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1 Introduction 
 

This short paper resolves an apparent contradiction between Feldman�s (1989) 

and Riedel�s (2000) equilibrium models of the term structure of interest rates under 

incomplete information. 

Cox, Ingersoll, and Ross (1985), (CIR), showed that in a complete information 

multiperiod production and exchange economy, the equilibrium term structure of 

interest rates is a deterministic function of the stochastic economic productivity factors 

(or growth rates, or security expected returns). Thus, mean reverting stochastic 

productivity factors induce bounded term structures of interest rates that, for long terms, 

become flat. A Lucas (1978) exchange economy, with a constant growth rate, induces a 

flat term structure.1 Feldman (1989) investigated an incomplete information version of 

the CIR economy.2 He assumed productivity factors that are unobservable and showed 

that the equilibrium term structure is set in terms of the conditional moments (the 

estimates of the unobservable factors/moments and the dynamic precision of these 

estimates). In Feldman�s incomplete information economy, as in CIR�s complete 

information one, mean reverting stochastic productivity factors induce �interior� 

bounded term structures of interest rates. Riedel (2000) investigated an incomplete 

information version of the Lucas (1978) exchange economy with an unobservable, 

constant growth rate. Interestingly, in contrast to both Lucas� complete and Feldman�s 

incomplete information equilibrium term structures, Riedel�s equilibrium term structure 

is �corner� and unbounded: as the term to maturity grows, it decreases to negative 

infinity.3 

                                                 
1 See also Dybvig, Ingersoll, and Ross (1996). 
2 The first general equilibrium works under incomplete information in this context were Feldman (1983), 
Dothan and Feldman (1986), Detemple (1986), and Gennotte (1986). 
3 Riedel (2000) shows that the yield curve is decreasing under non-normal priors as well. In the latter 
case, however, the yield curve, though �corner� and decreasing, is bounded if the range of possible 
growth rate values is bounded.  
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The apparent contradiction between Feldman�s equilibrium (FE) and Riedel�s 

equilibrium (RE) suggests the following comparisons. 1) In FE an unobservable 

stochastic productivity process induces a bounded term structure in a CIR-type 

production and exchange economy, while an unobservable constant productivity rate 

induces an unbounded one in a Lucas-type exchange only economy.  2) In FE the 

dynamic quality of information, or estimation error, increases or decreases to a non-

negative steady state as time passes, while in RE the estimation error always decreases 

asymptotically to zero.4 Thus, in RE, the unobservable constant growth rate always 

becomes asymptotically observable, and the original incomplete information economy 

always asymptotically turns into a complete information one. Furthermore, these 

patterns of evolution of the quality of information are ex-ante common knowledge to 

investors. The equilibrium term structure is set to reflect this information.  3) As we 

demonstrate in the next section, the state equations that define RE seem to be special 

cases of those that define FE. 

All the above comparisons position FE as more general and complex than RE. 

How is it possible, then, that an equilibrium term structure in a relatively �complex� 

economy is bounded, thus leading to a �stable� equilibrium, while the corresponding 

equilibrium term structure in a relatively �simple� economy induces an unbounded term 

structure, leading the equilibrium to �explode,� especially when one could possibly 

perceive the �simple� economy as a special case of the �complex� one? What causes 

the drastic difference between the equilibria? This paper defines constant and stochastic 

asymptotic moments, clarifies the apparent conflict between FE and RE, and discusses 

implications. Because productivity and growth rates are not directly observable in the 

                                                 
4 In FE, the steady state value of the estimation error is usually positive, but could be zero for certain 
parameter values. In RE, however, because the steady state value of the estimation error is always zero, a 
zero initial condition of the estimation error implies a complete information economy. Thus, in RE, the 
estimation error must start at a positive value and asymptotically decrease to zero. 
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real world, the question we answer is of particular relevance to theoretical and empirical 

asset pricing. 

Section 2 describes FE and RE; Section 3 brings closed form solutions to FE 

and RE; Section 4 introduces the definition of constant and stochastic asymptotic 

moments and characterizes FE and RE; Section 5 resolves the question that the paper 

poses; and Section 6 concludes. 

 
2 The Economies 

For simplicity and brevity, we will present the incomplete information 

structures of FE and RE in a parallel way using one set of notation. In addition, we will 

simplify FE from a multiple production technologies economy into a single production 

technology economy in order to match the single output of RE. Under these conditions, 

this section presents FE, taken from Feldman (1989), and RE, taken from Riedel 

(2000). 

We begin by introducing an FE and an RE that are described by unobservable 

state variables and, thus, are non-Markovian and do not allow state vector solutions. We 

then present σ-algebra equivalent complete information Markovian economies that are 

based on the (observable) conditional moments of the unobservable variables of the 

original incomplete information economies. These conditional moments are the 

outcome of consumers� Bayesian inference process. Within the σ-algebra equivalent 

complete information economies, we can solve for the equilibrium using stochastic 

optimal control methods [as in Merton (1971) and, later, CIR] or Martingale methods 

[as in Duffie and Huang (1985) or Pliska (1986)]. Demands, prices, and consumption in 

the σ-algebra equivalent complete information economies are identical to those in the 

original incomplete information economies. Thus the two economies are 

observationally equivalent [see Feldman (1992)]. 
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 Both the FE and the RE are multiperiod, competitive, and frictionless. Both 

have a representative consumer that maximizes time additive utility of consumption by 

choosing optimal portfolio and consumption. Both have a consumable output that 

evolves stochastically, having an unobservable productivity/growth rate. 

Feldman�s Incomplete Information Economy 

 Individuals observe the realized output Ftξ  of a single consumption/production 

numeraire good. This constant stochastic returns-to-scale output evolves as the Itô 

diffusion 

 FtFt
Ft

Ft dWBdtAAd
110 )( ++= θ

ξ
ξ , (F1) 

with initial condition 0Fξ . A ]12[ ×  vector of unobservable independent Wiener 

processes, 0},,{ 0 == FFtFtF WFWW , describes the underlying uncertainty in the 

economy. FW  is defined over a complete probability space ),,( FFF PFΩ  with a non-

decreasing right continuous family of sub-σ -algebras }0,{ TtFFt ≤≤ . A0 and A1 are 

known constants; B1 is a known ]21[ ×  vector of constants; and 'BBB 11∆ �the 

instantaneous variance of the realized output�is positive. 

Individuals, however, do not observe the realization of the stochastic 

productivity factor Ftθ , which evolves as 

 FtFtFt dWbdtaad '
110 )( ++= θθ . (F2) 

The distribution of the initial condition 0Fθ , given 0Fξ , is Gaussian with mean 0Fm  and 

variance 0Fγ ; 1b  is a known ]12[ ×  vector of constants; 1
'
1bbb ∆  is positive; and a0 and 

a1 are known constants. To ensure stability of Ftθ , in other words, to guarantee that its 

values do not diverge to infinity or negative infinity, we assume that a0 > 0 and a1 < 0. 
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These parameter values induce a mean reversion of Ftθ  to a positive asymptotic mean, -

a0/a1. 

Riedel�s Incomplete Information Economy 

 For brevity and to avoid redundancy, we will describe only the features by 

which RE differs from FE and are relevant to our analysis. The stochastic differential 

equation that governs the evolution of the realized output in RE is 

 RtR
Rt

Rt dWdtd
+= θ

ξ
ξ , (R1) 

with initial condition 0Rξ . RW  describes the underlying uncertainty in the economy. It 

is a scalar unobservable Wiener process 0},,{ 0 == RRtRtR WFWW . RW  is defined over 

a complete probability space ),,( RRR PFΩ  with a non-decreasing right continuous 

family of sub-σ -algebras }0,{ TtFRt ≤≤ . An unobservable constant 

productivity/growth rate Rθ  has a Gaussian prior distribution with mean 0Rm  and 

variance 0Rγ .5 [See Riedel (2000), pp. 54-55.] 

Feldman�s σ-Algebra Equivalent Complete Information Economy 

The posterior distribution (filter) of the unobservable productivity/growth rate 

Ftθ , given the observations tsFs ≤≤0,ξ , is6 

 FtFtFtFt WdBADdtmaadm 2/1
110 )()( −+++= γ , (F3) 

 dtADBabd FtFtFt ])(2[ 2
1

1
1 γγγ +−+= − , (F4) 

 ])([ 10
2/1 dtmAAdBWd t

Ft

Ft
Ft +−= −

ξ
ξ , (F5) 

                                                 
5 Riedel (2000) examined also the case of non-normal priors and got qualitatively similar results. 
6 See Liptser and Shiryayev (1978) Theorems 12.1 through 12.8, pp. 21-35. 
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where ]|E[ 000 FFFm ξθ∆ , ]|)E[( 0
2

000 FFFF m ξθγ −∆ , and E is the expectation 

operator. The variable ]|E[ ξθ FtFtFt Fm ∆  is the mean and ]|)E[( 2 ξθγ tFtFtFt Fm−∆  is 

the variance of the conditional distribution; and tW  is the innovation process, 

endogenously determined to be a Wiener process. The innovation process describes the 

deviations of the observations from their expected values. 11bBD ∆  is the instantaneous 

covariance between realized returns and the unobservable factor.7 The conditional 

mean, the estimate of the unobservable factor, is a sufficient statistic to the posterior 

distribution and is updated recursively. 

Riedel�s σ-Algebra Equivalent Complete Information Economy 

 The posterior distribution of the unobservable growth rate Rθ , given the 

observations tsRs ≤≤0,ξ , is 

 RtRtRt Wddm γ= , (R3) 

 dtd RtRt
2γγ −= , (R4) 

 dtmdWd Rt
Rt

Rt
Rt −=

ξ
ξ , (R5) 

where ]|E[ 000 RRRm ξθ∆  and ]|)E[( 0
2

000 RRRR m ξθγ −∆ . The variable 

]|E[ ξθ RtRtRt Fm ∆  is the mean and ]|)E[( 2 ξθγ RtRtRtRt Fm−∆  is the variance of the 

conditional distribution; and RtW  is the innovation process, endogenously determined to 

be an independent Wiener process. [See Riedel (2000), pp. 56-57.] 

                                                 
7 Liptser and Shiryayev (1978 Theorems 12.5 and 12.7) prove that if the conditional distribution of 0Fθ  

given 0Fξ  is Gaussian with mean m0 and variance 0Fγ , then FtW , mt, and Ftγ  are the unique, 

continuous, measurable solutions of the system of filter equations. Moreover, the innovation process FtW  

generates the economy; that is, the σ-algebras FF W
tF ,0ξ  and ξ

tF  are equivalent. 
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3 The Equilibria 

 Examining the two state equations of FE, Equations (F1) and (F2), and the 

single state equation of RE, Equation (R1), it seems that the former could degenerate 

into the latter. For example, if we let ,1,0 10 == AA  in Equation (F1) and allow the 

distribution of the process Ftθ  to degenerate to realize the same value at every date�in 

other words, to degenerate into a constant�it might seem that FE becomes RE.8 Thus, 

it appears that RE is a special case of FE. Feldman (1989) showed that the equilibrium 

term structure in FE is bounded, and Riedel (2001) showed that the equilibrium term 

structure in RE is unbounded. How is it possible, then, that a special case of an 

economy with a bounded equilibrium term structure has an unbounded equilibrium term 

structure? 

 We will solve the puzzle by examining the σ-algebra equivalent complete 

information economies, Equations (F3) � (F5) for FE and Equations (R3) � (R5) for RE. 

The Solution to Feldman�s Equilibrium 

The solution of the stochastic differential Equation (F3) is 

 ( ) ∫ −++−−=
t

Fs
sta

Fs
ta

F
ta

Ft Wdefeme
a
am

0

)(
0

1

0 111 )(1 γ , (F6) 

where 2/1
1 )()( −+∆ BADf FtFt γγ , and γFt, the solution of Equation (F4) is 

 
1

0

0

0

0 1
−









−
−

−







−
−

−= t
FuF

FssF
t

FuF

FssF

Fu

Fss
FuFt ee

γγ
γγ

γγ
γγ

γ
γγγ , (F7) 

where 









−








−∆ t

B
Ae FuFsst )(exp

2
1 γγ , 

                                                 
8 Alternatively, if in FE 0110 === baa , it is reduced to RE. In hindsight, a crucial difference is the 

assumption of 01 <a  in FE. 
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{ }2/122
112 )]1()[()( ρρργ −+−+−∆ kkkFss , 

{ }2/122
112 )]1()[()( ρρργ −+−−−∆ kkkFu , 

and 

2/1
1

2/1

22/1
1

2/1
1

1 )(
,)(,

/
/

bB
D

A
bBk

BA
bak ∆∆∆ ρ . 

Note that, from Equation (F7), the quality of information, γFt converges exponentially 

from a non-negative initial condition, γF0, to a non-negative absorbing steady state 

(root) γFss.9 Technically, FssFtt
γγ =

∞→
lim . 

 From Equation (F6), the distribution of mFt is normal. This is the estimate of the 

growth rate in the original economy and the growth rate in the σ-algebra equivalent 

economy [see also Liptser and Shiryayev (1978)]. Using the solutions to equations (F6) 

and (F7), we can calculate the moments of this distribution. Its mean is 

 ( )
1

0
0

1

0
0

111)(E
a
aeme

a
am t

ta
F

ta
Ft −→+−−= ∞→ , (F8) 

where E0 is the expectation operator with respect to the information at time 0.10 For any 

current date 0, the mean at any future date t is a weighted average of the initial 

condition, or current mean mF0, and the asymptotic mean -a0/a1. As the future date t 

advances, the weight of the initial condition decays exponentially to zero, and the 

weight of the asymptotic mean increases exponentially to one. 

The variance of mFt is 

 ( )∫ −=
t

sta
FsFt dsefm

0

2)(
0

1)()(Var γ , (F9a) 

                                                 
9 See Feldman (1989) Proposition 2, page 797, and its proof, pages 808-809. 
10 Note that because mFt is observable, the initial condition is known and does not contribute to the 
variance. The same will be the case (below) with respect to mRt. 
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where Var0 is the variance operator with respect to the information at time 0. While the 

diffusion component contributes to a diverging variance for further future dates, the 

damping effect of the reverting mean offsets it and, overall, the variance of mFt 

converges to a constant as the future date t advances. For a quality of information γFt 

that is already in steady state, we have 

   ( ) 2
1

1
1

22
1

1
10 )()2(1)()2()(Var 1

Fsst
ta

FssFt ADBaeADBam γγ +−→−+−= −
∞→

− . (F9) 

Note that the assumption that the quality of information is already in steady state 

simplifies the notation of the center expression in Equation (F9) above, but the limit on 

the right-hand side of Equation (F9) does not depend on this assumption. Now, consider 

the possible values of )(Var0 Ftm  between the initial time and steady state of the quality 

of information γFt. We can identify an upper bound for the variance )(Var0 Ftm . 

Because of the monotonic nature of the quality of information, γFt, and because 

)(Var0 Ftm  is a quadratic function of γFt, )(Var0 Ftm  is bounded below the value Vmax, 

where [ ]21
1

2
0

1
1 )()2(,)()2(Max FssF fafaVmax γγ −− −−∆  and Max is the maximum 

operator.11 That is, 

],0[,,)(Var0 0 ∞∈∀≤≤ ttVmaxmFt . 

The proof is straightforward and is omitted. 

Note that at each date, neither the asymptotic mean nor the asymptotic variance 

are functions of current conditions. That is, at each date, the asymptotic moments 

depend neither on the date nor on the state of the economy. 

                                                 
11 If D and A1 are of the same sign, )(Var0 Ftm  is an increasing (decreasing) function of time if γF0<γFss 
(γF0>γFss). If D and A1 are of different signs, depending on the relative sizes of the absolute values of D 
and A1γFt, the previous case or the opposite might hold. If D and A1 are of different signs and the relative 
sizes of the absolute values of D and A1γFt, change as γFt changes, )(Var0 Ftm  is a decreasing-increasing 
function of time. 
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The Solution to Riedel�s Equilibrium 

The solution of the stochastic differential Equation (R3) is 

 ∫+=
t

RsRsRRt Wdmm
0

0 γ , (R6) 

and the solution of Equation (R4) is 

 0
1 0

0 →
+

= ∞→t
R

R
Rt tγ

γγ . (R7) 

The distribution of mRt, the estimate of the growth rate in the original economy and the 

growth rate in the σ-algebra equivalent economy, is normal. Using the previous 

solutions in Equations (R6) and (R7), we can calculate the moments of this distribution. 

At each date 0, the mean at any future date is the current date mean or the initial 

condition. That is, 

 00 )(E RRt mm = . (R8) 

The variance is 

 0
0

0
0

0

2
0 1

)(Var Rt
R

R
R

t

RsRt t
tdsm γ

γ
γγγ →
+

== ∞→∫ . (R9) 

While the diffusion component contributes to a diverging variance in time, the damping 

effect of the improving quality of information, or decreasing estimation error, offsets it; 

and, overall, the variance of mRt converges to a constant. At each date 0, the variance at 

any future date t is the current date value, or the initial condition γR0, of the estimation 

error. 

We find the intuition behind the result in Equation (R9) most interesting. As the 

information flow is basically a random walk [see Equation (R6)], on one hand it should 

not make us worse off if we appropriately process it, and on the other hand it could not 

make us better off because it has no systematic information. Thus, asymptotically, we 



 11

cannot do better and should not do worse than our initial uncertainty. Indeed, at each 

date, the asymptotic variance of the observable growth rate in the σ-algebra equivalent 

complete information economy is exactly the current estimation error of the 

unobservable growth rate in the original economy. 

Note that at each date, the stochastic asymptotic mean is a function of current 

conditions. That is, at each date, the asymptotic mean depends on both the date and the 

state of the economy. The asymptotic variance, though deterministic, also depends on 

the current economic conditions, particularly on the investors' information.  

 
4 Constant/Stochastic Asymptotic Moments (CAM/SAM) 

 We use )(Mlim)(M n
s

n
s usu

mm +∞→∞ =  to denote the nth probability distribution 

moment, where n is a positive integer, with respect to the information at time s, of the 

random variable ms+u as u goes to infinity, or the time s nth asymptotic moment. In 

particular, for the first two moments we use )(Elim)(E)(M ss
1
s usu

mmm +∞→∞∞ ==  and 

)(Varlim)(Var)(M ss
2
s usu

mmm +∞→∞∞ ==  to denote the mean and variance, respectively. 

Definition. Constant asymptotic moments (CAM). We call a stochastic process mt CAM 

if 0,,and,,,),(M)(M nn >∀= ∞+∞ nhtnhtmm htt . 

Definition. Stochastic asymptotic moments (SAM). We call a stochastic process mt 

SAM if at least one of its asymptotic moments (as defined above) is stochastic. 

 Intuitively, a stochastic process is CAM if, at each date, the moments of the 

asymptotic distribution of the process� value have the same values. Similarly, a 

stochastic process is SAM if, for at least one of its asymptotic moments, the future date 

values of the asymptotic moments are random variables. Using this definition, we are 

now ready to state the following proposition. 



 12

Proposition. mFt is CAM and mRt is SAM. 

Proof. Because both mFt and mRt are Gaussian, it is sufficient to examine the first two 

moments. From Equations (F8) and (F9), neither )(Es ∞Fm  nor )(Vars ∞Fm  is a function 

of s or mFs. Thus, mFt is CAM. In addition, from Equations (R9), )(Vars ∞Rm  is a 

function of s. Thus, mFt is not CAM. Furthermore, from Equation (R8), )(Es ∞Rm  is a 

function of mRs. Because mRs is stochastic, mRt is SAM. ! 

 Examining FE, we see from Equations (F8) and (F9) that at any date s, the 

asymptotic mean and asymptotic variance of mFt are constant functions of the model 

parameters. Examining RE, we see from Equation (R8) that at each date s, the 

asymptotic mean of mRt, )(Elim s Rtt
m

∞→
 is that date productivity level mRs. Similarly, we 

see from Equation (R9) that at each date s, the asymptotic variance of mRt, 

)(Varlim s Rtt
m

∞→
 is that date�s value of the estimation error, γRs. 

In other words, in FE, at each date, and regardless of the current state of the 

economy, investors� long-term estimate of the unobservable economic productivity, or 

growth rate, is equal to some constant. This constant is the long-term mean of the mean 

reverting stochastic process that describes the evolution of the unobservable 

productivity factor. Similarly, in FE, at each date, and regardless of the current state of 

the economy, the variance of investors� long-term distribution of the productivity factor, 

or growth rate, is a constant function of the model parameters and of γFss, the steady 

state value of the quality of information.  

 In contrast, in RE, at each date, investors� long-term estimate of the growth rate 

is the current state of the economy, or the current estimate of the unobservable growth 

rate. As the growth rate of the economy in the σ-algebra equivalent economy evolves 

stochastically (as a random walk), so does the estimate of its long-term value. Similarly, 
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in RE, at each date, the variance of investors� long-term distribution of the growth rate 

is the prevailing value of the estimation error of the unobservable growth rate. Thus, as 

the current estimation error of the unobservable growth rate changes in time, so does the 

variance of the value of the long-term distribution of the growth rate. 

Note that neither FE- nor RE-equivalent economies are stationary. The ongoing 

change in the values of the estimation errors of the growth rates is sufficient to deem 

them non-stationary. 

 
5 Resolution 

 We will now argue that the term structure in the FE is bounded because the 

growth rate in its σ-algebra equivalent complete information economy is CAM, and that 

the term structure in the RE is not bounded because the growth rate in its σ-algebra 

equivalent complete information economy is a random walk SAM. The argument 

involves the following steps. 

1) It is sufficient to analyze the term structure in the σ-algebra equivalent complete 

information economies of FE and RE because demand and prices in these 

economies are equivalent to those in the original corresponding incomplete 

information economies [see Feldman (1992)]. 

2) In both the FE and the RE, the asymptotic rate of the term structure of interest 

rates is a deterministic function of the growth rate. This is one of the important 

results of CIR, and it is manifested particularly in Feldman (1989) and Riedel 

(2000). Thus, for the sake of brevity, we will not repeat FE and RE term 

structure functions. 
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3) Finally, DIR show that the long forward rate must equal the lowest possible 

value of its possible future values to prevent arbitrage.12 Because the possible 

future long rates in the CAM FE are all equal to some constant, the long rate is 

equal to this constant. In contrast, because in the SAM RE the possible future 

long rates are stochastic and follow a random walk, the long rate goes to 

negative infinity.13 

Thus, the added structure in FE actually simplifies the asymptotic properties of the 

perceived growth rate and, with that, simplifies the equilibrium. In contrast, the simple 

RE results in a random asymptotic behavior of the perceived growth rate, leading to a 

complex equilibrium. In this sense, the SAM RE is not a special case of the CAM FE.  

 
6 Conclusion 

We see how a more �complex� (�simple�) model induces a simpler (more 

complex) behavior of the asymptotic growth rate which, in turn, induces an �interior� 

(�corner�) equilibrium. The question, then, becomes one of modeling. RE is obviously 

more parsimonious, but FE has an advantage in explaining term structure stylized facts: 

we do not observe term structures that fall to negative infinity. The empirical question, 

however, is not fully resolved. As DIR point out, the data so far does not seem to 

support a no-arbitrage condition of the term structure, which says that the long forward 

rate can never fall. It is this condition that is behind the conflict between FE and RE. 

This calls for further empirical studies. 

                                                 
12 See Reidel (2000), p.62, for an intuitive explanation of the result in Dybvig, Ingersoll, and Ross (1996). 
13 Note that it is the random walk stochastic asymptotic mean of the growth rate that makes the impact in 
RE�s σ-algebra equivalent economy. The asymptotic variance is deterministic, bounded, and decreases to 
zero as a function of the age of the economy. Recall that in FE the asymptotic variance is constant. 
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