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Parsimonious estimation of credit spreads

Abstract

The traditional method of credit spread estimation is based on subtracting independently

estimated risk-free and risky term structures of interest rates which in many cases yields

unrealistically shaped and often irregular credit spread curves. A parsimonious joint

estimation of the risk-free term structure and the credit spread as proposed by Houweling et

al. (2001) might serve as a valuable alternative to overcome this drawback but it is hard to

decide whether a seemingly irregular shape of the credit spread curve is economically caused

by the data or is only an artefact of the functional form of the estimation model. Results of an

empirical examination of EMU government bond data show that traditional estimation models

with different functional forms yield differing irregularities in the credit spread curves

whereas joint estimation procedures result in well-behaving and coinciding curves. Moreover,

the explanatory power of the more parsimonious joint estimation procedures is virtually equal

to the traditional methods. This is strong evidence for the superiority of a joint estimation

procedure of credit spread curves. Finally, we conclude that a simple linear joint cubic splines

specification performs surprisingly well compared to a numerically more affording non-linear

model.

JEL: G12, G13, G15; C13
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1 Introduction

During the last decade the importance of understanding and modelling credit risk has

increased rapidly. Growing markets for corporate bonds and credit derivatives stimulated the

development of advanced valuation and risk management models in the field of credit risk.

Finally, the publication of the consultative papers of the new Basle Capital Accord by the

Basle Committee of Banking Supervision additionally fuelled the evolution of theoretical and

applied research in this field. Many of the new credit risk models require accurate

observations of the term structure of interest rates of different credit risk classes as an input.

Prominent examples for such models are the Markov chain framework first introduced by

Jarrow and Turnbull (1995) and extended by Jarrow et al. (1997) and the class of reduced

form models which exogenously model the default intensity of a Poisson process as a function

of stochastic state variables. This approach introduced by Duffie and Singleton (1997) and

Lando (1998) enables the use of well established results and techniques from the world of

affine risk-free term structure models. Both classes of models crucially rely on the availability

of reasonable data for term structures of credit spreads, i.e. the term structure of differences

between risky term structures and the risk-free one. Apparently, there is a need for accurate

and reliable procedures which estimate the term structure of credit spreads from observable

coupon bond prices.

The estimation of the discount function or the zero-coupon yield curve from observable prices

of coupon bonds is a well established field of research in the academic literature. The most

established procedures are due to the pioneering work by McCulloch (1971, 1975), Schaefer

(1981), Vasicek and Fong (1982), Nelson and Siegel (1987), and Langetieg and Smoot

(1989). Recently, more advanced estimation methods were suggested, e.g. by Steeley (1991),

Svensson (1994), Linton et al. (2001) and Subramaniam (2001). Interestingly, there are only

rare contributions to the specific problems of credit spread estimation. Traditionally, credit

spreads are estimated by subtracting independently estimated risk-free and risky term

structures of interest rates which in many cases yields unrealistically shaped and often

irregular credit spread curves. Düllmann and Windfuhr (2000) and Geyer et al. (2001) report

twisted credit spread curves for EMU government debt when the German curve is used as the

risk-free reference curve.
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Figure 1 shows a representative example where the yield curves for two government issuers

have a similar shape. This suggests a rather well-behaved or even linear shape of the credit

spread curve. Figure 2, however, shows a strong non-linear twisted pattern of the credit

spread curve.

Zero-Coupon Yield Curves for Italy and Germany (11.3.1999)
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Figure 1: Zero-coupon yield curves obtained using a cubic splines model for Italy and

Germany on March 11, 1999

Credit Spread between Germany and Italy (11.3.1999 )
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Figure 2: Credit spread curve between Italy and Germany on March 11, 1999 using a

cubic splines model
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This twisted pattern is regarded as unrealistic or irregular by many researchers since it is seen

as a contradiction to the implications of many economic credit risk models. But before

jumping to conclusions one should carefully check whether this observation is not an artefact

of the estimation procedure rather than an economic fact. In general, traditional models of

calculating the credit spread may produce doubtful results which hinder their economic

interpretation.

Houweling et al. (2001) were the first to propose a new framework to overcome this possible

drawback. They suggested to use a multi-curve approach where the risk-free term structure

and the credit spread curve are estimated jointly. This method leads to more realistic and

smoother credit spread curves in their empirical example. However, it is hard to decide

whether a seemingly irregular shape of the credit spread curve is caused by the data or is only

an artefact of the functional form of the estimation model. There is no natural benchmark

which can be used to assess the quality of an estimation model. Houweling et al. tried to

formalize the trade-off between the gain in smoothness and the decrease in explanatory power

of the more parsimonious joint estimation procedure. Based on this rather relative and

arbitrary benchmark they find strong evidence in favour of their model.

It is the main objective of this paper to provide empirical evidence that a procedure which

jointly estimates the risk-free term structure and the credit spread curve is superior to

traditional models by comparing the results of two completely different single-curve and two

completely different multi-curve models. This peer comparison provides an additional

benchmark and allows for deciding whether a flexible shape of an estimated curve is an

artefact of the functional form of the model or not. The empirical study makes use of EMU

government bond data already used by other studies but the results should also hold for

corporate bond markets as well.

The remainder of the paper is organized as follows. Section 2 gives a short general overview

over the basic yield curve estimation problem and describes the procedures used in the

subsequent analysis in detail. In section 3 data and methodology are described and the results

of the empirical study are presented. Section 4 summarizes and concludes the paper.
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2 Estimation models for the credit spread

In this section we briefly describe the basic estimation problem arising when only prices of

coupon bonds can be observed in an incomplete bond market. In the following we describe

the two different approaches to this estimation problem applied in this paper, the cubic splines

model and the Svensson model. The choice of these models may seem arbitrary but these

models span a broad class of estimation procedures and due to their practical importance

might be seen as representative examples. The main conclusions of this paper, however,  are

very unlikely to be affected by the choice of the specific models. Thus, we do not refer to

more advanced spline interpolation methods, like B-splines or exponential splines.

2.1 Basic estimation problem

First of all we describe the estimation problem in a single market setting. Then we turn to the

multi-curve estimation problem when credit spread curves are to be estimated. Consider a

bond market with N coupon bonds. Each bond i is characterised by its market price Pi (quoted

price plus accrued interest), its cash flow vector Zi, and its vector of cash flow dates Ti. A

bond market is said to be complete if the total number of distinct cash flow dates in the

market is equal to the number of linearly independent cash flow vectors, i.e. if arbitrary cash

flow structures can be replicated using portfolios of existing bonds. The absence of arbitrage

implies the existence of an unique set of discount factors D(t), where t denotes the time to any

cash flow date in the market, for which

∑ ⋅=
j

ijiji )T(DZP

holds for all i = 1, ..., N. The zero-coupon yields r(t) are related to the discount factors via

1
)t(D

1
)t(r

t

1

−





=
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In incomplete markets like the government bond markets in EMU countries the set of

arbitrage-free discount factors is not unique. Given an arbitrary set of discount factors

i
j

ijiji )T(DZP ε+⋅= ∑

applies, where εi denotes the pricing error of bond i. The basic estimation problem is aimed to

find a set of discount factors which has optimal explanatory power, i.e. which minimizes the

pricing errors with respect to a given norm, and is represented by a continuous function

depending on a parsimonious number of free parameters. Let a denote the set of parameters

and f denote the specified function then we have

D(t) = f(t;a)

and

i
j

ijiji )a;T(fZP ε+⋅= ∑

There are numerous models suggested to solve this estimation problem. These models mainly

differ in the functional specification, the number of free parameters, and the quantity for

which the functional form is specified, i.e. for the discount factors, the zero-coupon yields or

the forward rates.

2.2 Single-curve splines model

In the single-curve splines model introduced by McCulloch (1975) cubic splines are used to

model the discount function. In this approach the maturity spectrum is divided into not

necessarily equally spaced intervals. If the maturity spectrum is divided by k-1 knots there are

k free parameters to describe the entire discount function which is modelled as a linear

combination of k prespecified component functions. Let fk denote the component functions

then the estimation problem reads

∑ ∑∑ ∑ ε+⋅⋅=ε+⋅⋅=
k j

iijkijki
j k

ijkkiji )T(fZa)T(faZP
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Employing the linear structure of this model the optimal parameters can easily be obtained by

performing an OLS regression.

Finally, the credit spread curve of a specific country with respect to a reference curve is

calculated by subtracting the reference zero-coupon yield curve from the zero-coupon yield

curve of the country.

sc(t) = rc(t) – rref(t)

sc(t) credit spread between country c and the reference country for maturity t

rc(t) zero-coupon yield for country c for maturity t

rref(t) zero-coupon yield for the reference country for maturity t

2.3 Single-curve Svensson model

In the single-curve Svensson model the estimation procedure suggested by Svensson (1994) is

used to specify the zero-coupon yield curve directly using the functional form

+





τ−−

τ
τ−−

⋅β+





τ

τ−−
⋅β+β= )/texp(

)/t(

)/texp(1

)/t(

)/texp(1
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1
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)/texp(1
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3

where β0, β1, β2, β3, τ1, τ2 are parameters.

The interpolation function now becomes

[ ] ijT
ijij )T(r1)a;T(f −+=

where the function r(.) is defined as above.

The parameters can be obtained by performing a non-linear optimisation with the parameter

restrictions β0 > 0, τ1 > 0, and τ2 > 0. This procedure which is an extension of the well-known
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Nelson and Siegel (1987) approach is widely used by practitioners as well as central banks

and other financial institutions. It is regarded to produce more regular or smoother functions

than a splines interpolation.

Again the credit spread curves are calculated by subtracting the reference curve from the zero-

coupon yield curve of a specific country.

2.4 Multi-curve splines model

In the multi-curve splines model the zero-coupon yield curve of the reference country and the

credit spread curves of the other countries are estimated jointly. All the curves are estimated

with cubic splines as introduced in section 2.2. In order to have a more parsimonious

specification the number of parameters for the credit spread curve can be reduced compared

to the reference curve. The joint estimation uses the following framework for the discount

functions:

∑
=

⋅=
refk

1k
k,0k,ref0 a)t(f)t(D  discount function for the reference

country

∑
=

⋅+=
spreadk

1k
k,ck,spread0c a)t(f)t(D)t(D discount function for country c = 1, ..., C

kref number of parameters for the zero-coupon yield curve of the reference country

kspread number of parameters for the credit spread curves

fref,k(t) component functions which use the chosen knots of the zero-coupon yield

curve of the reference country

fspread,k(t) component functions which use the chosen knots of the spread curves

a0,k parameters of the zero-coupon yield curve of the reference country

ac,k parameters of the credit spread curve of the country c

This multi-curve model uses two features to improve the single-curve model. First it directly

estimates the spread curves with a parsimonious splines model and second the reference zero-

coupon yield curve and all spread curves are estimated jointly.
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Using this framework we obtain the following linear regression model for C+1 countries.



















+



















⋅



















=



















⇔+⋅=

C

1

0

C

1

0

CC

11

0

C

1

0

S

S

Y

Y

Y

aXY

a

a

a

0X

0X

00X

��

�

����

�

�

�

Yc is a vector consisting of elements

∑−=
j

ijii ZPy ,

Xc is a matrix with elements

)T(fZx ij
j

k,refijik ∑ ⋅= ,

 Sc is a matrix with elements

)T(fZs ij
j

k,spreadijik ∑ ⋅= ,

ac is a vector of parameters for country c, and

εc is a vector of residuals for country c assumed to be iid (0,σc
2).

The residual term is allowed to have different variances for each country because in some

countries bond prices a generally more noisy than in other countries. To estimate the

parameters a Restricted Feasible GLS procedure (see, e.g. Greene (2000)) is applied.

Numerical examples for applications in the given framework show, however, that the

relaxation of the variance structure is of minor importance for the results.
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2.5 Multi-curve Svensson model

In the multi-curve Svensson model the zero-coupon yield curve of the reference country and

the credit spread curves of the other countries are estimated jointly. For the zero-coupon yield

curve of the reference country we use the original Svensson approach with the functional

form presented in section 2.3. To allow for a parsimonious specification the credit spread

curves are modelled using the four parameter approach suggested by Nelson and Siegel

(1987) which has the functional form

)/texp(
)/t(

)/texp(1
)t(s cc,2

c

c
c,1c,0c κ−⋅γ+





κ

κ−−
⋅γ+γ=

where γ0,c , γ1,c , γ2,c, κc  are parameters.

Note, that the four-parameter Nelson-Siegel model is nested in the six-parameter Svensson

model with β0 = γ0,c, β1 + β2 = γ1,c, β2 = -γ2,c, β3 = 0, τ1 = κc and τ2 = 1. In the following the

Nelson-Siegel model is regarded as a four-parameter version of the Svensson model.

The zero-coupon yield curve for the reference country rref(t) is again specified by a Svensson

model with six parameters. The interpolation function is now defined as

[ ] [ ] ijij T
ijcijref

T
ijcijc )T(s)T(r1)T(r1)a;T(f −− ++=+=

where a = {β0, β1, β2, β3, τ1, τ2; γ0,1 , γ1,1 , γ2,1, κ1; .…; γ0,C , γ1,C , γ2,C, κC}.

The reference zero-coupon yield curve and all spread curves are estimated jointly by

performing a non-linear GLS procedure analogue to the linear procedure described in section

2.4.
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3 Empirical Analysis

3.1 Data

The time series data used in this study include daily prices of EUR denominated EMU

government bonds from the period 01/1999 to 03/2001. We make use of this data set for the

following reasons: (i) It comprises the largest and most liquid bond market where bonds of

different issuers are traded in a homogeneous segment, (ii) in comparison to the corporate

bond market the quality and reliability of the price information is much better, and (iii) credit

spread curves obtained from EMU government bond prices have already been used by other

researchers, e.g. Düllmann and Windfuhr (2000), Geyer et al. (2001). Nevertheless, we are

aware of the fact that the observed spreads between different EMU issuers are potentially

caused by other effects (e.g. liquidity) than credit risk. Preliminary results from the EMU

government bond market, however, show that liquidity effects cannot fully explain the size

and the variation of cross-country spreads (see Jankowitsch et al. (2002)). Moreover, the

conclusions of this paper are based only on technical properties of the estimation procedures

and are expected to hold even if the economic reason for the spread is different.

We restrict our analysis to coupon bonds without any option features with reliable price

information and a time to maturity shorter than ten years. The data set includes the basic

features of the bonds, e.g. the maturity and the exact cash flow schedule. The daily prices are

taken from Bloomberg using the Bloomberg generic price source (BGN). For a detailed

description of this data set refer to Jankowitsch and Pichler (2002). In order to provide

meaningful results we make use of data collected from the following nine national

submarkets: Germany, France, Italy, Austria, The Netherlands, Belgium, Portugal, Spain and

Finland.

Table 1 contains the number of government bonds for each country which are used

throughout this study:

Germany France Italy Austria Netherlands Belgium Portugal Spain Finland

Number

of  Bonds
104 106 104 99 45 36 26 39 56

Table 1: Number of government bonds for each country
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Luxembourg is not considered in this data set because there exists no publicly traded

government debt. Greece is excluded because it did not take part in the starting phase of the

EMU in 1999. Ireland is also excluded because it only has five liquid bonds outstanding.

Though this data set is unique with respect to the countries and variables included offering a

great opportunity for research it is important to realise possible weaknesses of this data set.

The data set only contains quotation prices and not the actual trade price. The quoted price

may only hold for a relatively small quantity, whereas traders demanding higher quantities

cannot in advance determine the actual price for the entire quantity they wish to trade.

However, practitioners use these quotations in their daily work and the quotes are regarded by

market participants to be good for a certain size, typically EUR 10 million, and most of the

transactions are taking place within the quoted bid-ask spread.

3.2 Methodology

As the starting point of our empirical analysis we estimate the zero-coupon yield curves for

the countries of the EMU government bond market using a standard cubic splines model

(single curve splines model) as introduced by McCulloch (1975) with equidistant knots and

the wide-spread non-linear procedure (single curve Svensson model) suggested by Svensson

(1994). For the single-curve splines models we use a four parameter specification which turns

out to be optimal for most countries throughout the analysis. By taking the German

government bonds as risk-free we calculate the credit spreads for the other EMU countries by

subtracting the German reference curve from the respective zero-coupon yield curves. We

perform a visual inspection of these credit spread curves to check whether their shapes are

driven by economic reasons or rather by the functional form of the model specifications.

Given the sparse availability of bonds with longer maturities we restrict our analysis to the

maturity spectrum from one to ten years for all countries. The short end of the term structure

is eliminated from the analysis mainly because of the lack of liquid price information for very

short maturities.

In a second step we extend our analysis to the use of multi-curve models to estimate the credit

spread curves. In these models the zero-coupon yield curve of the risk-free country
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(Germany) and the credit spread curves of the other countries are estimated jointly by using a

parsimonious modelling technique for the credit spreads to filter possible effects which might

produce irregular shapes of the credit spread curves. We transform the cubic splines model as

proposed by Houweling et al. (2001) into a multi-curve model by using a three parameter

credit spread curve. The six parameter Svensson model is transformed by using the nested

four parameter Nelson-Siegel model for the credit spread curve, i.e. kref = 4 and kspread = 3.

(for a general description of the models see section 2).

In order to formalise the basis of our conclusions and to incorporate the findings of all

countries and of the entire observation period we calculate several statistics which summarise

the main properties of the different models. Along the lines of Houweling et al. (2001) we

calculate the smoothness of the spread curve function to quantify the effect of eliminating the

potential of irregular shapes of the credit spread curves.

Following Poirier (1976) and Powell (1981) the smoothness is derived by computing the

integral of the square of the second derivative of the credit spread function s(t) over the

interval [t1, t2]:

∫ ′′=
2

1

t

t

2 dt)t(ssmoothness

To examine whether a improvement in the smoothness parameter has significant negative

influence on the explanatory power models we calculate the average absolute pricing errors

for each country.

c

N

1i

elmod
i

market
i

N

PP
error pricing absolute Average

c

∑
=

−
=

where Pi
market market price of bond i

Pi
model model price of bond i

Nc  number of bonds in country c
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Due to its lower degree of flexibility the more parsimonious multi-curve specifications are

expected to produce higher pricing errors. The decrease in explanatory power should be

comparably small if the flexible shape of the single-curve models is exclusively caused by the

functional form of the specification. If the flexible shape of the credit spread curve estimates

is at least partly caused by economic reasons, the pricing errors implied by the parsimonious

multi-curve models are expected to be much higher than their single-curve counterparts.

3.3 Results

In the first step of our procedure we estimated zero-coupon yield curves for each country on a

daily basis using four different estimation procedures, (i) the single-curve splines model, (ii)

the multi-curve splines model, (iii) the single-curve Svensson model, and (iv) the multi-curve

Svensson model. Before turning to formal comparisons of the different models we perform a

visual inspection of the resulting yield and spread curves. The results show that all models

produce very similar zero-coupon yield curves (see figures 3 and 4 for a representative

example) but the credit spread curves are quite different.

Zero-Coupon Y ield Curve for Italy (11.3.1999)
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Figure 3: Zero-coupon yield curve for Italy (11. 3. 1999) using the single-curve and the

multi-curve splines model
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Figure 4: Zero-coupon yield curve for Italy (11. 3. 1999) using the single-curve and the

multi-curve Svensson model

In most cases both single-curve models produce twisted curves for the credit spread but the

shapes of these curves are very different, however (see figures 5 for a representative

example). In general, the minima and maxima of the resulting curves are in different maturity

segments and in many cases the Svensson model implies a S-shape whereas the splines model

implies an inverse S-shape. Note, that the comparison between the models is based on

identical input data drawn from a particular country for one particular day. Based on these

observations we conclude that the specific form of the resulting credit spread curves is an

artefact of the functional form of the estimation model rather than implied by the data.

The two multi-curve models produce smoother credit spread curves in all observed cases.

Moreover, usually the resulting curves are similar to each other, although they are not

identical (see figures 6). Typically, the twists and S-shapes are not observed in the multi-

curve results. Since the multi-curve models lead to coinciding results and look more

‘plausible’ from an intuitive perspective we conclude that the shapes of the spread curves

resulting from these models are implied only by the data and are not adversely affected by the

functional form of a specific model.
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Figure 5: Credit spread curve for Italy (11. 3. 1999) using the single-curve splines and

the single-curve Svensson model
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Figure 6: Credit spread curve for Italy (11. 3. 1999) using the multi-curve splines and

the multi-curve Svensson model

The difference between the results of the multi-curve models can be explained. Both produce

smoother curves compared to their single-curve counterparts by estimating the zero-coupon

yield curve of the reference country jointly with the credit spread curves and by reducing the

flexibility of the credit spread curves due to their more parsimonious specification. The main

difference between the multi-curve models is by which extent they reduce the flexibility of

the spread curves. Given the specifications chosen in our study the multi-curve splines model
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reduces the flexibility more than the multi-curve Svensson model. Which of these models

performs better depends on the quality of the data. If nearly all government bond prices are

exactly explained by the zero-coupon yield curve the flexibility need not be reduced as much

as if there are some larger pricing errors. So in the first case the multi-curve Svensson model is

more preferable than the multi-curve splines model and vice versa.

Note, however, that these conclusions are only based on a purely informal and subjective

visual inspection of the resulting yield and spread curves. In order to formalise the basis of

our conclusions and to incorporate the findings of all countries and of the entire observation

period we calculate several statistics which summarise the main properties of the different

models.

In the following step we examine the improvement of the smoothness of the resulting curves

by calculating the smoothness parameter between the maturities of two and ten years for all

estimated curves. Table 2 shows the average smoothness of the credit spread curves

(multiplied by 107) of all four estimation methods:

Germany France Italy Austria Netherlands Belgium Portugal Spain Finland

SC-Splines N/A 6.04 0.95 5.77 1.81 1.23 4.55 1.27 2.54

SC-Svensson N/A 6.38 1.37 2.13 0.42 1.77 6.44 1.92 1.63

MC-Splines N/A 3.49 0.31 0.42 0.52 0.45 0.56 0.26 0.23

MC-Svensson N/A 3.32 0.76 1.21 0.40 0.78 2.51 1.45 1.25

Table 2: Average smoothness of the credit spread curves (multiplied by 107)

Table 3 shows the difference in the smoothness of the credit spread curve between single-

curve splines model and multi-curve splines model. The difference is measured as the

smoothness of multi-curve splines model minus the smoothness of single-curve splines model

(divided by the smoothness of single-curve splines model for the percentage statistics).

Germany France Italy Austria Netherlands Belgium Portugal Spain Finland

Absolute N/A -2.55 -0.64 -5.35 -1.29 -0.78 -3.99 -1.01 -2.31

Percent N/A -42.26 -67.32 -92.69 -71.27 -63.55 -87.72 -79.44 -90.86

Table 3: Differences in the average smoothness between single-curve splines model and

multi-curve splines model
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Table 4 shows the difference in the smoothness of the credit spread curve between single-

curve Svensson model and multi-curve Svensson model. The difference is measured as the

smoothness of multi-curve Svensson model minus the smoothness of single-curve Svensson

model (divided by the smoothness of single curve Svensson model for the percentage

statistics).

Germany France Italy Austria Netherlands Belgium Portugal Spain Finland

Absolute N/A -3.06 -0.61 -0.93 -0.02 -0.99 -3.94 -0.47 -0.39

Percent N/A -47.96 -44.71 -43.46 -4.71 -56.06 -61.09 -24.64 -23.84

Table 4: Differences in the average smoothness between single-curve Svensson model

and multi-curve Svensson model

The results regarding the smoothness parameter clearly support the finding that the artificial

twisted form of the credit spread curves in the single-curve models is corrected by the multi-

curve models in the overall sample. The improvement (–74% on average) is larger when

changing from the single-curve splines model to its multi-curve counterpart because of the

stronger reduction in the flexibility of the credit spread as explained earlier. But the

improvement (–38% on average) for the non-linear Svensson case is also impressive. Note,

that in contrast to the spread curves the smoothness of the yield curves resulting from a multi-

curve model (not presented here) is virtually equal to the smoothness of single-curve results.

Additional examinations not presented in detail show that the volatility of logarithmic interest

rate changes over time remains virtually at the same level when moving from a single-curve

to a multi-curve model. Interestingly, the volatility of the multi-curve credit spreads is about

2.3% smaller for the splines model and about 5% smaller for the Svensson model than the

single-curve counterpart. This finding supports our conclusion that a multi-curve model

explains the variations of the underlying term structures equally well but reduces the effect of

artificial volatility caused by the adverse influence of the functional specifications in the

single-curve models.

We have shown that the use of a multi-curve model reduces the flexibility of the credit spread

function and unrealistic twisted shapes which are artefacts of the estimation procedure can be

avoided. The important question is, however, whether this improvement in the smoothness

has significant negative influence on other important aspects of model quality, e.g. pricing
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errors. Obviously, the more parsimonious multi-curve specification is expected to produce

higher pricing errors, i.e. is expected to have a lower explanatory power, due to its lower

degree of flexibility. But the decrease in explanatory power should be comparably small if the

flexible shape of the single-curve models is exclusively caused by the functional form of the

specification. On the other hand, if the twisted shape of most of the credit spread curve

estimates is at least partly caused by economic reasons, the pricing errors implied by the

parsimonious multi-curve models are expected to be much higher than their single-curve

counterparts.

In order to check whether the differences in the explanatory power is significant across

models we calculate the absolute pricing errors (absolute value of the difference between

market price and model price). Table 5 shows the average absolute pricing errors measured in

basis points for all countries and for all four models:

Germany France Italy Austria Netherlands Belgium Portugal Spain Finland

SC-Splines 9.91 11.14 8.80 7.88 9.41 9.04 14.97 10.04 6.06

SC-Svensson 10.52 10.54 9.21 7.41 9.29 9.00 15.79 10.48 6.27

MC-Splines 10.06 11.55 9.06 9.52 9.63 9.40 16.58 10.92 6.66

MC-Svensson 10.33 12.41 9.22 7.72 9.35 10.05 16.58 10.68 6.51

Table 5: Absolute average pricing errors for all countries

Table 6 shows the difference in the average absolute pricing error between single-curve

splines model and multi-curve splines model. The difference is measured as the average

pricing error of multi-curve splines model minus the average pricing error of single-curve

splines model (divided by the average pricing error of single-curve splines model for the

percentage statistics).

Germany France Italy Austria Netherlands Belgium Portugal Spain Finland

Basis points 0.15 0.41 0.26 1.64 0.22 0.36 1.61 0.89 0.60

Percent 1.49 3.70 2.94 20.79 2.31 3.96 10.74 8.84 9.87

Table 6: Differences in the average absolute pricing errors between the single-curve

splines model and the multi-curve splines model
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Table 7 shows the difference in the average absolute pricing error between single-curve

Svensson model and multi-curve Svensson model. The difference is measured as the average

pricing error of multi-curve Svensson model minus the average pricing error of single-curve

Svensson model (divided by the average pricing error of single-curve Svensson model for the

percentage statistics).

Germany France Italy Austria Netherlands Belgium Portugal Spain Finland

Basis points -0.19 1.84 0.01 0.32 0.05 1.05 0.78 0.20 0.22

Percent -1.79 17.52 0.11 4.29 0.58 11.68 4.94 1.87 3.55

Table 7: Differences in the average absolute pricing errors between single-curve

Svensson model and multi-curve Svensson model

The results clearly indicate that the decrease in explanatory power of the multi-curve models

is negligible at least when measured in absolute terms. For most countries the increase of the

average pricing errors is very small even when measured in percent (on average 7% for the

splines models and 4.7% for the Svensson models). The only outliers are Austria and Portugal

for the splines models and France and Belgium for the Svensson models where the percentage

increase of average pricing errors exceeds 10%. Note, that these differences are not

economically significant given the usual bid-ask spreads of 3-10 basis points to be observed

in these markets (see e.g. Jankowitsch et al. (2002)).

Compared to the reduction of the smoothness the other important property of the models does

not change significantly supporting the hypothesis that the flexible shape of the single-curve

models is exclusively caused by the functional form of the specification. We conclude that for

the estimation of credit spread curves the use of multi-curve models is clearly superior to the

use of single-curve models.

The differences between the multi-curve splines model and the multi-curve Svensson model

are rather small. As explained above the multi-curve splines model is preferable if there are

some larger pricing errors. So this model is a better choice except when having very small

pricing errors (e.g. when only market data of benchmark bonds are used). Given this

observation and the obvious numerical advantages of the linear splines model we suggest to

use a multi-curve splines model to estimate credit spread curves.
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4 Summary

We provide empirical evidence that a parsimonious procedure which jointly estimates the

risk-free term structure and the credit spread curve is superior to traditional models where the

credit spread curve is obtained by subtracting the risk-free reference curve from the risky term

structure. The framework of a multi-curve cubic splines model originally suggested by

Houweling et al. (2001) is extended to cover a multi-curve version of the Svensson-Nelson-

Siegel approach. This peer comparison provides an additional benchmark and allows for

deciding whether a flexible shape of an estimated curve is an artefact of the functional form of

the model or not. The empirical study makes use of EMU government bond data already used

by other studies but the results should also hold for corporate bond markets as well.

The results regarding the smoothness parameter show impressive evidence that the artificial

twisted form of the credit spread curves in the single-curve models is corrected by the multi-

curve models in the overall sample. This finding is supported by an examination of the

volatility of logarithmic interest rate changes which remains virtually at the same level when

moving from a single-curve to a multi-curve model whereas the volatility of the multi-curve

credit spreads is remarkably smaller than in the single-curve framework.

The decrease in explanatory power of the multi-curve models is negligible at least when

measured in absolute terms. The observed pricing errors of the more parsimonious multi-

curve models are approximately equal to the pricing errors of single-curve models. Given the

improvement of the smoothness this finding supports the hypothesis that the flexible shape of

the single-curve models is exclusively caused by the functional form of the specifications. We

conclude that for the estimation of credit spread curves the use of multi-curve models is

clearly superior to the use of single-curve models.

The differences between the multi-curve splines model and the multi-curve Svensson model

are rather small. Generally, the multi-curve splines model is preferable if there are some

larger pricing errors. So this model is a better choice except in a setting with very small

pricing errors. Given this observation and the obvious numerical advantages of the linear

splines model we suggest to use a multi-curve splines model to estimate credit spread curves.
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