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Abstract

Trades in DAX index options with identical maturities cluster around partic-

ular classes of strike prices. For example, options with strikes ending on 50 are

less traded than options with strikes ending on 00. Clustering is higher when

options with close strike prices are good substitutes. The degree of substitution

between options with neighboring strikes depends on the strike price grid and op-

tions’ characteristics. Using regression analysis we analyze the relation between

clustering, grid size, and the options’ characteristics. To our knowledge this paper

is the first to explore how the grid size of strike prices affects options’ trading

volume.
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1 Introduction

On a typical day, trading activity in DAX index options on the Eurex follows a sawtooth

pattern. For options with the same maturity date turnover is high on one strike price,

drops for the next highest strike price, and rebounds for the second-next highest strike

price, etc.1 Why does trading activity cluster around some strike prices? What fac-

tors determine the cross-sectional distribution of trading volume for option series with

identical maturity dates? Answers to these questions have important implications for

market design. When an exchange decides on the grid size of strike prices for option

contracts it has to consider the effect this has on the overall trading volume. On the

one hand, if the grid is too coarse, trading volume might be low because some traders

do not find a contract tailored to their needs. On the other hand, if the grid is too

fine overall volume on the exchange might decrease because individual contracts have

too little trading volume because demand is divided among many contracts. Intuitively,

if options with different strike prices are good substitutes the strike price grid can be

coarser than if they are bad substitutes.

The phenomenon of clustering has been extensively analyzed in a different context.

In many financial markets transaction prices cluster around round price fractions

(Grossman, Miller, Cone, and Fischel 1997, Gwilym, Clare, and Thomas 1998). Ball,

Torus, and Tschoegl (1985) argue that the amount of information available in the mar-

ket could determine the market participants’ degree of price resolution. To simplify

negotiations traders might restrict trading to a discrete price set that is coarser than

the price set available (Harris 1991, Harris 1994).

In option markets the exchange has to choose not only the minimum tick size but also the

strike price grid and the maturity structure of option contracts. For the same underlying

asset and the same maturity date there typically exist several option contracts which

differ only in their strike prices. In the spirit of Harris (1991)’s negotiation hypothesis,

1The same phenomenon can be found in other options on European stock indices, such as the French
CAC40, the Swiss SMI, and the DJ EURO STOXX 50. It is interesting to note that clustering in strike
prices is generally not observed in U.S. index options. We are grateful to Bruce Lehmann for pointing
this out to us.
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traders may use discrete strike price sets which are coarser than the strike price set

introduced by the exchange. This could facilitate negotiations which are along two

dimensions for options, namely prices and strike prices. Moreover, as in Ball, Torus,

and Tschoegl (1985)’s price resolution hypothesis, traders possibly choose their desired

strike price gradation depending on how accurately they can forecast the value of the

underlying asset on the maturity date of the option. If traders use coarser strike price

gradations than the exchange’s strike price set this results in clustering of trading activity

for option series with the same time to maturity.

This paper examines the relation between trading activity in different contracts in the

DAX index options market. The Eurex’ institutional features segment the markets for

options with identical maturity dates according to their strike prices into three strike

classes. In the following, 200-strike options refer to the strike class containing all options

traded on the 200 index point grid, i.e. with strike prices ending on 000, 200, 400, 600,

or 800; 100-strike options are traded on the 100 index point grid comprising strikes

ending on 100, 300, 500, 700, or 900; 50-strike options are traded on the 50 index point

grid with strikes ending on 50. The additional hybrid 100/200-strike class contains

all options that are either 100- or 200-strike options. Options with time to maturity

exceeding one year all belong to the 200-strike class.

The exchange starts introducing 100-strike options one year before maturity and 50-

strike options six months before maturity. 200-strikes are more frequently traded than

100-strikes, and 100/200-strikes are more frequently traded than 50-strikes. This cluster-

ing of trading activity is partly due to differences in open interest. On average 200-strikes

are older than 100-strikes and therefore have typically accumulated higher open interest

than the 100-strikes. Similarly, the open interest on 100/200-strikes is typically higher

than on 50-strikes. Our hypothesis is that clustering of trading activity depends on the

degree of substitution between options with close strike prices. We maintain that the

degree of substitution between options not only depends on open interest but also on the

level of the DAX index, time to maturity, the volatility of DAX index returns, options’

moneyness, and options’ deltas.
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If options with close strike prices are good substitutes traders would like to concentrate

their trades on one contract to generate liquidity. We hypothesize that the sequential

introduction of strike prices serves as a coordination device, making particular strike

classes focal. 200-strikes are more attractive than 100-strikes and 100/200-strikes are

more attractive than 50-strikes. We introduce two measures of clustering of trading

activity and estimate the relation between clustering and the options’ characteristics to

test our hypotheses. A regression analysis supports our predictions about the impact

of the options’ characteristics on clustering and about the relative attractiveness of the

different strike classes.

The remainder of this paper is organized as follows. Section 2 describes the institu-

tional features of the DAX index options market. Section 3 explains what factors affect

clustering. Section 4 contains the empirical analysis of clustering of trading activity.

Section 5 summarizes results and gives conclusions.

2 Market Description

DAX index options trade on the Eurex which is an order driven electronic trading

system that ranks orders and quotes by their price and time precedence. Market makers

in DAX index options have to respond to at least 50 percent of quote requests during

each trading day. These have to be filled within one minute with quotes not exceeding

a maximum spread of 15 percent and with a minimum quoted depth of 20 contracts. In

exchange they face lower transaction fees (Deutsche Börse 2001b).

Options on the DAX 30 stock index are European style and have a contract value of

¿ five per index point. On every trading day the menu of available call and put options

includes eight different maturity classes. All contracts expire on the third Friday of their

respective expiry months or, if this is a holiday, on the last prior exchange day. For

options in the first three maturity classes these expiry dates are in the three succeeding

months, respectively. Contracts in maturity classes four, five, and six expire in the

succeeding three quarterly expiration months (March, June, September, and December),
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respectively. Maturity classes seven and eight comprise the succeeding two half-year

expiration months (June and December).

DAX index options’ strike prices are restricted to lie on price grids with grid sizes

of 50, 100, or 200 index points. The Eurex’ rules for introducing new option series

mandate that strike prices for option series with remaining time to maturity of more

than 12 months have a price gradation of 200 index points, those with a remaining

term of six to 12 months have a price gradation of 100 index points, and those with

less than six months to maturity have a price gradation of 50 index points (Deutsche

Börse 2000a, Deutsche Börse 2001a).

The menu of option series ranges from a minimum of five strikes for maturities longer

than six months to a minimum of nine strikes for shorter terms. New option series are

introduced if the closing level of the DAX exceeded (dropped below) the average of the

third- and second-highest (third- and second-lowest) existing exercise prices on the two

preceding trading days. An option series is only cancelled if no market participant holds

any open position (Deutsche Börse 2000a, Deutsche Börse 2001a).

In the DAX Futures market contracts are valued at ¿25 per index point. The futures’

maturities do not always match those of the DAX index options since contracts are

available only for the succeeding three quarterly settlement dates, i.e. the maximum

term is nine months.

3 Factors Affecting Clustering

Our hypothesis is that the degree of substitution between neighboring 50-strike and

100/200-strike options, and between neighboring 100-strike and 200-strike options de-

termines the extent of clustering. When two options with neighboring strike prices are

close substitutes trading activity concentrates on the more attractive option. Addi-

tionally, we argue that the sequential nature of introduction of strike classes leads to

200-strikes being more attractive than 100-strikes and 100/200-strikes being more at-

tractive than 50-strikes. We consider the following factors which affect the degree of
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substitution between options:

Level of the DAX index

When the level of the DAX index goes up the absolute difference in strike prices be-

tween neighboring options relative to the index level decreases and, therefore, becomes

economically less meaningful.2 The smaller the relative distance is between options

(in terms of their strike prices) the higher is the degree of substitution between them.

Hence, clustering should increase when the level of the DAX index is high and decrease

when the level of the index is low, ceteris paribus.

Time to maturity and volatility of index returns

Many investors in option markets are directional traders who pursue buy-and-hold

strategies, i.e. they close their positions near maturity or exercise options. These traders

are interested in the index level at or near maturity. The accuracy with which traders

can predict the final index level decreases with increasing time to maturity and increas-

ing volatility of the index returns. If investors’ predictions become less precise, small

differences in strike prices are less important to them.3 Hence, in choosing between

neighboring options which have small strike price distances, such as 50 or 100 index

points, trading will concentrate on the more attractive strike classes. This means that

clustering should increase with volatility and time to maturity.

Options’ deltas

An option’s delta gives the sensitivity of the option’s price to changes in the index

level. Market makers usually combine options with different deltas in order to minimize

exposure to risk by keeping the delta of their total position close to zero. Other traders

also require a particular delta for their hedging needs. For these types of traders two

options with similar deltas are close substitutes. Therefore, one can expect clustering

to increase with the absolute value of differences in options’ deltas.

2Harris (1991) uses a similar argument in the context of minimum price variation rules.
3This argument is similar to the price resolution hypothesis in Ball, Torus, and Tschoegl (1985).
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Options’ moneyness

In options markets trading tends to concentrate around the at-the-money point and

volume decreases for options that are further away from the at-the-money point. We

expect clustering to increase for options that are farther away from the money since

traders strive to coordinate trades to generate volume.

Options’ open interest

Open interest is a sign of potential future turnover in an option because it affects the

number of positions that will be closed out. If two neighboring options do not differ much

in the previous factors then traders prefer the option with higher open interest. The

effect of open interest on clustering should be strongest for longer term options because

there are fewer opportunities to close out positions when time to maturity decreases.

When options are close substitutes traders are interested in coordinating their trades in

order to increase the volume on the option series they hold. One way coordination can be

achieved is if some strike classes become focal. We argue that the sequential introduction

of strike prices makes 200-strikes more attractive than 100-strikes and 100/200-strikes

more attractive than 50-strikes.

4 Analysis of Clustering in Trading Activity

We define two measures of clustering in trading activity. The first measure captures

clustering in an aggregate sense by comparing total transaction volumes across differ-

ent strike classes. The second measure gauges clustering between pairs of neighboring

options belonging to different strike classes. We regress the two measures on the factors

described in Section 3 to explain trade clustering between 50- and 100/200-strike options

as well as between 100- and 200-strike options.

Our data set comprises all transactions in DAX index futures and options contracts

traded on the Eurex during the period from January 4, 1999 until September 29, 2000

(445 trading days). We restrict our analysis to the first four maturity classes for which
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all strike price classes coexist.4

4.1 Aggregate Clustering in Transaction Volume

4.1.1 Aggregate Measures of Clustering

Our measure of aggregate clustering is roughly the ratio of the average numbers of

transactions per option for two different strike classes. Using simple averages would give

a distorted measure of clustering. To see this, consider 200-strikes which are introduced

earlier than 100-strikes. As time passes and the level of the index changes, some of the

older option series go very deep in- or out-of-the-money. Therefore, at a given point of

time one can expect to find more deep-in- or deep-out-of-the-money 200-strikes than 100-

strikes. Typically, far-away-from-the-money options witness less trading or none at all.

This would bias average transaction volume in favor of the 100-strikes. To overcome this

problem, our aggregate measure of clustering compares only the transaction volumes of

options which are ”neighbors”. A 100-strike (50-strike) and a 200-strike (100/200-strike)

option are neighbors if their strike prices differ by 100 (50) index points.

The aggregate measure of clustering in transaction volume for 100- versus 200-strike

options is computed for every trading day according to the following procedure. First, we

record the individual transaction volume for the two options in every pair of neighboring

200-strike and 100-strike options on that day. Then we separately sum up over all option

pairs the number of transactions on 200-strikes and on 100-strikes, respectively. The

measure of clustering for 100- versus 200-strikes, AC
200/100
t , is defined as the logarithm

of the ratio of the total transaction volume on 200-strike options over that on 100-

strike options. To account for the impact of open interest on clustering we define a

the measure AO
200/100
t which is computed following the same steps as above with one

slight modification. If both 100- and 200-strikes have zero open interest, this is treated

as if the open interests where equal and positive, i.e. we then define AO
200/100
t to be

4According to the Eurex’ rules for introducing new options only the first four maturity classes should
contain 50-strike options (Deutsche Börse 2000a, Deutsche Börse 2001a). In our data set, 50-strike
options are available on 200 (20) days for maturity class five (six). In these maturity classes the
remaining life time of the options exceeds six months. Our focus on the first four maturity classes
avoids having to account for discretionary exceptions to exchange rules.
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zero. Corresponding measures for 50- versus 100/200-strikes, AC
100/50
t and AO

100/50
t ,

are defined in a similar fashion. Formally,

AC
200/100
t = ln

(∑
i∈K100/200

t
T 200

it∑
i∈K100/200

t
T 100

it

)
, (1)

AO
200/100
t =





ln

(P
i∈K100/200

t

O200
itP

i∈K100/200
t

O100
it

) ∑
i∈K100/200

t
(O200

it + O100
it ) > 0

0
∑

i

(
O200

it +
∑

i∈K100/200
t

O100
it

)
= 0

, (2)

AC
100/50
t = ln




∑
i∈K50/100

t
T

100/200
it∑

i∈K50/100
t

T 50
it


 , (3)

AO
100/50
t =





ln

(P
i∈K50/100

t

O
100/200
itP

i∈K100/200
t

O50
it

)
∑

i∈K50/100
t

(
O

100/200
it + O50

it

)
> 0

0
∑

i∈K50/100
t

(
O

100/200
it + O50

it

)
= 0

, (4)

for dates t = 1, . . . , T , where

K100/200
t : Set of neighboring 100- and 200-strike options,

T 100
it : Transaction volume on the i-th 100-strike,

T 200
it : Transaction volume on the i-th 200-strike,

O100
it : Open interest in the i-th 100-strike,

O200
it : Open interest in the i-th 200-strike,

K50/100
t : Set of neighboring 50- and 100/200-strike options,

T 50
it : Transaction volume on the i-th 50-strike,

T
100/200
it : Transaction volume on the i-th 100/200-strike,

O50
it : Open interest in the i-th 50-strike,

O
100/200
it : Open interest in the i-th 100/200-strike.

Summary statistics for the four measures of clustering are reported in Table 1.

For all measures means and medians are positive, indicating that there is clustering

in both trading activity and open interest. The pattern of clustering in trading

activity matches that in open interest. Clustering is much more severe for 50- versus

100/200-strikes than for 100- versus 200-strikes. Note that beyond the first maturity

class the aggregate measure of clustering is not always defined because on some trading

days there are no transactions in 50-, 100-, 200-, or 100/200-strikes. Truncation is

most severe in the case of 50- versus 100/200-strikes. Among the call (put) options

316 (325) out of 1,335 observations in maturity classes two to four are truncated.5 For

100- versus 200-strikes there are only 20 (22) truncated observations among call (put)

options. Similarly, the aggregate measure for open interest is truncated, albeit to a

5Among these truncated observations for call (put) options only on two (one) trading days the total
transaction volume on 100/200-strikes is zero. In all cases of truncation there is no volume on 50-strikes.
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lesser degree than the aggregate measure of clustering.

[TABLE 1 about here]

4.1.2 Regression Results

This section describes the results of regressions using as independent variables the ag-

gregate measures of clustering AC
100/50
t and AC

200/100
t , respectively. Calls and puts

are considered separately. As regressors we include the inverse of the DAX index level

( 1
DAXt

), time to maturity (ttmt) as well as its square to account for possible non-linear

maturity effects. The daily GARCH(1,1) volatility of the index logreturns (volt) serves

as a proxy for the impact of volatility on clustering. Section 3 outlined the impact of

differences in option deltas on clustering.

Neighboring options’ deltas differ not only because, ceteris paribus, they have different

strike prices, but also because changing the strike price implies moving along the im-

plied volatility smile. Visual inspection of the option delta as a function of the strike

price (accounting for changing implied volatility) reveals that it can be well approxi-

mated by a linear function.6 For every trading day and maturity class we compute the

derivative of the at-the-money delta with respect to the strike price. The absolute value

of this derivative serves as a regressor which captures the effect of differences in deltas

(
∣∣ ∂δt

∂strike

∣∣
m=1

). For near-to-maturity options, computing the implied volatility from the

data makes little sense since implied volatilities are very unstable. Therefore, we in-

clude the delta-regressor only for options with time to maturity exceeding seven days.

To capture the impact of open interest on clustering we include the previous trading

day’s value of the appropriate aggregate measure of clustering for open interest, AOt−1.

Clustering of 50-strike versus 100/200-strike options

As noted in Section 4.1.1, for all but the first maturity class on a considerable number of

days there are no transactions on 50-strike options. Running regressions only for those

6The procedure for estimating the implied volatility smile is described in Appendix A.

10



days on which the measure is defined potentially biases results. We use a two-stage

estimation procedure to account for this problem.

First, we estimate regressions restricting the sample to the first maturity class for which

the aggregate measure of clustering is always defined. Table 2 summarizes the results.

The first set of regressions contains only short-term options with less than eight days

to maturity and does not include the delta-regressor. The second set of regressions uses

the remaining sample and includes the full set of regressors.

[TABLE 2 about here]

After estimating the models including the full set of regressors (full models) we test

against the full models for joint significance of variables using a Wald test and re-

estimate the restricted specifications.

All coefficients in the restricted specifications are significant except for some intercepts.

For short-term call options, ttmt and volt explain 58 percent of the variation in the

clustering measure. With the same regressors and ttm2
t , 67 percent of the variation in

the clustering measure for short-term put options is explained. For call options with

time to maturity exceeding seven days, an R2 of 0.37 is achieved with ttmt, AOt−1, and

volt. For put options, 1
DAXt

and the delta-regressor lead to an R2 of 0.34. Contrary to

the prediction in Section 3 we obtain a positive coefficient on 1
DAXt

.

Next, we consider maturity classes two to four. For the pooled data we apply a two-

step estimation procedure similar to that in Heckman (1979) to account for the potential

selection bias introduced by the truncation of the sample when there are no transactions

on 50-strikes.7

We assume that there exists a latent variable ut that takes on positive values whenever

the aggregate transaction volume on 50-strikes is nonzero and that takes on non-positive

7The incidences when 100/200-strike options have zero total transaction volume are ignored because
there are too few truncated observations to estimate a second selection equation (cf. Note 5).
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values otherwise, i.e.

ut





> 0 if
∑

i∈K50/100
t

T 50
it > 0

≤ 0 otherwise
. (5)

We also assume that there exists a latent variable yt that takes on the values of the

aggregate measure of clustering AC
100/50
t whenever it is defined, i.e. whenever ut > 0,

and that is unobserved otherwise, i.e

yt





= AC
100/50
t if ut > 0

unobserved otherwise
. (6)

The two latent variables are assumed to depend on two sets of regressors, zt and xt,

ut = z′tγ + εt (7)

yt = x′tβ + νt, t = 1, . . . , T. (8)

Assumption 1

The residuals εt and νt are bivariate normally distributed.

The variance of the residuals εt is normalized to one: V ar(εt) ≡ 1.

The covariance between the residuals in the two equations is a linear function of regres-

sors xt and zt: Cov(εt, νt|bt) = b′tξ, bt = xt ∪ zt, t = 1, . . . , T .

The covariance specification captures heteroscedasticity in the latent variable equation

(8) and a possibly non-constant correlation between the residuals in Eqs. (7) and (8).

With these assumptions, we obtain the following proposition.

12



Proposition 1

Under Assumption 1,

AC
100/50
t = x′tβ + Mtb

′
tξ + ωt, (9)

where

ωt = νt − E [νt|ut > 0] , (10)

Mt =
φ (z′tγ)

Φ (z′tγ)
, t = 1, . . . , T, (11)

where φ() and Φ() are the pdf and cdf of the standard normal distribution, respectively.

The proof is a straightforward extension of that given in Heckman (1979) and is omitted.

Based on Eq. (7) we estimate by maximum likelihood the probability of observing pos-

itive transaction volume on 50-strikes. The regressors zt in the probit equation include

1
DAXt

, ttmt, ttm2
t , volt , and the delta-regressor. They should impact the probability

of observing transactions on 50-strikes in the same way they impact clustering. In or-

der to avoid truncation problems in the probit estimation due to open interest, we use

the simple ratio of the previous trading day’s open interest in all 50-strike options over

that in all 100/200-strike options as a regressor ( open50t−1

open100/200t−1
) instead of the aggregate

measure of open interest. Since this is roughly the inverse of the aggregate measure for

open interest, we should expect a positive coefficient.

Additionally, we include the total open interest in 50-strike options at the end of the

previous trading day (open50t), the number of option pairs (pairst), and the inverse

of the current trading day’s number of transactions ( 1
transactionst

). A higher level of

open interest should increase the probability of observing volume on 50-strikes, since it

becomes more likely that some of the option holders want to close a position. The more

option pairs are included the greater should be the probability that transactions will

occur on some 50-strike option. 1
transactionst

is a measure of transaction frequency. After

appropriate scaling it can be interpreted as the average number of minutes that elapse

between transactions on that particular trading day.8 Larger time intervals between

8George and Longstaff (1993) use this measure in their study of trading activity in the S&P100 index
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trades, i.e. a lower trading frequency in the option market, increase the incentive of

traders to coordinate transactions on the more attractive 100/200-strikes. This effect

decreases the probability of observing volume on 50-strikes. Table 3 summarizes the

results. All coefficients, except those on 1
DAXt

, have the expected signs. As in the first

maturity class, we test against the full model using a Wald test to obtain the restricted

specifications reported. Contrary to our prediction, the sign for the coefficient on 1
DAXt

is always negative and significant.

[TABLE 3 about here]

From these results we obtain an estimate of the correction term Mt for the second-

step regression based on Eq. (11). Because the second-step regression relies on an

estimated quantity and due to Ass. 1, the residuals in the second-step regression are

heteroscedastic. To consistently estimate standard errors, we use the Newey and West

(1987) estimator. For the covariance specification, based on Ass. 1, we specify the set of

regressors bt to include all the significant regressors in the restricted probit model and

the full set of regressors xt in the second-step regression. Again, a Wald test is applied

to obtain the restricted specifications, which are reported together with the other results

in Table 4.

[TABLE 4 about here]

Focusing on the restricted models, all regressors are significant and have the expected

signs, with the exception of the coefficient on 1
DAXt

, which again has the wrong sign and

is significant. Fig. 1 plots the estimated covariance between the residuals in Eqs. (7)

and (8).

For puts and calls the covariance is negative with few exceptions. Assuming that the

correlation of the error terms is constant, we can interpret the coefficients in terms of

their impact on the variance in the second-step regression. The variance of the residuals

options market. A similar measure - the inverse of the square root of the number of transactions - is
used by Harris (1991) and Gwilym, Clare, and Thomas (1998) in their studies of price clustering.
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for both call and put options increases with higher volatility of the DAX index returns

and with the length of time intervals between transactions. Moreover, for call options,

the variance increases with time to maturity and with larger values of the delta-regressor,

whereas it is lower for larger values of the ratio of open interests. Intuitively, this means

that the variance of the unexplained part of clustering is lower when neighboring options

are better substitutes.

[FIGURE 1 about here]

It is instructive to compare these results to simple regressions, not corrected for se-

lectivity bias, which are also reported in Table 4. For call options the coefficient on

ttmt has the wrong sign and is significant while the coefficient on the delta-regressor

is not significant. Moreover, the R2 is considerably lower than in the regression cor-

rected for selectivity bias. Simply adding the inverse Mills ratio Mt, i.e. assuming a

homoscedastic selection model, increases R2 from 0.17 to 0.29. Similar results hold for

put options. Including only the inverse Mills ratio Mt increases R2 from 0.13 to 0.29.

These results underscore the importance of accounting for incidental truncation in the

regression framework.

Clustering of 100-strike versus 200-strike options

Truncation is a minor issue for the aggregate measure of clustering for 100-strike versus

200-strike options since there are only 20 (22) truncated observations among call (put)

options (cf. Table 1). These are not sufficiently many to estimate a selection model. To

make results comparable to the case of 50-strike versus 100/200-strike options, we run

separate regressions for the first maturity class. Then we pool the data for maturity

classes one to four, using only options with time to maturity exceeding seven days. Table

5 summarizes results for the first maturity class.

For call options with less than eight days to maturity only AOt−1 is significant and it

has the right sign. The R2 is only 0.08 compared to an R2 of 0.61 for 50-strike versus

100/200-strike options (cf. Table 2). Only the intercept is significant for put options.
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For call options with time to maturity exceeding seven days only AOt−1 and the delta-

regressor are significant and they have the expected signs. The R2 of 0.40 is comparable

to that in the case of 50-strike versus 100/200-strike call options. For put options only

the coefficient on the delta-regressor is significant and the R2 of 0.17 is much lower than

that for 50- versus 100/200-strike puts.

Table 6 summarizes results for the second set of regressions. For both call and put

options all coefficients have their expected signs. The regressors ttmt, AOt−1,
1

DAXt
, and

the delta-regressor explain roughly 30 percent of the variation in the aggregate measure

of clustering for call options. In the case of 100- versus 200-strike put options ttmt, volt,

and the delta-regressor explain roughly 17 percent of the variation in clustering.

[TABLE 5 about here]

[TABLE 6 about here]

4.2 Pairwise Clustering in Transaction Volume

4.2.1 Pairwise Measures of Clustering

We define pairwise measures of clustering to gauge more closely how the factors identified

in Section 3 affect the degree of substitution between individual options. That is, for

every option pair a separate measure of clustering is computed for all dates. For example,

the pairwise measure of clustering between the i-th pair of 200- and 100-strike options,

PC
200/100
it , is defined as the logarithm of the ratio of the number of transactions on

the i-th 200-strike over the number of transactions on the i-th 100-strike on date t.

Accordingly, we compute the pairwise measure of trade clustering between the i-th 50-

and 100/200-strike options on date t, PC
100/50
it . Moreover, we define analogous measures

of clustering for the open interest, PO
200/100
it and PO

100/50
it with the convention that these
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are set equal zero when both numerator and denominator are zero. Formally,

PC
200/100
it = ln

(
T 200

it

T 100
it

)
, (12)

PO
200/100
it =





ln
(

O200
it

O100
it

)
O200

it + O100
it > 0

0 O200
it + O100

it = 0
, (13)

i ∈ K100/200
t , t = 1, . . . , T,

PC
100/50
it = ln

(
T

100/200
it

T 50
it

)
, (14)

PO
100/50
it =





ln

(
O

100/200
it

O50
it

)
O

100/200
it + O50

it > 0

0 O
100/200
it + O50

it = 0

, (15)

i ∈ K50/100
t , t = 1, . . . , T,

where

K100/200
t : Set of neighboring 100- and 200-strike options,

T 100
it : Transaction volume on the i-th 100-strike,

T 200
it : Transaction volume on the i-th 200-strike,

O100
it : Open interest in the i-th 100-strike,

O200
it : Open interest in the i-th 200-strike,

K50/100
t : Set of neighboring 50- and 100/200-strike options,

T 50
it : Transaction volume on the i-th 50-strike,

T
100/200
it : Transaction volume on the i-th 100/200-strike,

O50
it : Open interest in the i-th 50-strike,

O
100/200
it : Open interest in the i-th 100/200-strike.

Table 7 reports summary statistics for the measures of clustering. As for the aggregate

measure, means and medians are always positive and clustering is greater for 50- versus

100/200-strike options than for 100- versus 200-strike options. In all cases the samples of

the measures for trade clustering are severely truncated because often there are no trades

on individual options. Roughly three quarters of the sample for 50- versus 100/200-

strike options are truncated for both puts and calls. In the case of 100- versus 200-strike

options roughly one half of the sample for call option pairs and about one third of the

sample for put options are truncated.

[TABLE 7 about here]
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4.2.2 Regression Results

Selection bias is a potential problem for regressions using the pairwise measure, and we

carry out a two-step estimation procedure similar to the one employed for the aggregate

measure of clustering in Section 4.2.2. Because individual options for all strike classes

often are not traded we have to estimate three selection equations.

We assume there exist three latent variables, u50
it , u100

it , and u200
it , which take on positive

values whenever the transaction volume on the option in the corresponding strike class

is nonzero, and which take on non-positive values otherwise, i.e.

uk
it





> 0 if T k
it > 0

≤ 0 otherwise
, i ∈ Kk

t , t = 1, . . . , T, k ∈ {50, 100, 200}, (16)

where Kk
t is the set of k-strike class options on day t.

To fix ideas, we focus on the case of 100- vs 200-strike options in the following. We

assume there exists a latent variable yit that takes on the values of the pairwise measure

of clustering PC200/100 whenever it is defined, and that is unobserved otherwise. The

pairwise measure PC
200/100
it is only defined if both options in the pair have positive

transaction volume. That is,

yit





= PC
200/100
it if u100

it > 0 and u200
it > 0

unobserved otherwise
, i ∈ Kk

t , t = 1, . . . , T, (17)

where K100/200
t is the set of neighboring 100- and 200-strike options on day t.

The three latent variables depend on three sets of regressors, z100
it , z200

it , and x
100/200
it ,

and their residuals are assumed to be uncorrelated.

u100
it =

(
z100

it

)′
γ100 + ε100

it , (18)

u200
it =

(
z200

it

)′
γ200 + ε200

it , i ∈ Kk
t , t = 1, . . . , T, (19)

yit = x′itβ + νit. (20)
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Assumption 2

The residuals ε100
it , ε200

it , and νit are trivariate normally distributed.

ε100
it and ε200

it are uncorrelated and their variances are normalized to one:

var(ε100
it ) ≡ var(ε200

it ) ≡ 1.

The covariances between the residuals in Eqs. (18) and (20) and between the residuals in

Eqs. (19) and (20) are linear functions of regressors xit∪z100
it and xit∪z200

it , respectively:

Cov[εk
it, νit|bk

it] =
(
bk
it

)′
ξk
t , bk

it = xit ∪ zk
it, k ∈ {100, 200}, i ∈ Kk

t , t = 1, . . . , T.

With the above assumption we obtain the following proposition.

Proposition 2

Under Assumption 2,

PC
200/100
it = x′itβ + M100

it

(
b100
it

)′
ξ100
t + M200

it

(
b200
it

)′
ξ200
t + ωit, (21)

where

ωit = νit − E
[
νit|u100

it > 0, u200
it > 0

]
, (22)

Mk
it =

φ
((

zk
it

)′
γk

)

Φ
((

zk
it

)′
γk

) , k ∈ {100, 200}, i ∈ Kk
t , t = 1, . . . , T, (23)

where φ() and Φ() are the pdf and cdf of the standard normal distribution, respectively.

The proof is again a straightforward extension of that in Heckman (1979). For 50- versus

100/200-strikes Ass. 2 applies separately to the set of pairs of 50-strikes neighboring a

100-strike and the set of pairs of 50-strikes neighboring a 200-strike.

Probit estimation

In the selection equations the set of regressors zit comprises 1
DAXit

, ttmit, ttm2
it, and

volit, as in the selection equation for the aggregate measure of clustering in Section

4.1.2. The absolute value of the option’s delta captures the impact of the option’s risk

on the probability of observing transactions. Additional regressors are the absolute

moneyness of the option, defined as
∣∣∣ strike
DAXit

− 1
∣∣∣, and interactions with ttmit and ttm2

it.

Moreover, we include the option’s open interest at the end of the previous trading day,
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Oi,t−1. We include the interaction ttmitOi,t−1 to test the prediction in Section 3 that

open interest should matter more for the choice of strike prices when time to maturity

is long.

For reasons of brevity we report results only for the pooled data with time to maturity

exceeding seven days, summarized in Table 8. The coefficients on ttmit, ttm2
it, Oi,t−1,

and the delta-regressors are all significant and have the expected signs. Coefficients on

the interactions between moneyness and ttmit also have the expected signs when they

are significant. The interaction ttmitOi,t−1 is significant only in the probit equations for

200-strike options. Coefficients take on negative values for both call and put options,

contrary to our predictions.

[TABLE 8 about here]

For call options the coefficient on 1
DAXit

always has a negative sign and is significant

except for 200-strike options. For put options coefficients are significant only for 100-

and 200-strike options, and they are positive. Some care is required in interpreting these

results. For small values of 1
DAXit

the economic importance of strike price differences

decreases, and options become better substitutes. In the case of 100-strike options, some

transactions shift from 50-strike options to 100-strike options, increasing the probability

of observing positive volume on 100-strikes. However, some transactions shift from

100-strike options to 200-strike options as well, decreasing the probability of observing

positive volume on 100-strikes. While the impact on 100-strikes is ambiguous, for 50-

strikes this should reduce the probability of observing volume and increase it for 200-

strikes. Hence, the signs of the coefficients on 1
DAXit

for 200-strike call options are

inconsistent with our hypothesis.

The regressor volit always has a significant coefficient that is positive for 100- and 200-

strike options and that is negative for 50-strikes. When the DAX index becomes more

volatile demand for options tends to increase (demand effect) and at the same time

clustering should increase (substitution effect). The two effects unambiguously should

increase the probability of volume on 200-strikes, which is confirmed by the estimation

results. For 100-strikes the impact of substitution is ambiguous, following a similar
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reasoning to that for 1
DAXit

, and the data reveal that the increased demand effect prevails

over the substitution effect. This is not surprising, since clustering of 100- versus 200-

strikes is typically less pronounced than clustering of 50-strikes versus 100/200-strikes.

In contrast, for 50-strikes the substitution effect outweighs the increased demand effect.

Second-stage estimation

In the second-step regressions the set of regressors xit contains 1
DAXit

, ttmit, ttm2
it, and

volit, as well as the pairwise measure for open interest POi,t−1, which have the same

interpretation as in the regressions for the aggregate measure of clustering in Section

4.1.2. The interaction between ttmit and POi,t−1 captures whether the importance of

open interest diminishes with shorter remaining life time of the options.

To capture the impact of differences in option deltas we include additional regressors. If

the attractive option has a higher delta than its counterpart it becomes less attractive

relative to the neighbor because it is riskier. To illustrate how this affects clustering,

consider two neighboring 100- and 200-strike call options. For small differences between

the two options’ deltas options are good substitutes and trades should concentrate on

the more attractive option. However, if the 200-strike has a higher delta than its 100-

strike counterpart, this has a countervailing effect on clustering since some traders prefer

the less risky 100-strike option over the 200-strike. In the other case, if the 100-strike

has a higher delta than the 200-strike, this exacerbates clustering.

To measure differences in deltas we use the absolute value of the log ratio of the two

deltas, i.e. |ln (δ1
it)− ln (δ2

it)|. Because the impact of differences in options’ deltas is

predicted to be asymmetric we include two regressors. The first regressor takes on the

absolute value of the log ratio of the two deltas whenever the option from the lower

strike class (i.e. 50- or 100-strike) has a larger absolute delta than its counterpart (i.e.

100/200- or 200-strike) and takes on zero otherwise. The second regressor takes on the

absolute value of the log ratio of the two deltas whenever the option from the higher

strike class has a larger absolute delta than its counterpart and takes on zero otherwise.

Moreover, when comparing transaction volumes for two neighboring options, one would
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expect the option that is farther away from the money to be less actively traded, ceteris

paribus. For example, for 100- versus 200-strike call options, clustering should increase

for option pairs that are farther away from the at-the-money point. If the 100-strike’s

absolute distance from the at-the-money point is greater than that for the 200-strike,

this exacerbates clustering. However, if the 200-strike lies farther away from the money

than the 100-strike, clustering will be less severe since some trades are drawn away from

the 200-strike. To account for this we include the average absolute moneyness of the two

options in the pair (
|m1

it+m2
it|

2
) and a dummy (Im

it ) which takes on value one if the option

from the lower strike class (i.e. 50- or 100-strike) has a larger absolute moneyness than

its counterpart (i.e. 100/200- or 200-strike) and takes on zero otherwise.

To correct for potential selection biases we include the correction terms Mk
it obtained

from the probit estimation. The set of regressors bk
it in the covariance terms

(
bk
itξ

k
)′

in-

cludes all the regressors in xit as well as those from the corresponding probit estimations,

zk
it. To avoid collinearity problems the average value of absolute moneyness is used in-

stead of the corresponding variables in the probit equations and only the delta-regressors

that capture differences in deltas are included.

Results for the second-stage regressions are reported in Table 9. The coefficients on

ttmit and POi,t−1 are always significant and have the right signs. The interaction be-

tween POi,t−1 and ttmit is significant only for 100-strike versus 200-strike options. It

always has a negative coefficient, contrary to our predictions. Clustering for 50- versus

100/200-strike options decreases when the DAX index level increases, as in the case of

aggregate clustering. In contrast, for 100-strike versus 200-strike options the coefficient

on 1
DAXit

has the expected sign. The coefficient on volit always has the right sign, when

it is significant. For 100-strike versus 200-strike options, clustering increases with mon-

eyness, as expected. Moneyness has the opposite effect on clustering for 50-strike versus

100/200-strike call options. We do not have an explanation for this result. The dummy

Im
it is always significant with the predicted positive coefficient. There is no clear pattern

for the interaction between Im
it and moneyness. The absolute value of the first delta-

regressor is smaller than the absolute value of the second delta-regressor in all cases,
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which confirms our conjecture about the impact of options’ riskiness on clustering.

Selection is important for 50-strike versus 100/200-strike options. As for the aggregate

measure of clustering ttm is significant and has the wrong sign in the regressions not

corrected for selectivity bias. Adding the two inverse Mills ratios Mk
it to these regressions

increases R2 from 0.25 (0.21) to 0.41 (0.41) for call (put) options. For 100-strike versus

200-strike options selection is less important. Adding the two inverse Mills ratios to the

simple regressions not corrected for selectivity bias only leads to a minor increase in R2,

from 0.14 (0.13) percent to 0.16 (0.14) for call (put) options.

[TABLE 9 about here]

5 Conclusion

This paper analyzes the impact of options’ characteristics on the cross-sectional dis-

tribution of trading activity in contracts with different strike prices in the DAX index

options market. In this market trading clusters around particular strike prices.

The main hypothesis is that this clustering of trading activity depends on the degree

of substitution between options with neighboring strike prices. When two options with

nearby strike prices are close substitutes, trading concentrates on the option belonging

to the more attractive strike class. We maintain that 200-strikes are more attractive

than 100-strikes, and that 100/200-strikes are more attractive than 50-strikes.

The empirical analysis is based on two measures of clustering of trading activity which

we regress on options’ characteristics. The first measure of clustering is roughly the log

of the ratio of aggregate transaction volumes in two different strike classes. In the case of

50-strike versus 100/200-strike options, this aggregate measure of clustering is not always

defined since on some trading days there is no volume on 50-strike options. We find

that this sample truncation leads to selectivity bias in a simple regression framework.

To overcome this problem we use a two-step estimation procedure similar to the classic

Heckman (1979) approach.
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The second measure of clustering is the log ratio of transaction volume on two options

with neighboring strike prices. It allows for a more detailed analysis of how individ-

ual options’ characteristics, such as moneyness, affect transaction clustering. For this

measure the sample is severely truncated because individual options in all strike classes

frequently witness no turnover, and the measure is not defined. To correct for selectiv-

ity bias we again use a Heckman-style two-step estimation procedure. This correction

appears to be particularly important for the 50-strike versus 100/200-strike case.

Our analysis finds that differences in open interest and other factors, such as time to ma-

turity, the volatility of DAX index returns, options’ moneyness, and the options’ deltas,

impact clustering of trading activity. The signs of the coefficients in the regressions

generally confirm our hypotheses about the way in which these factors affect clustering

and the attractiveness of different strike classes.

To our knowledge this paper is the first to analyze the impact of the strike price grid on

the cross-sectional distribution of trading volume in options markets. In future research

we want to establish the relationship between strike price gradations, the cross-sectional

distribution of trading volume and overall trading volume. This would have important

implications for market design.

A Estimation of the Implied Volatilities

On every trading day we match DAX option prices with the nearest-to-maturity DAX

futures prices. Only transactions that are at most 5 minutes apart are considered. We

obtain the implied spot level of the DAX for the corresponding 5-minute intervals by

inverting a simple futures pricing formula. The fair price of a future is assumed to be
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the continuously compounded spot price of the underlying.9 That is,

Ft,m(TF ) = St,mer(TF−t), (24)

where

TF : future’s maturity,

St,m : (implied) underlying index in the mth 5-minute interval on day t,

Ft,m : nearest-to-maturity futures contract in the mth 5-minute interval on day t,

r : risk-free rate for future’s term (TF − t).

We compute the implied spot price of the DAX index by inverting Eq. (24) and using

the average futures price over the respective 5-minute interval. The appropriate risk-

free interest rate is obtained by linearly interpolating EUR-Libor rates bracketing the

option’s maturity.10 Based on this sample of matched option prices, spot prices, strike

prices, and interest rates, we calculate the implied volatilities by inverting the Black

and Scholes (1973) formula. Following Hafner and Wallmeier (2000), we approximate

the smile on every trading day by fitting a smooth differentiable spline function whose

segments join at the at the money point via ordinary least squares. The general speci-

fication allows for quadratic function segments for the in- and out-of-the-money ranges,

respectively. That is,

σIV = α0 + α1M + α2M
2 + D

(
β0 + β1M + β2M

2
)

+ ε (25)

D =





0 if M ≤ 1, (strike below the at-the-money point)

1 if M > 1 (strike above the at-the-money point)
.

9The DAX index is computed assuming reinvestment of dividends after corporate income tax on dis-
tributed gains (Deutsche Börse 2000b). German income tax law in effect in 1999 and 2000 treats
dividends as if they included corporate income tax. Thus, the above futures pricing formula is not ex-
actly the fair price if the marginal investor’s personal income tax rate differs from the corporate income
tax rate. For a discussion of this issue see Hafner and Wallmeier (2000). In our data this problem
appears to be a minor one.

10The interest rate convention for LIBOR rates is linear and therefore rates have to be converted to
continuous compounding first.
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The restriction is imposed that the two segments join at the at-the-money-point M∗ = 1,

i.e. β0 + β1 + β2 = 1. Moreover, the smile is assumed to be a smooth, differentiable

function with minimum at M∗ = 1, i.e.

d(β0+β1M+β2M2)
dM

∣∣∣∣
M∗=1

= β1 + 2β2 = 0. (26)

Hence, the final specification to be fitted to the data is given by

σIV = α0 + α1M + α2M
2 + α3D

(
1− 2M + M2

)
+ ε. (27)
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Maturity Class 1 2 3 4
AC AO AC AO AC AO AC AO

Aggregate Measure of Clustering for 50- vs 100/200-strike Call Options
Mean 2.72 2.28 3.32 2.45 2.71 2.22 2.76 3.70
Median 2.76 2.25 3.25 2.41 2.77 2.20 2.83 3.41
Maximum 6.92 3.27 6.14 3.78 5.63 5.10 5.31 9.54
Minimum 0.45 1.26 0.74 0.72 -2.22 -2.06 -0.41 2.04
Std. Dev. 0.81 0.35 0.90 0.46 1.24 0.95 0.94 1.48
Observations 445 444 420 444 321 429 278 418
Total number of days 445 445 445 445 445 445 445 445
Truncated observations 0 1 25 1 124 16 167 27

Aggregate Measure of Clustering for 50- vs 100/200-strike Put Options
Mean 2.80 2.45 3.47 2.61 2.80 2.30 2.92 3.43
Median 2.80 2.46 3.43 2.56 2.85 2.47 2.89 3.16
Maximum 6.54 3.47 6.85 4.03 5.75 6.14 5.51 10.44
Minimum -0.29 1.69 1.18 1.74 -2.71 -4.59 -0.13 1.83
Std. Dev. 0.90 0.36 0.86 0.40 1.24 1.12 0.99 1.22
Observations 445 444 413 444 316 424 281 415
Total number of days 445 445 445 445 445 445 445 445
Truncated observations 0 1 32 1 129 21 164 30

Aggregate Measure of Clustering for 100- vs 200-strike Call Options
Mean 0.20 0.38 0.43 0.57 0.54 0.60 1.01 1.09
Median 0.19 0.36 0.38 0.56 0.55 0.65 1.04 1.16
Maximum 1.52 1.23 2.61 1.41 2.88 3.45 3.49 1.78
Minimum -1.05 -0.37 -0.90 -0.53 -2.97 -2.27 -2.08 -0.54
Std. Dev. 0.31 0.33 0.45 0.37 0.78 0.73 0.86 0.50
Observations 445 444 445 444 426 440 444 444
Total number of days 445 445 445 445 445 445 445 445
Truncated observations 0 1 0 1 19 5 1 1

Aggregate Measure of Clustering for 100- vs 200-strike Put Options
Mean 0.26 0.39 0.49 0.58 0.61 0.69 0.92 0.72
Median 0.27 0.38 0.46 0.62 0.60 0.69 0.90 0.79
Maximum 1.58 0.76 2.41 1.47 3.43 6.27 3.92 1.42
Minimum -1.05 -0.03 -0.63 -0.08 -1.61 -1.39 -2.14 -0.13
Std. Dev. 0.26 0.17 0.36 0.30 0.70 0.75 0.70 0.31
Observations 445 444 445 444 423 429 445 444
Total number of days 445 445 445 445 445 445 445 445
Truncated observations 0 1 0 1 22 16 0 1

Table 1: Summary Statistics for the Aggregate Measure of Clustering
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Maturity Class 1 and ttm<8 Maturity Class 1 and ttm>7
Variablea

Call Options Put Options Call Options Put Options

Full Model Restricted Full Model Restricted Full Model Restricted Full Model Restricted
0.020 -0.006 -0.461 -0.247 0.927 0.273 0.616 1.984***

C
(0.422) (0.172) (0.573) (0.249) (0.746) (0.340) (0.741) (0.330)

0.256*** 0.183*** 0.314*** 0.334*** -0.010 0.023*** 0.051
ttmt (0.058) (0.027) (0.058) (0.058) (0.037) (0.006) (0.046)

-0.012 -0.021*** -0.022*** 0.001 -0.001
ttm2

t (0.008) (0.008) (0.008) (0.001) (0.001)
0.251 0.205 0.428*** 0.429*** 0.150

AOt−1 (0.182) (0.203) (0.135) (0.142) (0.158)
-2820.167 -869.539 2744.295 12425.73*** 14060.7***1

DAXt (2107.243) (2037.849) (1874.795) (2898.517) (2237.478)
5.969*** 6.486*** 6.482*** 6.733*** 4.404*** 5.716*** 2.133

volt (0.950) (0.568) (1.131) (0.991) (1.368) (1.057) (1.586)
-307.389 -652.1*** -890.249***

��� ∂δt
∂strike

���
m=1 (187.929) (220.108) (107.637)

R2 0.613 0.580 0.674 0.666 0.379 0.369 0.357 0.337
7.204 2.369 5.259

Wald Testb
(0.066) (0.306) (0.262)

aRegression coefficients and Newey-West standard errors are reported. *** stands for 1 percent, ** for 5
percent, and * for 10 percent significance levels, respectively.

bThe p-value is reported in brackets below the Wald Test statistic which is distributed χ2(q) under the
null hypothesis that the model with q restrictions is true.

Table 2: Regressions: Aggregate Measure for 50- vs 100/200-Strikes (Maturity Class 1)
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Probit for Maturity Classes 2 - 4
Variablea

Call Options Put Options

Full Model Restricted Full Model Restricted
3.008*** 3.1*** 2.426*** 1.416***

C
(0.774) (0.293) (0.771) (0.321)
-0.015* -0.008*** -0.010

ttmt (0.009) (0.001) (0.009)
4.29E-5 3.30E-5

ttm2
t (3.52E-5) (3.48E-5)

0.735** 0.585** 0.151open50t−1
open100/200t−1 (0.289) (0.255) (0.188)

2.26E-5** 2.92E-5*** 1.10E-5*
open50t−1 (8.92E-6) (6.78E-6) (6.35E-6)

0.011 0.025*** 0.034***
pairst (0.008) (0.008) (0.006 )

-9878.327*** -9580.027*** -14697.81*** -15849.520***1
DAXt (2383.312) (1630.471) (2387.859) (1717.371)

-1.127 -0.227
volt (1.294) (1.210)

650.067 1579.597** 2411.818***
��� ∂δt

∂strike

���
m=1 (593.640) (627.781) 265.232

-16.581*** -18.271*** -15.825*** -14.917***1
transactionst (3.138) (2.995) (2.918) (2.825)

9.334 5.104
Wald Testb

(0.053) (0.403)

aRegression coefficients and Huber-White standard errors are reported. *** stands for 1 percent, ** for 5
percent, and * for 10 percent significance levels, respectively.

bThe p-value is reported in brackets below the Wald Test statistic which is distributed χ2(q) under the
null hypothesis that the model with q restrictions is true.

Table 3: Selection Equations: Aggregate Measure for 50- vs 100/200-Strikes
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Regressions for Maturity Classes 2 - 4
Variablea

Call Options Put Options

Not corrected Full Model Restricted Not corrected Full Model Restricted
1.863*** 1.514** 1.477*** 1.882*** 2.554*** 2.119***

C
(0.624) (0.705) (0.384) (0.63) (0.761) (0.266)

-0.023*** -0.007 -0.009 -0.006
ttmt (0.008) (0.008) (0.008) (0.009)

6.00E-5** 4.51E-5 8.03E-6 6.81E-5
ttm2

t (3.54E-5) (4.71E-5) (3.73E-5) (5.63E-5)
0.261*** 0.321*** 0.241*** 0.193*** -0.06 0.082**

AOt−1 (0.052) (0.084) (0.051) (0.068) (0.092) (0.038)
8844.847*** 11412.92*** 10349.15*** 1822.37 13362.12*** 13976.37***1

DAXt (2035.211) (2612.130) (1711.222) (2548.413) (3158.499) (2024.914)
2.382505** 2.181** 2.731*** 3.927*** 1.354

volt (1.06) (1.169) (0.949) (0.918) (1.68)
-436.689 -1190.059*** -1075.866*** 290.971 -1108.831** -1062.419***

��� ∂δt
∂strike

���
m=1 (415.448) (435.542) (266.617) (456.136) (445.236) (232.333)

-7.758*** -9.344*** -4.201** -3.859***
Mt (1.649) (1.477) (2.02) (0.462)

0.016** 0.02*** -0.012
Mtttmt (0.009) (0.004) (0.012)

-0.224 0.208
MtAOt−1 (0.179) (0.139)

-4396.706 12470.71**
Mt

1
DAXt (6747.688) (6176.325)

5.964** 4.597** 1.505 4.205**
Mtvolt (2.653) (1.869) (3.267) (1.918)

6676.570*** 6837.951*** -1371.134
Mt

��� ∂δt
∂strike

���
m=1 (1712.796) (1378.459) (2378.975)

-0.033
Mtpairst (0.02)

-2.003*** -1.661***
Mt

open50t−1
open100/200t−1 (0.635) (0.610)

1.45E-5
Mtopen50t−1 (2.78E-5)

9.054*** 8.670*** 11.343** 5.963**
Mt

1
transactionst (2.66) (2.494) (4.454) (2.828)

R2 0.166 0.329 0.326 0.13 0.32 0.313
5.94 10.56

Wald Testb
(0.312) (0.228)

aRegression coefficients and Newey-West standard errors are reported. *** stands for 1 percent, ** for 5
percent, and * for 10 percent significance levels, respectively.

bThe p-value is reported in brackets below the Wald Test statistic which is distributed χ2(q) under the
null hypothesis that the model with q restrictions is true.

Table 4: Regressions: Aggregate Measure for 50- vs 100/200-Strikes
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Maturity Class 1 and ttm<8 Maturity Class 1 and ttm>7
Variablea

Call Options Put Options Call Options Put Options

Full Model Restricted Full Model Restricted Full Model Restricted Full Model Restricted
0.179 0.042 0.254 0.236*** 0.837*** 0.321*** 0.509** 0.532***

C
(0.323) (0.059) (0.277) (0.039) (0.311) (0.06) (0.226) 0.047
-0.079 -0.045 -0.021 -0.004

ttmt (0.063) (0.065) (0.019) (0.014)
0.009 0.003 3.16E-4 2.94E-3

ttm2
t (0.007) (0.007) (8.08E-4) (1.08E-3)

0.324*** 0.327*** 0.077 0.306*** 0.393*** 0.064
AOt−1 (0.122) (0.11) (0.219) (0.076) (0.07) (0.103)

-170.905 442.998 -1531.549 -146.1411
DAXt (1840.309) (1426.146) (989.633) (742.612)

-0.021 -0.16 0.199 0.265
volt (0.468) (0.526) (0.463) (0.471)

-229.061*** -193.683*** -191.412** -196.418***
��� ∂δt

∂strike

���
m=1 (93.04) (39.732) (80.81) (34.229)

R2 0.099 0.078803 0.023 0 0.436 0.401 0.18 0.171
0.042 2.945 8.065318 1.755

Wald Testb
0.479 (0.708) (0.089) (0.882)

aRegression coefficients and Newey-West standard errors are reported. *** stands for 1 percent, ** for 5
percent, and * for 10 percent significance levels, respectively.

bThe p-value is reported in brackets below the Wald Test statistic which is distributed χ2(q) under the
null hypothesis that the model with q restrictions is true.

Table 5: Regressions: Aggregate Measure for 100- vs 200-Strikes (Maturity Class 1)
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Maturity Classes 1 - 4 and ttm>7
Variablea

Call Options Put Options

Full Model Restricted Full Model Restricted
0.661*** 0.735*** 0.326** 0.266**

C
(0.198) (0.156) (0.164) (0.113)
0.003 0.003*** 0.003 0.004***

ttmt (0.003) (0.001) (0.003) (0.001)
4.33E-06 4.03E-06

ttm2
t (1.45E-05) (1.31E-05)

0.372*** 0.380*** 0.071
AOt−1 (0.055) (0.055) (0.061)

-3566.273 -3223.770*** -891.9831
DAXt (906.953) (765.0142) (843.271)

0.595 1.198*** 1.04***
volt (0.398) (0.377) (0.308)

-139.329 -157.65*** -192.067*** -225.79***
��� ∂δt

∂strike

���
m=1 (87.195) (56.709) (71.280) 51.663

R2 0.297 0.295 0.184 0.174
3.198 3.177

Wald Testb
(0.202) (0.365)

aRegression coefficients and Newey-West standard errors are reported. *** stands for 1 percent, ** for 5
percent, and * for 10 percent significance levels, respectively.

bThe p-value is reported in brackets below the Wald Test statistic which is distributed χ2(q) under the
null hypothesis that the model with q restrictions is true.

Table 6: Regressions: Aggregate Measure for 100- vs 200-Strikes (Maturity Classes 1-4)
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Maturity Class 1 2 3 4
AC AO AC AO AC AO AC AO

Pairwise Measure of Clustering for 50- vs 100/200-strike Call Options
Mean 2.48 2.62 2.40 2.73 1.43 2.69 1.11 3.36
Median 2.50 2.50 2.48 2.67 1.39 2.65 1.10 3.41
Maximum 6.12 9.86 5.44 9.87 4.75 9.83 4.20 9.17
Minimum -2.61 -2.39 -1.79 -3.53 -2.30 -3.56 -2.08 -5.28
Std. Dev. 1.27 1.38 1.22 1.60 1.19 1.95 1.15 1.95
Observations 6,121 13,649 3,329 11,611 1,206 7,764 904 9,207
Total number of pairs 14,300 14,300 12,967 12,967 9,795 9,795 11,377 11,377
Censored observations 8,179 651 9,638 1,356 8,589 2,031 10,473 2,170

Pairwise Measure of Clustering for 50- vs 100/200-strike Put Options
Mean 2.51 2.72 2.44 2.88 1.49 2.74 1.13 3.45
Median 2.53 2.65 2.54 2.91 1.61 2.91 1.10 3.56
Maximum 6.22 8.50 5.24 9.43 4.94 9.87 4.57 9.58
Minimum -1.90 -1.90 -2.77 -2.30 -2.94 -5.53 -3.78 -4.33
Std. Dev. 1.24 1.19 1.14 1.46 1.24 1.77 1.19 1.84
Observations 7,458 13,440 3,657 11,490 1,312 7,875 964 8,808
Total number of pairs 14,300 14,300 12,967 12,967 9,795 9,795 11,377 11,377
Censored observations 6,842 860 9,310 1,477 8,483 1,920 10,413 2,569

Pairwise Measure of Clustering for 100- vs 200-strike Call Options
Mean 0.25 0.74 0.39 0.83 0.36 0.95 0.42 1.56
Median 0.21 0.56 0.30 0.71 0.29 0.88 0.29 1.42
Maximum 5.00 6.10 4.61 6.72 4.19 6.85 3.97 8.54
Minimum -5.21 -4.69 -3.40 -6.67 -4.09 -6.42 -4.20 -4.47
Std. Dev. 1.10 1.17 1.04 1.32 1.17 1.51 1.25 1.42
Observations 6,489 9,947 5,408 8,956 3,577 6,762 3,882 10,406
Total number of pairs 10,160 10,160 9,386 9,386 7,405 7,405 10,754 10,754
Censored observations 3,671 213 3,978 430 3,828 643 6,872 348

Pairwise Measure of Clustering for 100- vs 200-strike Put Options
Mean 0.20 0.62 0.42 0.79 0.42 0.84 0.40 1.06
Median 0.20 0.52 0.42 0.69 0.41 0.75 0.33 0.93
Maximum 4.61 7.23 4.30 7.23 3.99 7.95 4.44 5.98
Minimum -4.47 -3.49 -4.08 -3.73 -3.74 -5.40 -3.85 -5.03
Std. Dev. 1.00 1.06 1.02 1.12 1.20 1.28 1.25 1.18
Observations 7,333 9,944 6,973 9,013 4,616 6,863 5,250 10,462
Total number of pairs 10,160 10,160 9,386 9,386 7,405 7,405 10,754 10,754
Censored observations 2,827 216 2,413 373 2,789 542 5,504 292

Table 7: Summary Statistics for the Pairwise Measure of Clustering
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Figure 1: Covariance Between Residuals in the Regression and the Selection Equation
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