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Abstract

Risk management approaches that do not incorporate randomly changing volatility
tend to under- or overestimate the risk depending on current market conditions. We
show how some popular stochastic volatility models in combination with the hyper-
bolic model introduced in Eberlein and Kdler (1995) can be applied quite easily for
risk management purposes. Moreover, we compare their relative performance on the
basis of German stock index data.
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1 Introduction

Risk in the sense of the possibility of losses is an inherent ingredient of financial markets.
To measure and monitor risk as accurately as possible has become a competitive factor for
financial institutions. How can we quantify risk? Theoretically, there are a number of pos-
sibilities, such as standard deviation, quantiles, interquartile range, lower partial moments,
or shortfall measures. Value-at-risk or VaR, a quantile measure, has become the preferred
tool in the financial industry. Although it is a rather natural concept from a probabilistic
point of view, it became popular only as a consequence of the proposals of the Basel Com-
mittee on Banking Supervision for the internal model approach to manage market risk. The
VaR value of a portfolio depends on the underlying model which is used. Three basic ap-
proaches are currently applied in practice to measure market risk: historical simulation, the
variance-covariance approach and Monte Carlo simulation (cf. Jorion (1997)). Note that the
variance-covariance approach as well as Monte Carlo simulation depend on the assumption
of normality of returns.

The purpose of the present paper is to improve on these approaches. The method we
investigate is based on two pillars: the hyperbolic model and stochastic volatility. Hyper-
bolic distributions were introduced to finance in Eberlein and Keller (1995). These and the
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wider class of generalized hyperbolic distributions constitute a very flexible family of dis-
tributions which is tailor-made for fitting empirical return data. In the same paper a new
dynamic model, the hyperbolic model, was introduced. It is defined as the (ordinary) expo-
nential of the Lévy process which is generated by any hyperbolic distribution. This model
is not of diffusion type because it is driven by a pure-jump Lévy process. Due to its greater
flexibility it improves considerably on the classical geometric Brownian motion. In a se-
ries of papers (Eberlein et al. (1998), Keller (1997), Barndorff-Nielsen (1998), Eberlein and
Prause (1998), Eberlein (2001)) the initial model was pushed further. It can be handled now
on the level of generalized hyperbolic Lévy motions. We note that many of the standard
distributions used in statistics, such as Student t, Cauchy, variance gamma, normal inverse
Gaussian, and the normal distribution are either special or limiting cases of the underlying
class of distributions.

The second pillar is to model volatility as a stochastic process. Volatility can be consid-
ered as the temperature of the market and as such it can change rapidly. Risk management
approaches which do not take these fluctuations into account tend to under- or overestimate
risk depending on the current market situation. Because of the strong empirical evidence for
stochastic volatility in financial time series, an impressive number of different approaches
has been studied in the literature. Let us just mention the variety of ARCH and GARCH
models introduced by Engle (1982) and Bollerslev (1986), the diffusion model of Hull and
White (1987), as well as the models investigated in Chesney and Scott (1989), Stein and
Stein (1991), and Heston (1993). The key idea using stochastic volatility in risk manage-
ment is to devolatilize the observed return series and to revolatilize with an appropriate
forecast value. This idea has been applied in several recent papers (Hull and White (1998),
Barone-Adesi et al. (1998, 1999), McNeil and Frey (2001)).

Since we have always a portfolio view — any portfolio as complex as it may be is consid-
ered as a security of its own — we study here a data set consisting of the daily closing DAX
values from 1992 to 1999. The DAX represents a portfolio of 30 German blue chip stocks
and reflects the behaviour of the German stock market. One of the reasons to consider this
time series is the availability of the volatility index VDAX, which will be considered as one
of the various models for volatility.

The paper is organized as follows: We start with an exploratory view on stock index data
in Section 2. This qualitative examination serves as a motivation for the stochastic volatil-
ity models that are introduced in the subsequent section. Afterwards, we discuss how to
estimate model parameters and in particular current volatility. Ideally, a stochastic volatil-
ity model can be used to transform stock returns into independent, identically distributed
(i.i.d.) random variables (devolatilization). This aspect is tested empirically in Section 5.
Subsequently, we investigate the performance of stochastic volatility models as far as risk
management is concerned. Note that for the sake of simplicity we restrict ourselves to hy-
perbolic distributions. With some additional computational effort, generalized hyperbolic
distributions (cf. Eberlein and Prause (1998)) could be used along the same lines. The re-
sults we obtained using the smaller class are already quite convincing. Section 7 concludes.



2 Exploratory analysisof stochastic volatility

It has often been reported that stock return volatility changes randomly over time. We want
to get a qualitative idea of these fluctuations before turning to particular models in the next
section. To this end, we take a look at daily stock index data, namely the Dow Jones In-
dustrial Average from May 26, 1896 to January 4, 2001. By X, we denote the logarithm or
return process of the index. As a general starting point, we assume that this process is of the
form

AX; = 0, ALy,

where AX; := X; — X;_1, the variable o; > 0 stands for the randomly changing volatil-
ity, and (AL,);—1,,... denotes a sequence of identically distributed random variables with
Var(AL;) = 1 such that AL, is independent of (AL)s—1,. +1,(05)s=1,..+ In order to
assess the unobservable volatility fluctuations it is convenient to consider the logarithmic
squared daily returns

Dy :=1log(AX;)? =logo? + log(AL;)%.

Note that (log(AL;)?)=1,.. is a series of i.i.d. random variables. Hence, the time series
(D4)¢=1,,... can be interpreted as a signal (log 7);—12,... perturbed by an additive white noise
with mean E(log(AL;)?). Since we do not assume a particular model at this point, it makes
sense to estimate the unobservable quantity log o? by applying a non-parametric smoother
to the data (D;);—12..... In Figure 1, the series (D;);=1,... 28565 IS plotted for daily Dow Jones
data. The wavy white curve corresponds to a cubic smoothing spline where the smoothing
parameter is chosen by cross validation (cf. Hastie and Tibshirani (1990), Sections 2.10 and
3.4). Note that this estimate of log o7 is biased by E(log(AL;)?), which equals e.g. —1.27
in the case of standard normally distributed AL;. One can see very clearly how the level
of volatility changes randomly over time. Of course, one would not expect stock returns
to behave in a stationary way over more than 100 years. The whole market structure has
changed repeatedly during that period. Keeping this in mind, the evolution of the estimated
volatility in Figure 1 as well as the residuals in Figure 2 look surprisingly stationary at first
glance — maybe excepting the steep increase of volatility in the 30°s. Note that large absolute
price changes correspond to large values of D;. The striped pattern for large negative values
of D, in Figure 1 is caused by the fact that the index moves on a discrete grid. Since it
corresponds to tiny price changes, it is of no importance for our purposes.

Let us take a closer look at the residuals by comparing them to a simulated sample
(log(AL;)? — E(log(AL1)?))i=1,.. 28565 in Figure 3, where (AL;);—1. . 28565 are drawn from
a standard normal distribution. Although this sample looks similar to Figure 2, one may
observe two differences: Firstly, large values of log(AL;)? — E(log(ALy)?) occur much
more frequently for real data than in the normal sample. This corresponds to the well-known
fact that stock return data exhibits heavier tails than the normal distribution. Secondly, one
can find some remaining clusters of extremely high values in Figure 2, which are absent in
the simulated sample. They indicate that there may be a very short-lived stochastic volatility
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Figure 1: Logarithmic squared daily returns and estimated logarithmic squared volatility
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component in the data in addition to the comparatively slowly varying component that is
detected by the smoothing spline.

3 Stochastic volatility models and risk management

The general model

We consider a univariate price process S = (.S;)¢>0, typically a stock price or stock index.
For simplicity, we suppose that this process is corrected for dividend payments etc., if there
are any. By X = (X;);>o we denote the return process of S, i.e.

Sy = Sy exp(Xy). (3.1)
We assume that this return process is of the form
dXt = O'tst, (32)

where L is a process with stationary, independent increments starting at 0 (a Lévy process)
and o denotes a randomly changing predictable volatility process. Since we work with
discrete-time data, we will henceforth replace Equation (3.2) with its discrete-time analogue

AXt = O'tALt (33)

with AX; := X; — X, ; and likewise for L. In fact, Equation (3.3) follows from (3.2) if o is
piecewise constant between integer time points. Note that although we use a discrete-time
framework, the question continuous-time versus discrete-time is not an issue in this paper.

By volatility one usually refers to the standard deviation of the return series, or more
precisely, to the standard deviation given all past observations. Therefore one should require
that Var(AL;) = 1. However, the statistical procedures below get more transparent if we
do not insist on this normalization. In order to obtain properly standardized versions of o
and L, one simply has to multiply o (and divide L) by the constant y/Var(AL).

In detail, we discuss the following set-ups:

Modelling the stochastic volatility o

1. Asabenchmark we consider deterministic, constant volatility o. This case is studied
extensively in the empirical and theoretical literature. One of our goals is to assess how
much accuracy is gained by turning to more complex models.

2. The other extreme is to allow a basically arbitrary stochastic volatility process o.
However, in order for our estimation procedures to work, we have to assume that o changes
slowly over time as it is indicated by Figure 1. More precisely, we suppose that the persis-
tence of volatility changes can be measured in weeks whereas stock price data is sampled
daily.



3. A very popular stochastic volatility model is the GARCH(1,1)-M process (cf. e.g.
Bollerslev et al. (1992), Shephard (1996), Gouriéroux (1997), Kallsen and Tagqu (1998),
Shiryaev (1999), Section 11.3). Here, we consider the case

ol =c+aol (AL —m)?® +bo? |, (3.4)

with parameters oy > 0,¢ > 0,a > 0,b > 0, m := E(AL;). The GARCH(1,1)-M model
has been applied extensively to financial time series. From a theoretical viewpoint, it means
that large volatility is caused by past returns of large absolute value.

4. Diffusion-type volatility models have been studied thoroughly in connection with
option pricing and they attract increasing attention in the empirical literature (cf. e.g. Hull
and White (1987), Barndorff-Nielsen and Shephard (1998)). In this paper we consider the
particular case that V;, := log o7 follows a shifted Ornstein-Uhlenbeck process

AV, = —a(V, — V)dt + bdW,,

where V; is drawn from the stationary distribution N'(V, ). Here, a > 0, b, V are param-
eters and W denotes a standard Wiener process that is independent of the Lévy process L.
Viewed as a discrete-time process, (V;):—o,1,2,... IS a stationary AR(1)-time series with mean
V:

Vi=Viei+ (1 — @)V +7e, €1,69,...~ N(0,1)i.id., (3.5)

—e—2a

where the parameters are givenby ¢ = e, v =b IT This follows from a compari-
son of the covariance function of the two Gaussian processes (cf. Shiryaev (1999), 11.2b and
I11.3a). From a theoretical point of view, diffusion-type volatilities differ substantially from
ARCH-type models because volatility is driven by a separate random process W. Never-
theless, the two kinds of models behave statistically similarly, which can be explained by
limit theorems (cf. Nelson (1990)).

5. In the previous section we observed that, in addition to a slowly varying stochastic
volatility, there seems to exist a very short-lived volatility component which is reflected
by clusters of excessively large positive residuals in Figure 2. Such clusters are typical of
ARCH(1)-models. In order to build a stochastic volatility model which incorporates both
the “slow” component visible in Figure 1 as well as the rapidly decaying clusters in Figure

2, we add an ARCH(1)-term to the above AR(1)-model. More specifically, we assume that
logo; = V; +log a7,
where V' is a AR(1)-time series as in Equation (3.5) and o; meets
02 =c+ac’ (AL —m)?

with parameters o4, ¢, a, m := E(AL1). As above, we assume that V and L are independent.
Note that ¢ could always be normalized to 1 by changing V, &, accordingly. Since m is
a parameter of the distribution of L, and o, affects only the very beginning of the time
series, the additional ARCH(1)-component yields essentially only one additional degree of
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freedom. The degeneracy caused by ¢ has no effect on our risk management approach, so
we stick to the above notation. Of course, we could consider even more complex stochastic
volatility models. However, given the limitation of data we feel that we have reached a limit
at this point.

6. In an idealized Black-Scholes world, the volatility of the underlying coincides with
implied volatilities from options data. This relation ceases to hold in real markets where
the stock price is not given by a geometric Brownian motion. Implied volatility typically
changes across strike prices (smile effect) and time to maturity. Nevertheless, we may sus-
pect that there exists a close relationship between the current stock price volatility o, in the
sense of Equation (3.3) and a reasonably standardized implied volatility (cf. Christensen and
Prabhala (1998)). Such a standardized volatility is available for German stock index data:
the volatility index VDAX. Consequently, we assume as a sixth model that the volatility o,
is given by the current level of the VDAX. Note that we consider stock index data in this
paper. If one is interested in particular stocks, one could use the corresponding stock option
implied volatilities instead.

The driving Lévy process L

In principle, the stochastic volatility models above can be combined with any reasonable
process with stationary, independent increments. In this paper, we focus on two particular
cases. As a benchmark process we consider Brownian motion, or more precisely, a process
of the form

Ly =mt+vBy,

where m € R, v € R, , and B denotes standard Brownian motion. By multiplying o and m
appropriately, one can always choose v = 1. However, it will turn out to be convenient to
work with a general v.

It is well-known that empirical distributions from stock return data deviate substantially
from the normal distribution. Generalized hyperbolic distributions (cf. Eberlein and Prause
(1998), Eberlein (2001)) or certain subclasses such as the hyperbolic (cf. Eberlein and Keller
(1995), Eberlein et al. (1998)) or the normal inverse Gaussian (cf. Barndorff-Nielsen (1998))
turned out to be tailor-made for financial time series. In this paper, we focus on the class
of hyperbolic distributions which is flexible enough to fit empirical data well. More specifi-
cally, we assume that L is a Lévy process such that the density of the law of L, is

fapom(T) = Vo? = § o=/ P +(a—p)>+B(z—n)
m 200 K1 (6+/a? — 52)

Here, K denotes the modified Bessel function of the third kind with index 1 (cf. Abramowitz
and Stegun (1968)) and o > 0, 8 € (—a, ), § > 0, u € R the parameters. As in the Brow-
nian motion case we allow some degeneracy due to the fact that the variance Var(L;) is not
necessarily normalized to 1.




Risk management

In risk management one is primarily interested in the distribution of future prices based
on past observations. Due to the predominant use of VVaR-based regulations, quantiles cor-
responding to one- or ten-day horizons are of particular interest. To obtain a reasonable
forecast for the return distribution, we proceed as follows.

The series of prices (S;)i=o,12,... is transformed into a series of daily returns by com-
puting AX; := log S; — log S; 1. Suppose that we are currently at time ¢. In a first step,
we have to estimate the volatility o, for s = 1,...,¢. While this is trivial if we believe in
implied volatility and if the latter is available, appropriate estimation procedures have to be
performed in particular in GARCH- and exponential AR-type stochastic volatility models.
This is explained in detail in the subsequent section. Write (o), ., for the estimated
values. In addition, we need a prediction of the volatility o,,; for the subsequent day.

In a second step, we divide past stock returns (AX;),—1 .. by the volatility estimates
Gs)s—1,...t - The resulting time series AES = A;f, s = 1,...,t serves as an estimate for

the unobservable Lévy process increments (ALg)s=1,. ¢ We call (Afs)szl,,_,,t devolatilized
returns. We estimate the parameters of the Lévy process L by applying standard maximum
likelihood methods to the devolatilized return data (AZS)S:L_",t.

If ) denotes the distribution of AL, according to the estimated parameters from the
previous step and if 5, ; is the predicted volatility for tomorrow, then @ serves as a predicted
distribution of Aa)f—ﬁl, i.e. A — Q(oy1A) is the forecast of the law of tomorrow’s return
AXyp.

The careful reader observes that we estimate the parameters of the devolatilized return
process (AZs)szl,___,t rather than the hidden driving Lévy process (ALs)—1,... But note
that the focus in this paper is not on estimation but on forecasting the distribution of e.g.
AXyyq. Since we write this next-day return as AX;,; = EtHAEtH instead of AX, ; =
o1 AL, 1, we need the distribution of Afm rather than AL;,;.

Similarly, we base the estimation of o, above only on the returns up to time s although
the data is available up to time ¢. Once more, we are not trying to obtain o, or AL, as
precisely as possible. For prediction purposes it is more important that the devolatilized
returns are constructed in the same way for all s € {1,...,t¢}. Indeed, this makes it more
likely that (Aft)t:m,"_ comes close to an i.i.d. sequence.

If we wish to forecast an n-day return distribution, the law Q) of one-day increments
AL = Ly — Ly has to be replaced with the distribution of an n-day increment L, ,, — L;.
Strictly speaking, the predicted volatility o, ; has to be adjusted as well. But for short time
intervals it may be justified to work with the same value unless volatility is fluctuating very
rapidly. For longer time horizons, predicting a fixed volatility is inadequate anyway. Indeed,
the random fluctuations of volatility affect the variance of X;, — X, which should be taken
into account for risk management. This, however, will usually necessitate the use of Monte-
Carlo methods which is beyond the scope of this paper.

In general, even the quite general model (3.3) provides just an approximation to real
data. Not only the current volatility but also the shape of the return distribution will change




as observation time increases. Therefore, we prefer to base the estimation of the hyperbolic
parameters typically on the previous 500 data points, which corresponds to approximately
two years.

4 Estimation of thevolatility o

In this section, we show how to estimate the unobservable volatility o. The subsections
correspond to the enumeration of stochastic volatility models above.

Constant volatility

Since a deterministic, constant scale parameter can always be incorporated in the Lévy pro-
cess, we need not perform any estimation and devolatilization at this stage. This shows why
it is convenient not to insist on a normalized variance for the Lévy process L.

Slowly fluctuating volatility

Let us assume that the volatility process in Equation (3.3) is independent of L. (This as-
sumption can be relaxed.) Passing to the logarithm simplyfies the estimation problem:

log(AX;)? =logo? + log(AL;)%.

t — log o} is a comparatively slowly fluctuating (random) function and (log(AL;)?)i=12,...
a sequence of i.i.d. random variables. Since our problem is to estimate the hidden volatility
signal log o7 from observations that are perturbed by an additive white noise log(AL;)?, it
suggests itself to apply non-parametric smoothing (cf. Hastie and Tibshirani (1990)). For
our study we use a running-mean smoother, i.e. we let

kol
—

log(AXt_Z-)Q,

=

log 3} =

Il
)

%
where k£ denotes an appropriately chosen smoothing parameter. For the reasons explained
in the previous subsection, we work with a backward window even though a more balanced

window would improve the estimation. The smoothing parameter % is chosen by cross-
validation, i.e. one minimizes

1 T
7 > (log(AX,)* — (log}) "),
t:l

where 7 is the total number of data points and (log52)~* := %Zle log(AX;_;)? denotes
the running mean smoother based on the sample with missing observation at time ¢. Applied
to German stock index data, the optimal window length (within the set {5, 10, 15,. .., 75,
80}) turns out to be 40, which corresponds to approximately 2 trading months.
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Note that the logarithmic squared volatility estimate log 52 is biased by the expectation
of log(AL;)% E.g. we have E(log(AL;)?) ~ —1.27 in the case of standard Brownian mo-
tion; for other Lévy processes we get different values. But since any multiplicative constant
can be put into the Lévy process, there is no need to compensate for this bias.

Finally, we address the question how to construct a one-period predictor for o, 1. Since
we have not assumed any particular model for o, it seems most reasonable to choose the
previous value o;.

GARCH(1,1)-M volatility

Parameter estimation in GARCH-type models is commonly performed by maximum likeli-
hood (ML) methods. Suppose that f (-, 9) is the density of AL, where 9 denotes a possibly
multivariate unknown parameter. Similarly, let z; — (2, (25)s=1,...4-1, 01, ¢, @, b, m, V)
be the logarithm of the density of AX,; given (AXy,...,AX; 1) = (z1,..., 24 1) if the
parameters of the GARCH(1,1)-M model and of the Lévy process are o1, ¢, a, b, m, 9. Then
the log-likelihood function given the data (AX;,...,AX7) = (z1,...,27) can be written
as

T
(017 ¢ a, ba m, 19) — Z lt(xta (xs)s:l ..... t—1:01,C, Q, ba m, 19)
t=1
Note that o, and A X, can be computed recursively from AL, ..., AL; if the parameters

o1, ¢, a,b,m are known. Conversely, AL; and o, are deterministic functions of AX,...,
AX;,. Since AX, = 0, AL, we have that [, (4, (5)s=1,..t—1, 01, ¢, a, b,m, ) = log f(i—i, )
— log oy, where o, is determined recursively from Equations (3.4) and (3.3). Therefore, the
log-likelihood function given the data equals

T
(01,¢,a,b,m,0) — Zlogf(i—i,ﬂ) — log oy.

t=1

In our study we work with the S-PLUS software package S+GARCH, which is based on
the normal distribution. It estimates the unknown parameters using the BHHH algorithm (cf.
Martin etal. (1996)) and it also returns the corresponding values for the unobserved volatility
oy. 1T we assume non-normal increments A L;, then this procedure does not correspond to a
ML estimator. Nevertheless, this quasi-likelihood approach still provides reasonable values
for o1, ¢, a,b,m as is shown in Gouriéroux (1997), Chapter 4. For this reason and since
GARCH routines for the normal distribution are widely implemented, we use the above
package also in the hyperbolic case.

To be more precise, we estimate the current volatility o; by applying the above procedure
to the previous 500 data points AX; 499, ..., AX;. This ensures that the algorithm leading
to the estimated value o, is the same for any ¢, relies on fairly actual data, but does not look
furtively into the future.

For risk management, we also need a prediction of the volatility o, for the subsequent
day given the previous data. Via Equations (3.3) and (3.4), such a prediction is immediately
obtained from A X, and the estimated values for o, ¢, a, b, m.
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Volatility of exponential AR(1)-type

Following Harvey et al. (1994), we apply a quasi-maximum likelihood method to estimate
the parameters. The asymptotic and finite-sample properties of the corresponding estimator
are studied in Ruiz (1994). For an overview of many alternative approaches to parameter
estimation in this stochastic volatility model cf. Andersen et al. (1999).

Denote by y; — 1:(ye, (Ys)s=1,..c 1, V, @, 77, ¥) the logarithm of the density of log(A X)?
given the data (log(AX1)?,...,log(AX; 1)?) = (y1,. .., ¥1) if the underlying unknown
parameters are V, ¢, v for the AR(1) model and ¥ (possibly multivariate) for the Lévy pro-
cess L. Then the log-likelihood function given the data (log(AX;)?,...,log(AX7)?) =
(y1,-..,yr) can be written as

7%0 ’75 '—)th Yt, ys s=1,..,t— 17Va(p7r7719)'

In general it is hard to determine I, (y:, (ys)s=1...t—1, V, @, 7, 9) explicitly. A convenient way
out has been proposed in Nelson (1988) and Harvey et al. (1994): Let us (wrongly) assume
that log(AL;)? is normally distributed with mean 0 and variance 6. Note that by multiply-
ing L with an appropriate constant, we may suppose that E(log(AL;)?) = 0. Therefore,
the simplifying assumption concerns only the shape of the distribution. Since (V}):—12,..
is a Gaussian time series which is independent of the Gaussian series (log(AL;)?)i=12,..,
we have that the random variables log(AX)?, ..., log(AX;)? are jointly normal as well.
This implies that the conditional law of log(A X;)? given (log(AX;)?, ..., log(AX; 1)?) =
(y1,- .-, y—1) is normal. Since log(AX;)? =V, + log(AL;)?, we have that

E(V,so,%ﬂ)(log(AXt)Q |(10g(AX1)25 . 710g(AXt—1)2) = (Y1,---, Y1) = f/\;\tfla
Varw .9 (log(AXy)?|...) = Vg1 + 0,

where 17,%_1 = E(V,W,ﬂ)(m ...) denotes the Kalman-Bucy filter and v;_; := Varwy . 9

(V4| ...) its prediction error variance. Based on the normal assumption, they meet the recur-
sive equations

55 55 — PUt—1 e
Viewe = Vi1 + (1—9)V+ rq'}ﬂtl(yt - V;:|t71)
2,2
P V-1

with ‘71\0 =V and Vijp = 11;2 (cf. Shiryaev (1995), Theorem V1.7.1 or Harvey (1989),
Section 3.2). In particular, the prediction error variance does not depend on the observations
(cf. Shiryaev (1995), Corollary VI.7.1).

Together, we have that the log-likelihood given the data (log(AX1)?, ..., log(AX)?) =

(y1,--.,yr) equals

4 Ly (e — Vier)?
Vopd) =53 <log (27T(Ut\t71 + 0)) + $) ,
t=1

Ut|t—1 + 0
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Vv % 0 0

True parameter | 0.986 | 0.120 | -10.42 | 4.88
Median 0.980 | 0.130 | -10.41 | 4.86
First quartile 0.969 | 0.104 | -10.61 | 4.70
Third quartile | 0.987 | 0.159 | -10.23 | 5.02

Table 1: Results from 1000 simulations with normally distributed log(AL;)?

1% © y 0
True parameter | 0.986 | 0.120 | -10.42 | 4.93
Median 0.980 | 0.130 | -10.40 | 4.87

First quartile 0.967 | 0.102 | -10.58 | 4.61
Third quartile | 0.987 | 0.164 | -10.23 | 5.17

Table 2: Results from 1000 simulations with normally distributed AL,

where (I7t|t_1)t:1,,_,,T and (vg—1)¢=1,... are given recursively as above. Hence, we will use
the maximum of this function as a quasi-maximum likelihood estimator for V', ¢, v, . For
a more thorough account of Kalman filtering and parameter estimation cf. Harvey (1989),
Shiryaev (1995).

If we believe in an AR(1)-stochastic volatility, we need a lot of data for parameter esti-
mation because the hidden AR(1) process is perturbed by heavy white noise which carries
no information (cf. Figure 1). In our study we use a 3.5 year interval prior to the period
that is considered for backtesting. In contrast to the GARCH case before, the estimated
parameters are kept fixed.

For risk management, we need an estimate of the current volatility o, = ez" for the
backtesting period. This is obtained by applying a Kalman filter to the corresponding data,
i.e. we use ez with

‘//\; = E(V;i (log(AXl)Qa s alog(AXt)Q) = (yla T ayt)>
= Tt = Ty
tlt—1 + Vi1 +0(Z/t t|t 1)

(cf. Harvey (1989), Section 3.2). We also need one-period predictions for 0,1 = e3 Vit
given the data up to ¢. These are provided by e%VtHIt, where X7t+1|t denotes once more the
Kalman filter based on the normal assumption with parameters estimated from the initial 3.5
year interval.

To assess the reliability of the estimation, we run two simulation studies. Firstly, we
consider normally distributed log(AL;)?, in which case the above procedure corresponds to
a real maximum likelihood estimation. In a second study, we assume that AL, is normally
distributed with mean 0, which makes more sense and corresponds to model (3.3) for Brow-
nian motion L. The parameters for the simulation are taken from an estimation on German
stock index data (DAX) in the period from July 1, 1988 to December 30, 1991 (868 trading
days). The results from 1000 simulations can be found in Tables 1 and 2.
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Composite volatility

Statistically well-founded estimation in this complex model is beyond the scope of this pa-
per. Therefore we suggest the following simple procedure: Guided by Figures 1 and 2 we
expect the AR(1) term to be the dominating component. In a first step, we determine its pa-
rameters V, ¢, v, 8 as if no ARCH(l) component were present (cf. the previous subsection).
We estimate the volatilities ez "* as before by Kalman filtering and compute the correspond-
ing partially devolatilized returns AL, := AXf . Secondly, we estimate the ARCH(1) param-

eters as explained above, but now from theetlme series (AL;) 1o, instead of (AX}) 12,

and under the restriction b = 0 in Equation (3.4). Both the parameters of the AR(1) and the

ARCH(1) component are estimated from a 3.5 year interval prior to the backtesting period.
Given the parameters, we obtain estimated volatilities e 3" and & ot and corresponding de-

volatilized residuals ALt ;= AL — DX forthe backtesting period. For risk management

19,2
ot ezvta—t

geen

we also need a prediction of the volatility o, = e%"tﬂ’&m based on the data up to time t.
It is obtained by multiplying the one-step predictions from the AR(1) part and the ARCH(1)
component, respectively.

Implied volatility

If we assume that stock volatility coincides with the implied volatility index VDAX, we
clearly choose the VDAX itself as estimator &. As for slowly fluctuating volatility, we do
not claim any particular model for the dynamics of o. Therefore, we take = also as a one-
period predictor for o, ;. ot

5 Arethedevolatilized residualsindependent?

In the previous section we discussed a number of methods to devolatilize observed stock
index returns. For application in risk management one would like these devolatilized re-
turns (Aft)t:m,___ to be independent, identically distributed (i.i.d.) random variables. We
want to investigate to what extent this is justified. As mentioned in the introduction, the
procedures below are performed on German stock index data (DAX) from January 2, 1992
to June 29, 1999. As one of the so-called stylized facts it has been repeatedly observed
that squared stock returns are positively autocorrelated and hence not independent. In Fig-
ure 4, we plot the empirical autocorrelation function of the squared devolatilized returns
(AZ?) _____ r corresponding to the various models from Section 3. The dotted lines rep-
resent pointwise asymptotic 95% confidence bounds under the assumption that the series
(AZQ)H _____ r is i.i.d. One can observe that any of the five non-trivial methods reduces the
autocorrelation of squared returns substantially. A closer look reveals that the GARCH ap-
proach yields the best results, whereas nonparametric volatility performs not as well as the
other models.

A formal test for the i.i.d. property of a time series Y1, ..., Yz, the so-called BDS-test,

13
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Figure 4: Autocorrelation functions from squared devolatilized returns

14



volatility model | BDS statistic | p-value | iid hypothesis
constant 15.20 0.00% rejected
nonparametric 5.98 0.00% rejected
GARCH —0.78 43.47% | not rejected
exponential AR 2.66 0.79% rejected
composite 0.54 58.58% | not rejected
implied 1.41 15.75% | not rejected

Table 3: BDS test on independent devolatilized returns

goes back to Brock et al. (1987). It reacts sensitively to accumulations of similar values
anywhere in the time series. For fixed parameters m € N, € > 0 the BDS statistic is defined
as

\/Tcm,T(f?) — (Cir(e)™
O'm,T(E)

where T,,, := T — m + 1, moreover 1.(s,t) := 1;_. qg(maxicqo,...m—1} |Yiti — Yetil),

Wm,T(S) =

7

Cra(e) = 3 105 t)ﬁ

1<t<5<T},

(and accordingly for 1 instead of m),

2(1:(t, 8)1c(s, ) + 1e(t, 7)1e(r, s) + 1c(s,t)1(E, 7))
> 5

Kr(e) = Ton(Tyn — 1) (T — 2) ’

1<t<s<r<Tm

Omr(e) = 4 (KT(S)m +2 Z Kr(e)™ 7 Cir(e)”

+ (m — 1)2017T(8)2m — mQKT(s)CLT(s)QmQ) .

Under the null hypothesis this statistic is asymptotically standard normally distributed. Fol-
lowing rules of thumb based on simulations in Brock et al. (1991), we choose the parameters
m=4ande = 1.5\/:?, where s2 denotes the empirical variance of (Aft)tzl,___,T. For ex-
plicit computations, a C program by B. LeBaron has been used. Table 3 summarizes the
results of the BDS-test at a level of 5% applied to (Azt)tzl,...,T- For GARCH, composite,
and implied volatility the null hypothesis is not rejected. Once more, one can observe that
the assumption of constant volatility produces inacceptable results.

In risk management applications we do not want to rely too heavily on the assumption
that devolatilized residuals are identically distributed. Therefore we base parameter estima-
tion for the corresponding hyperbolic (resp. normal) distribution only on the previous 500
data points. This compromises between stationarity of devolatilized returns and disposing of
enough data for parameter estimation. From Figure 5 one can get an impression how much
the shape of the estimated hyperbolic distribution changes through time. For comparison we
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Figure 5: Sequential estimation of hyperbolic densities from devolatilized returns
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Figure 6: Sequential estimation of hyperbolic densities from a simulated hyperbolic sample

plot the estimated hyperbolic densities from a simulation of 1875 i.i.d. hyperbolic random
variables in Figure 6. As in Figure 5, the parameter estimation is based only on the respec-
tive previous 500 data points. One clearly sees that devolatilization enhances the stationarity
of the fitted hyperbolic distribution. Once more, nonparametric volatility is outperformed
by the other approaches.

6 Backtesting

How well do stochastic volatility models perform in risk management applications? Any
of the approaches in Section 3 provides a forecast of tomorrow’s return distribution given
the past return data (A X7, ..., AX;). We will now assess the quality of this prediction in a
number of ways, considering again the DAX data. Since the first 500 data points are only
used for parameter estimation, the backtesting procedures are run on the remaining 1375
observations.

Because of the legal obligation to use VaR-based risk management, quantiles are of par-
ticular interest. In our study, we consider the 97.5% and 99% levels of one-day value-at-risk
corresponding to an investment in the DAX. Ideally the frequency of excessive losses, i.e.
of days where the loss exceeds the predicted VaR level, should be close to 2.5% resp. 1%.
Following Kupiec (1995), we apply a likelihood ratio test (FOEL test) at a level of 5% to
examine whether the observed frequency deviates substantially from the predicted level. Un-
der the null hypothesis, the number of excessive losses follows a binomial distribution with
parameters 7" and p,, where T = 1375 denotes the total number of days in the backtesting
period and 1 — py is the predicted level of VaR (i.e. 97.5% or 99%). Define

— o \T—f ) N EY
BT ) = =2log((1 = )" )+ 210 (1 1) (£)),
where f is the number of days in the sample where the loss exceeds the corresponding pre-
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- VaR 9_5% VaR level
volatility FOEL | confidence R | p-value .
level hypothesis
bounds
constant 97.5% | 4.7% | [3.6%, 5.9%] || 22.27 | 0.00% | rejected
nonparametric || 97.5% | 3.4% | [2.4%, 4.3%] || 3.65 | 5.60% | not rejected
GARCH 97.5% | 3.5% | [2.5%, 4.5%] | 4.94 | 2.62% | rejected
exponential AR || 97.5% | 4.1% | [3.0%, 5.1%] || 11.76 | 0.06% rejected
composite 97.5% | 4.0% | [3.0%, 5.0%] || 10.77 | 0.10% | rejected
implied 97.5% | 2.9% | [2.0%, 3.8%] | 0.90 | 34.34% | not rejected
constant 99% 3.1% | [2.2%, 4.1%] || 40.19 | 0.00% | rejected
nonparametric 99% 2.2% | [1.4%, 3.0%] || 14.50 | 0.01% | rejected
GARCH 99% 2.3% | [1.5%, 3.0%] || 16.12 | 0.01% | rejected
exponential AR || 99% 2.4% | [1.6%, 3.2%] || 19.55 | 0.00% rejected
composite 99% 2.3% | [1.5%, 3.1%] || 17.81 | 0.00% rejected
implied 99% 1.6% | [0.9%, 2.3%] || 4.23 | 3.97% | rejected

Table 4: FOEL test if devolatilized returns are assumed to be normally distributed

- VaR 9_5% VaR level

volatility FOEL | confidence R | p-value .
level hypothesis

bounds

constant 97.5% | 3.9% | [2.8%, 4.9%] | 8.90 | 0.28% rejected
nonparametric || 97.5% | 2.6% | [1.7%, 3.4%] || 0.01 | 91.43% | not rejected
GARCH 97.5% | 2.7% | [1.8%, 3.6%] | 0.20 | 65.42% | not rejected
exponential AR || 97.5% | 3.0% | [2.1%, 3.9%] | 1.23 | 26.65% | not rejected
composite 97.5% | 2.8% | [2.0%, 3.7%] | 0.61 | 43.40% | not rejected
implied 97.5% | 2.2% | [1.4%, 3.0%] || 0.60 | 44.00% | not rejected

constant 99% 2.2% | [1.4%, 3.0%] || 14.50 | 0.01% rejected
nonparametric 99% 1.5% | [0.8%, 2.1%] | 2.52 | 11.27% | not rejected
GARCH 99% 1.2% | [0.7%, 1.8%] | 0.72 | 39.56% | not rejected

exponential AR | 99% 1.6% | [0.9%, 2.3%] | 4.23 | 3.97% | rejected

composite 99% 1.8% | [1.1%, 2.5%] || 7.49 | 0.62% rejected
implied 99% 1.0% | [0.4%, 1.5%] | 0.04 | 83.75% | not rejected

Table 5: FOEL test if devolatilized returns are assumed to be hyperbolically distributed
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dicted quantile. Under the null hypothesis, this statistic is asymptotically x?(1)-distributed.
Tables 4 and 5 summarize the results for the stochastic volatility models from Section 3
combined with the normal resp. hyperbolic distribution for devolatilized returns.

On the whole, the normal distribution fails to provide acceptable results, especially on
the 99% level. Combined with the hyperbolic distribution, the devolatilization methods
produce mostly reasonable results — in particular compared to constant volatility. Among the
stochastic volatility models , the implied, GARCH, and nonparametric approaches perform
better than exponential AR and composite volatility.

Let us examine more closely how the predicted value-at-risk evolves through time. Fig-
ures 7 and 8 show the predicted VaR, the actual losses (if a loss occured at all), and the times
of excessive losses for the 99% level of daily VaR. Because of its superiority, we focus on
the hyperbolic case. One can observe that the predicted value-at-risk fluctuates rapidly in the
GARCH case. This may create problems for risk management since the portfolio has to be
rebalanced more frequently. Note further that the VaR changes substantially even in the case
of constant volatility, which seems to contradict the underlying assumption of i.i.d. returns.
This phenomenon stems from the fact that the estimation of the Lévy process parameters is
based only on the previous 500 data points. Without this precaution, the constant volatility
model would fail even more severely. On the other hand, this effect will be less pronounced
in calmer periods.

So far, we have concentrated on particular extreme quantiles. But it is also possible
to test the distribution as a whole. The idea is to consider the time series (Uy)i—1,.7 :=
(F\t(AXt))t:L_“,T, where }A«} denotes the predicted return distribution function for day ¢
based on the observations up to time ¢ — 1. Under the null hypothesis that F, coincides
with the law of AX;, given the past observations, we have that (U;);—1,.. r is an i.i.d. se-
quence of random variables that are uniformly distributed on [0, 1]. Following Crncovic and
Drachman (1996), we compute the Kuiper statistic to test this hypothesis. It is defined as

K = Fem - - Fem 5
o (Femp(7) = ) + max (2 = Femp())
where Fe.,, denotes the empirical distribution function of (U;):—,...r. The p-value of the
Kuiper test based on this statistic is given asymptotically by

> 0.24
2 472)0% — 1) exp(—242)\?) with \ := (\/T +0.155 + —)K
> (49 ) exp(—25°A%) Nis

(cf. Press et al. (1992), Stephens (1970)). Similarly as the Kolmogorov-Smirnov test, this
test assesses whether the empirical distribution function deviates significantly from a given
(here: uniform) law. We use the Kuiper test because it is more sensitive to the tails that are
particularly important for risk management. The test results on a 5% level can be found in
Table 6. As for the FOEL test, constant volatility and the normal distribution are mostly
rejected, whereas any of the real stochastic volatility models seems to perform well in con-
junction with the hyperbolic distribution.

=1
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normal devolatilized returns

volatility model | Kuiper statistic | p-value | null hypothesis
constant 0.0563 0.50% rejected
nonparametric 0.0744 0.00% rejected
GARCH 0.0468 5.11% | not rejected
exponential AR 0.0479 4.06% rejected
composite 0.0486 3.45% rejected
implied 0.0563 0.47% rejected

hyperbolic devolatil

ized returns

volatility model | Kuiper statistic | p-value | null hypothesis
constant 0.0670 0.02% rejected
nonparametric 0.0285 74.14% | not rejected
GARCH 0.0318 55.81% | not rejected
exponential AR 0.0405 17.24% | not rejected
composite 0.0362 32.96% | not rejected
implied 0.0290 71.70% | not rejected

Table 6: Kuiper test of the predicted return distribution

normal devolatilized returns
volatility model | BDS statistic | p-value | iid hypothesis
constant 3.87 0.01% rejected
nonparametric 1.23 21.99% | not rejected
GARCH —1.24 21.67% | not rejected
exponential AR —0.42 67.58% | not rejected
composite -1.79 7.29% | not rejected
implied -0.82 41.48% | not rejected
hyperbolic devolatilized returns

volatility model | BDS statistic | p-value | iid hypothesis
constant 3.69 0.02% rejected
nonparametric 0.33 73.81% | not rejected
GARCH -1.70 8.88% | not rejected
exponential AR —-0.84 40.00% | not rejected
composite -2.19 2.88% rejected
implied —1.14 25.40% | not rejected

Table 7: BDS test on independent transformed returns
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normal hyperbolic
volatility model || excessive losses | zone || excessive losses | zone
constant 43 red 30 red
nonparametric 30 red 20 yellow
GARCH 31 red 17 green
exponential AR 33 red 22 yellow
composite 32 red 25 yellow
implied 22 yellow 13 green

Table 8: Classification according to the Basel rules

So far we have focused on the distribution of returns. But note that the transformed
returns (Uy):—1,...r are also independent under the null hypothesis. We use the BDS statistic
to test this hypothesis (cf. Section 5). The results of the BDS test at a level of 5% are listed
in Table 7. Apart from constant volatility, only the composite model fails in conjunction
with hyperbolic returns.

For a financial institution the ultimate touchstone of a model is its approval by the su-
pervising authorities. On the other hand approval is not the only point. According to the
traffic light concept of the Basel Committee on Banking Supervision, internal models are
classified. This classification into the green, yellow, or red zone depends on how often the
actual losses exceed the daily VaR predictions on the 99% level over a period of 7" trading
days. Depending on this classification, the necessary capital reserves are assigned. Green
means that the minimum factor of 3 is applied to the VaR value, yellow results in a higher
(add-on) factor between 3 and 4, whereas red normally means rejection of the model. Our
backtesting period covers T' = 1375 trading days, which exceeds the 250 days that are typi-
cally used in practice. The results of a hypothetical classification are listed in Table 8. Once
more, the combination of stochastic volatility with hyperbolic devolatilized returns yields
the most reliable setup. Among the various models, implied and GARCH volatility perform
superior to the other devolatilization approaches.

7 Conclusion

Our study shows that randomly fluctuating volatility can and should be considered for risk
management in practice. By applying adequate (quasi-)likelihood resp. non-parametric
methods or by using implied volatility from option data, only moderate computing power is
needed to predict the short-term risk profile according to a number of models. It turns out
that both stochastic volatility and more flexible return distributions have to be taken into ac-
count in order to produce accurate predictions. Neglecting one of the two factors leads to a
substantial loss of precision. Among the stochastic volatility models, GARCH and implied
volatility seem to perform better then the nonparametric, exponential AR, or the composite
approach. In spite of erratic market movements in the backtesting period, the models under
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consideration produced excellent forecasts in combination with the hyperbolic distribution.
The availability of option prices, the computational effort, and the day-to-day variability of
value-at-risk predictions may ultimately decide which devolatilization procedure to choose.
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