-values, and the J-statistic (using the
Bartlett kernel) is provided in the table. Wald corresponds to the p-value based on the Newey and West (1987b) Wald test of the marginal
significance of the two conditioning variables. The J-Statistic is the minimized value of the sample quadratic form constructed using
the moment conditions and the optimal weighting matrix. Size is defined as the total net asset value of the fund. TSE 300 is the
TSE 300 index and TSEVW is the value-weighted TSE index. Monthly data is used from November 1989 to December 1999, a total
of 122 observations per portfolio of funds. 

Panel A: Equally-Weighted Portfolios of Mutual Funds

Benchmark Variable TSE 300 TSEVW

Fund Group Lambda t(Lambda) p-value Wald J-Stat Lambda t(Lambda) p-value Wald J-Stat

Aggressive Growth 0.0003 0.764 0.445 0.000 0.1826 0.0001 0.139 0.890 0.000 0.1811
Growth -0.0009 -1.653 0.099 0.000 0.1818 -0.0007 -1.500 0.134 0.000 0.1797
Growth/Income -0.0008 -1.435 0.152 0.000 0.1828 -0.0005 -0.959 0.338 0.000 0.1804
Income -0.0024 -3.965 0.000 0.000 0.1827 -0.0021 -3.407 0.001 0.000 0.1801
Balanced 0.0018 2.306 0.021 0.000 0.1864 0.0008 0.951 0.342 0.000 0.1857
Specialty -0.0053 -4.460 0.000 0.000 0.1897 -0.0044 -3.643 0.000 0.000 0.1896

All -0.0012 -1.407 0.119 0.000 0.1843 -0.0012 -1.403 0.284 0.000 0.1828

Panel B: Size-Weighted Portfolios of Mutual Funds

Benchmark Variable TSE 300 TSEVW

Fund Group Lambda t(Lambda) p-value Wald J-Stat Lambda t(Lambda) p-value Wald J-Stat

Aggressive Growth 0.0011 2.672 0.008 0.000 0.1829 0.0008 1.994 0.046 0.000 0.1814
Growth -0.0005 -0.987 0.324 0.000 0.1819 -0.0002 -0.495 0.621 0.000 0.1804
Growth/Income -0.0010 -1.580 0.114 0.000 0.1826 -0.0008 -1.420 0.156 0.000 0.1804
Income -0.0028 -4.415 0.000 0.000 0.1824 -0.0025 -3.968 0.000 0.000 0.1798
Balanced 0.0018 2.306 0.021 0.000 0.1864 0.0008 0.951 0.342 0.000 0.1857
Specialty -0.0060 -7.442 0.000 0.000 0.1880 -0.0059 -7.386 0.000 0.000 0.1871

All -0.0012 -1.574 0.078 0.000 0.1840 -0.0013 -1.721 0.194 0.000 0.1825
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Table 13: Summary Statistics for the Conditional Pricing Kernel based Performance Estimates
                for the Six Fund Groups based on Individual Fund Performances with Two 
                Instrumental Variables (DY and TB1)

This table presents summary statistics for the conditional performance measures per fund group and for all funds.
The dividend yield (DY) and the yield on the one-month T-bill (TB1) are used as instrumental variables. Panel A (B) 
presents the results using the TSE 300 index (value-weighted TSE index) as the benchmark. N is the number of individual
funds within each group. All the p-values are based on a GMM estimation using the Bartlett kernel. Information
related to the funds with significant (5% level) performance and with positive significant performance is provided in
the table. The Bonferroni p-values are the minimum and the maximum one-tailed p-values from the t-distribution 
across all of the funds and all of the fund groups, multiplied by the defined number of funds.

Panel A: TSE 300 Index

Fund Group N Max p Min p
Percent of funds 

with p < 5%
Number of funds with 

lambda > 0 and p < 5%

Bonferroni p-
value (Min. 

t)

Bonferroni p-
value (Max. 

t)

Aggressive Growth 27 0.858 0.000 55.56% 11 0.000 0.000
Growth 50 0.971 0.000 58.00% 8 0.000 0.000
Growth/Income 12 0.978 0.000 66.67% 1 0.000 0.000
Income 3 0.402 0.000 66.67% 0 0.000 0.603
Balanced 1 0.021 0.021 100.00% 1 na 0.010
Specialty 2 0.138 0.000 50.00% 0 0.000 na

All 95 0.978 0.000 58.95% 21 0.000 0.000

Panel B: Value-Weighted TSE Index

Fund Group N Max p Min p
Percent of funds 

with p < 5%
Number of funds with 

lambda > 0 and p < 5%

Bonferroni p-
value (Min. 

t)

Bonferroni p-
value (Max. 

t)

Aggressive Growth 27 0.869 0.000 48.15% 8 0.000 0.000
Growth 50 0.934 0.000 58.00% 7 0.000 0.000
Growth/Income 12 0.787 0.000 58.33% 1 0.000 0.000
Income 3 0.944 0.000 66.67% 0 0.000 na
Balanced 1 0.342 0.342 0.00% 0 na 0.829
Specialty 2 0.500 0.000 50.00% 0 0.000 na

All 95 0.944 0.000 54.74% 16 0.000 0.000
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