
A natural solution to the problem of real-time

monitoring and management of structured

counterparty exposure limits

Seán Matthews
Financial Markets,

IBM Unternehmensberatung GmbH,
Lyoner Str. 13, 60528 Frankfurt am Main,

Germany.
+49 (0) 1 70/7 85 97 28

Sean.Matthews@de.ibm.com

May 31, 2002

Abstract

We describe a logic (based on Boolean algebra)—together with sup-
porting algorithms and domain specific optimisations—for monitoring
and managing counterparty risk, and in particular, for implementing
high speed pre-deal limit checking (our logic should also be applica-
ble to any similar application where transactions must be classified
in real-time). Our design is general, fast, and insensitive to scaling.
We provide some analysis of complexity, which we relate to empirical
aspects of the problem. We also analyse the problem of how to imple-
ment well behaved reservations. Finally we describe an application to
automatic limit mangement.

Contents

1 Introduction 3
1.1 Our contribution . 3
1.2 Structure of paper . 4

2 Background 5

3 Candidate languages for formalising consolidation points 6
3.1 Ad hoc languages . 6
3.2 Canonical languages . 7
3.3 The expressiveness of Boolean algebra 9
3.4 The language of consolidation points 12
3.5 The expressiveness of our language 13
3.6 Automatically maintained consolidation points 13

4 The initial algorithm 14
4.1 The binary version . 15
4.2 Adding multi-way branches 16

5 Complexity, performance and optimisation 18
5.1 Factoring out a fixed class of points 19
5.2 Standard disjunctions . 20

6 The problem of time 21

7 Modifying the set of consolidation points 22
7.1 Adding a new consolidation point 23
7.2 Deleting consolidation points 23
7.3 Modifying consolidation points 23

8 Reservations 24
8.1 The non-local effects of reservations 24
8.2 A refinement of the problem 25
8.3 Formal analysis and notes on implementation 25
8.4 Remarks on reservations and limit management 26

9 Limit management 26
9.1 Manual limit management . 26
9.2 Automatic limit management 27
9.3 Emergency shutdowns . 28

10 Exceptions to the model 28

11 Comparison with other solutions, summary and conclusions 29

2

1 Introduction

In this paper we describe a fast and flexible solution we have developed
to a core problem in the design of systems for monitoring (and manag-
ing) counterparty risk, and other similar applications which have to classify
transactions in real time. Our solution, so far as we can ascertain from ex-
amination of user manuals and sales materials, is significantly more flexible,
and faster, than those offered in systems currently available for purchase in
the market, and removes a core scalability constraint. Further, we argue
that our solution is ‘natural’, on the grounds that it is based on a canonical
logical language, and that this language represents a probable upper bound
in terms of both expressiveness and speed.

The problem, called transaction allocation (or pre-deal limit checking),
is as follows: The risk control officer of a trading operation wants to be sure
that the total exposure of his operation is safely diversified. To this end,
he defines limits against a structured set of consolidation points in his expo-
sure monitoring system (EMS), against which all transactions are classified.
He may also want to monitor, though not limit, more specific consolidation
points, to help him actively manage the limits he has specified. Consoli-
dation points might include simple categories such as ‘car manufacturers’,
‘financial companies’, ‘energy utilities’, etc., but may also include more com-
plex classifications such as ‘non-German European car manufacturers’, and
possibly very complex categories such as, e.g., transfer risk of various sorts.1

Each trade is submitted for approval to the EMS, which, before authorising
it, checks against all defined consolidation points (performs a pre-deal limit
check), to be sure that no defined limits would be exceeded as a result. Since
an immediate response to the check is necessary (a trader will not wait half
an hour) the EMS must be able to identify immediately all the consolida-
tion points relevant for the deal from among the tens of thousands that it
maintains.

Transaction assignment is clearly not trivial: we have to reconcile, on
the one hand, a language flexible enough to formalise all the consolidation
points the risk control officer needs, with, on the other, one which allows us
to find instantaneously all the consolidation points relevant for a deal.

1.1 Our contribution

We claim that there is in fact a ‘natural’ solution to the problem, based on
Boolean algebra. We argue that:

• Boolean algebra provides a flexible, expressive language, more than
capable of capturing the consolidation points a risk manager needs.

1Transfer risk could be incurred in, e.g., a deal with a counterparty with head office in
country X, where neither of the two offices (party and counterparty) between whom the
deal is closed, are located in X.

3

• That Boolean algebra represents a ‘natural’ upper bound to the class of
practical lanuages for this application (with some interesting provisos
for modal extensions, which we briefly discuss).

• That the resulting system is not only extremely fast, but insensitive
to scaling. More precisely, the system should be able to classify deals
against consolidation points in

– (approx.) O(
∑

i log |Ji|) time, where Ji represents a partition of
the set of basic properties used to define consolidation points.
This follows not directly from the algorithm, but from assump-
tions about the properties of sets of consolidation points.

– in practice, a few hundred thousandths of a second, assuming a
respectable implementation on modern hardware.

The risk with the solution we propose is possibly exorbitant space require-
ments, therefore an important part of our contribution is the series of opti-
misations which we use to keep the space requirement under control.

We would be surprised if the algorithm we propose is not already doc-
umented in the literature, and we make no great claims to originality for
it. We see our contribution rather in our exploration of the issues that
arise in the attempt to apply it to the problem at hand; i.e. automation of
limit management, and in particular, how to deal with time, how the vari-
ous components should fit together, our domain specific optimisations, and
maintenence issues, etc.

1.2 Structure of paper

The rest of this paper is structured as follows: in §2, we provide background
(e.g. we describe the environment in which an EMS is located) and other
general information; in §3, we discuss alternatives for a language of consol-
idation points, and argue that Boolean logic is the natural candidate. In
§4 we present the core algorithm, however in order to make this useable we
need to introduce some optimisations based on various properties of sets of
structured limit points; we present these optimisations, together with re-
marks on performance and scalability in §5. In §6 we then consider how
to treat the temporal concepts (e.g. long term, short term, etc.), and moti-
vated by the example of modal (temporal) logic, consider general extensions
to our model, which we dismiss, on various grounds. In §7 we discuss how
we can modify the set of consolidation points of a running system. In §8
we consider the interesting question of how reservations behave, and discuss
the issues that have to be addressed in an implementation. In §9 we present
a simple example of how limits can be actively managed. Since we recog-
nise that no formal model can be complete, in §10 we consider ways to deal
with concepts which do not naturally fit into our model. Finally, in §11,

4

we attempt to make comparisons with commercial solutions with which we
are familiar, summarise, and draw conclusions. It was not possible to pro-
vide a full survey of relevant related work, since related work is commercial
software, to which we have not had access; we have however provided some
remarks based on publicly or quasi-publicly available information, such as
sales presentations.

2 Background

Before proceeding to deal allocation, it is useful to describe in more detail
the environment in which an EMS is located. The system communicates
with four distinct actors:

• the traders,

• the risk manager,

• static data, and

• external computing resources.

The traders can ask the system if a particular deal is currently permitted,
and after entering into a deal, confirm that they have done so. (Note that
these are two separate acts: the query can reserve resources in the system
guaranteeing that the deal is possible, but this reservation will be cancelled
unless a confirmation of the deal is received within a certain period.)

The risk manager not only manages the exposure limits for the system
but is also able, for instance, to reserve facilities for particular traders (e.g. he
might assign $100M of a possible $150M of possible exposure to South-
american banks, so that other users are able to take a maximum position
of $50M, irrespective of how much of the reserved $100M has actually been
used). He also receives regular reports about current exposure, and may
submit ad hoc queries to extract information that is not part of the regular
consolidation point set; e.g. exposure to firms owned by Japanese banks.
He may also introduce at any time ad hoc limits on particular types of
exposure (the most obvious example of this is that he may want to suspend
immediately all business with some class of counterparty.

The static data system is the third important actor. Not all relevant
information for a deal is provided directly as part of the transaction that
the EMS receives; rather, this information must be obtained indirectly, by
querying the static data system. Thus, for instance, a limit may have been
placed on exposure to a corporate group A. The EMS, however, cannot
tell, just from the information it directly receives, whether a deal implies
exposure to A; all that that information says is that the deal is with company
B. Reference to static data is necessary find out whether B is in fact a part
of company group B.

5

Finally, the EMS may also be connected to external computing resources
which it may use to perform demanding calculations in parallel. These
external resources are not directly relevant for the discussion in this paper,
but any considerations of scalability have to take them into account. (If
complex exposure calculations are performed locally, then the scalability of
the system is clearly fundamentally different than if those calculations are
farmed out to be done in—more scalable—parallel.)

3 Candidate languages for formalising consolida-
tion points

3.1 Ad hoc languages

There are two different ways we can go about finding a suitable language
for consolidation points: either we can invent something ad hoc ourselves
(in practice, the design of ad hoc languages is usually driven by the design
of the GUI, which in turn is provided by the business-side analysts as part
of the inital specification for the system), or we can adopt a canonical—
that is well understood and tested—language from the general literature
of mathematics. This paper argues, as we have already made clear, that
a canonical language (Boolean algebra) is the most suitable choice, but
to support this claim we must also argue that the development of ad hoc
languages is unlikely to produce a more effective solution.

The category of ad hoc solutions itself can be further divided into two
possibilities where we define consolidation points by

1. some arbitrary set of recursive predicates, or

2. by form filling of the sort that we find in much commercial software,
where the architecture is driven by the graphical interface.

We can immediately dismiss 2, since not only does it leave the suspicion that
it results in the dangerous situation where consolidation points are defined
according to what the system allows, rather than what is necessary, but also
because it is properly less expressive than the solution we describe below.
The argument against 1 is more subtle, since by definition it covers any
possible solution, including the one we propose; to argue against it we have
to argue that it is impossible, or at least improbable, that a better solution
than the one we propose exists.

We could make the historical argument that the likelihood that a better
language exists is negligeable: if it existed, then it would already have been
investigated by mathematicians. But we can considerably strengthen our
case by pointing out that there is simply little or no room in the space of
possibilities for such a language. Below we propose two candidate languages
from the canon of logic (Boolean algebra and predicate logic), and after

6

examining them both, we dismiss predicate logic for various reasons in favour
of the apparently weaker Boolean algebra, which in turn we show to be
extremely effective for our application (see the claims in the introduction, or
the formal arguments below). A competitive ad hoc solution would have to
be both comparably efficient (it need not to be quite so efficient as Boolean
algebra, which, we argue, has performance to spare) and also both more
expressive—since we establish Boolean algebra as a reasonable lower bound),
and differently expressive than predicate logic (it cannot include predicate
logic, since then it would be vulnerable to the same arguments). The obvious
class of languages satisfying this requirement is that of prepositional logics
extended with intensional (modal) operators. But this is itself a more or less
well defined canonical class, and therefore, by definition, not ad hoc, and
it is not clear that a modal logic brings much useful extra expressiveness
for the current application.2 At this point we are left without much further
room in which to search for a candidate, and now we again suggest if such an
expressive language existed there, then it would already have been formalised
and investigated.

3.2 Canonical languages

The literature provides us with two canonical languages as candidates for
a specification language: Predicate logic and Boolean algebra, the second
being (via isomorphism with propositional logic) a proper subset of the first.

3.2.1 Predicate logic

Consider predicate logic first: the language of ∀ (forall), ∃ (exists), ¬ (not),
∧ (and), ∨ (or), → (implies). This is a possibly unfamiliar form of a familiar
notation, since it corresponds, via relational algebra, to the language of
relational databases.3

A typical possible consolidation point for our system might be

Deals with a company which is part of a group with interests in
the oil industry

which we can formalise in predicate logic simply as:

{ d | ∃c.company(d, c) ∧ ∃g.partof(c, g) ∧ industries(g, oil) }
which translated back into ordinary language defines the set of deals d such
that the company associated with d is c, and c is part of a corporate group
g with significant interests in the oil industry.

2Modal logics are also usually computationally less tractible. For further discussion,
see §6 about time judgements, as well as remarks in the appendix.

3Note that when we say ‘relational database’ we are talking in the pure formal sense
without, e.g., transitive relations, which can be calculated with SQL queries but are not
part of the relational model per se.

7

In relational algebra, the same class might be defined:

Joincompanies,1(transactions, Join2,1(partof, industries))

Relational algebra is familiar, and expressive; why should we reject it here?
The problem is that we have the inverse to the usual relational database
problem: instead of

find all the transactions which match a query,

we need
find all the queries which match a transaction.

Unfortunately, in the general case, this is both a hard problem, and one
which relational databanks are not designed to solve. Rather than consider
the general question, we can ask, what performance could we expect from
a system which contains a single consolidation point, defined as above; i.e.,
if a deal D enters the system, how long does it take to tell whether the deal
belongs to the consolidation point some D, whether

∃c.company(D, c) ∧ ∃g.partof(c, g) ∧ industries(g, oil)

or, again in relational algebra terms,

|Join2,1(Select1(company(D),partof), industries)| > 0.

However Select takes time O(N) and Join time O(N log N) in the size of
their arguments,4 thus to calculate whether a transaction is captured by a
single relational query is linear in the sum of the sizes of the tables to which
it refers (and in practice usually worse), and we would have to run the same
check for each consolidation point contained in the system.

What we need is a way to invert the traditional relational algebra prob-
lem. We argue in the next sections that in the current (though not in the
general) case it is indeed possible to invert the problem, and that by mak-
ing a few small, reasoned, compromises, it is possible to use this theoretical
argument as the basis of a practical system.

3.2.2 Boolean algebra

Boolean algebra, is, via a well-known isomorphism with propositional logic,
the fragment of predicate logic without the quantifiers ∀ and ∃, or variables.
In Boolean terms, we simply read the propositions (more accurately, ground
instances of atomic predicates) as sets, and the logical connectives as set
theoretic operations: A ∧ B becomes intersection, A ∩ B; A ∨ B becomes
union, A ∪ B; and ¬A becomes set complement, −A. The result is a very
simple language; before considering whether it is sufficient for our purposes,
we should ask if it has even the necessary properties. In fact we have:

4Note that we can sometimes improve the performance of the operations if we can
anticipate the particular circumstance where the relation will be used.

8

1. Given sets A and B selected from a universe of transactions Υ, we can
construct the set corresponding to the boolean formulae A∪B and A∩
B in time O(|A|+|B|), and to −A in time O(|Υ|); i.e. we can construct
the set corresponding to any Boolean formula in time proportional to
the number of connectives times the number of transactions.

2. Given a set of sets Λ constructed using the standard boolean functions
over sets Θj

i , where j 6= j′ → Θj
i ∩Θj′

i = ∅, in a universe of transactions
Υ, then given any x in Υ, we can construct the set { γ : Λ | x ∈ γ }
in time (approx.) O(

∑
i log Ni) where Ni is the number of distinct Θj

i

for i.5

(1) is obvious; we show and apply (2) below (§4.2). The result implies that a
solution based on Boolean algebra is both extremely fast, and also essentially
insensitive to scaling.6

3.3 The expressiveness of Boolean algebra

We have argued that predicate logic (i.e. relational algebra) is a powerful
language, allowing natural language descriptions of consolidation points to
be mapped essentially directly into formal specifications. In general, predi-
cate logic is more expressive than propositional logic (i.e. Boolean algebra),
but in fact certain properties of the information we are handling here means
that in fact this increased expressiveness is illusory: any predicate expression
can be reduced to a propositional one.

There are two sides to this point, of course: the technical argument, and
its practical implications. Though the technical result is not directly useful,
it provides the intuitions for more practical machinery.

3.3.1 Reducing predicate logic in an EMS to boolean algebra

The reduction follows from the fact that the only unbounded domain of
objects with which we are concerned is the set of incoming transactions, all
other domains (companies, company groups, industries, etc.) are completely
defined and fixed (i.e. part of the Static data). Further, while we may
quantify over the domains in the static data (as we do in the examples
above), we never want to quantify over the set of transactions.

We also assume the static data is defined in terms of binary relations.
This reflects our experience of real static data, and makes the analysis much

5This result is not, in general, true: it depends, as will be seen, on the fact that we
are able to decide between the Θj

i themselves in log time; i.e. essentially, to exploit fast
associative arrays.

6I.e., To double the response time, we would have to square the number of consolidation
points occuring in each judgement class

9

simpler, though it is not absolutely necessary.7

observe that we can assume that the static data consists only of bi-
nary relations: if the static data includes, e.g., a triple R(a, b, c), we can
reduce this to binary relations R12, R13, R23, where R(a, b, c) ↔ R12(a, b) ∧
R23(b, c) ∧R13(a, c).

We start with an arbitrary query P (d), where d varies over transactions.
The first step is as follows: we first move all negations inwards to atomic
relations, and then eliminate them by transforming the relations to their
complements, then we observe that we can always eliminate quantification
over a fixed, finite domain ∆ = {δ1, . . . , δn}, by the following transforma-
tions:

∀x : ∆.P (x) ≡
∧

δi∈∆

P (δi)

∃x : ∆.P (x) ≡
∨

δi∈∆

P (δi)

Thus we can reduce any query to a quantifier and negation free proposition
in one variable d, where that one variable stands for the transaction.

The next step is to reduce this proposition to disjunctive normal form;
i.e. ∨

i

∧

1≤j≤ni

Pij

We assume that d appears free in each disjunct, since if a disjunct does not
contain d it is either constant true in which case all transactions belong to
the consolidation point, or constant false in which case the disjunct can be
ignored.

Consider a single conjunction in d. This can be factored into a collection
of (not necessarily disjoint) subconjunctions of the form:8

Pi,c1...cn(d) ≡ [¬]P [−1]
i1 (d, c1) ∧

∧

i

[¬]P [−1]
i2 (ci, ci+1)

together with a single conjunction (disjoint from the above) of the form
∧

i

[¬]P ′
i (d, d)

(since we are assuming only binary relations in the static data).
Finally, we observe that, since there are only a finite, known, number of

relations and constants in the static data, there can be only a finite, known,
7We can reduce an n-ary relation Rn to n binary relations Ri

2 by simply defining
Rn(a1, . . . , an) ↔ V

1≤i≤n Ri
2(ai, a1 . . . an). Rn can then be reconstructed by application

of n− 1 joins.
8Where [¬]P [−1](a, b) denotes the negated or non-negated form of either P (a, b) or

P−1(a, b)

10

number of distinct predicates Pi,c1...cn , the same applies to P ′
1(d, d). If we

assume these are made available as the names of constant sets, then we can
translate the conjunction into the form:

(∧

i

d ∈ Pi,c1...cni

)
∧

∧

j

d ∈ P ′
j

which is the same as

d ∈
(⋂

i

Pi,c1...cni

)
∩

⋂

j

P ′
j

 .

We are here treating only one conjunct of the normal form proposition for
the transaction, we thus finish by taking the union of the sets corresponding
to each disjunct.

To summarise, for any static data set defined as sets SDPredicates of
predicates, we can find an equivalent collection of sets SDSets of transactions,
where the set of consolidation points defined in terms of SDPredicates using
predicate logic is the same as the set of consolidation points defined in terms
of SDSets using boolean algebra.

3.3.2 A practical version of the reduction

The practical drawbacks of the reduction above are obvious: the terms pro-
duced by the translation are going to be enormous, as is the number of sets
we need. We thus now modify the idea to be useful in practice; the modified
version does not try to be complete, but only to provide the facilities that
are useful in practice.

First, we observe that we are not usually interested in the details of what
particular points we go through in a path c1 . . . cn, we just want to know that
the path follows the right sort of route, and where it ends up; e.g. we want
to know that a transaction is with a company which is part of a group with
interests in the oil industry, we are not, as such, interested in the company
or the group, but only that there is some path

d
company- · partof - · industries- oil.

Further experience tells us that we have no interest in predicates for
paths that go through negated relations: in practice we are only interested
in the ‘negation’ of the whole path (i.e. if we want to know if it is not the
case that the transaction is with a company which is part of a group with
interests in the oil industry).

In short, the sets that we need are defined by simple paths to various
points in the static data. We call these sets simple consolidation points be-
cause they are the components out of which all other consolidation points

11

are constructed, and say that they correspond to basic judgements on a
transaction. In fact there turn out not to be that many classes of simple
consolidation points: in a prototype implementation, we identified approxi-
mately 30 of hem, including:

1. Counterparty location=place

2. Counterparty headoffice location=place

3. Counterparty group headoffice location=place

4. Counterparty industries=industry

5. Counterparty group industries=industry

6. internal book=book ID

7. . . . etc.

Note that these are not predicates, parameterised over, e.g., place. They are
constant sets with these names. Thus, for instance, there is a set Counter-
party location=Paris; there is no Counterparty location predicate as such.

From an implementation point of view, the nicest property of the judge-
ment associated with a simple consolidation point is that making it al-
most always amounts simply to following arrows through the static data—
something we can do extremely quickly. Thus, e.g., we can look up to com-
pare the legally registered head-office of the company group of the external
counterparty to a transaction by

d
counterparty branch- · company- · part of - ·

group head- · main office- · location- X

i.e., from the transaction, get the direct counterparty, and from that look up
the company, then the larger company group, then the controlling company,
which has a head office, which has a location X, which is what we are looking
for. In this case, all the pointer following is even deterministic.9

3.4 The language of consolidation points

We thus summarize the analysis in this section by describing the language
that we provide for consolidation points.

We identify the paths through the static data that we might be interested
in, and we define a class of sets for each of these paths, which we call
simple consolidation points. With each consolidation point is associated a

9Clearly not all arrows are deterministic redirections, but in practice almost all are;
deterministic arrows correspond to to the exclusive judgements discussed in §4.2.1.

12

judgement which, when applied to a transaction, returns true, or false (‘is
a member of this consolidation point’ or ‘is not a member’).

We can then construct other complex consolidation points CP out of the
provided simple consolidation points SCP as follows:

CP ::= SCP | −CP | CP ∩ CP | CP ∪ CP

(note that we do not restrict complex consolidation points to being in dis-
junctive normal form).

3.5 The expressiveness of our language

There remains the question of how well the language we have defined com-
pares to a ‘real life’ risk mangement regime—even irrespective of how ef-
fectively it can be implemented. In fact as a test of our language we have
worked systematically through the set of consolidation points used by a
major German bank to manage counterparty risk, and have been able to
formalise everything without problems. This does not mean that we are
able to formalise anything at all, and we do consider some exceptions which
may cause problems in §10.

3.6 Automatically maintained consolidation points

An important assumption for the practicality of the model we have devel-
oped here is that certain consolidation points may be maintained automat-
ically. There are two reasons why this may be necessary, either to reflect
the organisation of the static data, or to maintain syntactically complex
standard definitions.

Consider these one at a time; first the maintanence of consolidation
points which reflect hierarchies in the static data.

3.6.1 Hierarchies

Consider the classification of instruments in the system, which may represent
a tree (or even just a well ordering); e.g. the category of bonds is made up
of fixed rate bonds, floating rate bonds, etc. which in turn break down into,
e.g. zero coupon bonds, etc., with the leaves corresponding to the specific
sorts of instruments that actually identified as parts of transactions. This
hierarchy can be encoded in terms of our logic here, simply as a set of
definitions; thus we have:

bonds ≡ fixed rate bonds ∪ floating rate bonds ∪ . . .

fixed rate bonds ≡ zero coupon ∪ . . .

...

13

Presumably this hierarchy is maintained automatically by some central
resource in the bank that is also used for other front, back and middle office
systems. It therefore makes no sense for the same definitions to be manually
maintained in the limit sytem. Another example might be countries: since
transactions are associated with offices which are in cities, there is—at least
in theory—no need for countries as primitive concepts; instead we could
define them as counjuncts of cities; e.g.

Direct counterparty France ≡
Direct counterparty Paris ∪Direct counterparty Lyon ∪ . . .

3.6.2 Other maintained defintions

More importantly, however, there are definitions which are simply too intri-
cate to be maintained by hand. One example of this that we have encoun-
tered is the consolidation point collecting all transactions together where the
head office of the external party to the transaction is located in a country
with risk rating X and the internal party is located in a country with risk
rating other than X. Since we are working in language which does not allow
quantification over a domain, we have to expand this out to every possible
value (essentially in the way suggested in §3.3, above). This is not formally
complex, but it is syntactically intricate, and it is unreasonable to expect a
user to maintain this manually as ratings categories change.10

4 The initial algorithm

In this section, we present the algorithm (or, more accurately, we describe
how to construct the classification tree: in fact, given this, the run time
algorithm is trivial). We should immediately add, however, that the al-
gorithm in the pure case is probably useless, due to its space complexity;
and also because of especially bad behaviour related to the nature of the
particular problem at hand. To deal with these problems, we first suggest
a modification of the basic algorithm, then, in §5, propose some important
optimisations.

We assume a language of consolidation points as defined above, in §3.4.
We can gather all the defined consolidation points and their names together
into a single relation:

D : CP × E.

The problem of deal assignment is then to find the names of all the consol-
idation points to which a transaction belongs.

10An interesting question is whether it would be worth the effort of providing such
quantification, to be unfolded for definitions, as part of the language of consoliation points
provided to the user; currently, we envision such definitions being maintained by code
hardwired into the appropriate part of the static data.

14

4.1 The binary version

Step 1

We start by observing that every consolidation point has an equivalent nor-
mal form CP ′:

CP ′ ::=
⋃

i

⋂

1≤j≤ni

[−]Ai
j

(i.e. a disjunction of conjunctions of possibly negated basic consolidation
points) and that, as a result, D can be transformed into an equivalent form
not just in CP ′ ×E, but in

D∗ :
⋂

j

[−]Aj × E

since we can replace a pair of the form

(
⋂

1≤i≤m

⋃

1≤j≤ni

[−]Ai
j , name)

in D∗ with

(
⋂

1≤j≤n1

A1
j ,name)

...

(
⋂

1≤j≤nm

Am
j ,name)

without changing the meaning of D∗ (we have factored a single consolidation
point name into parts, but clearly a transaction belongs to the consolida-
tion point name precisely if it belongs to one—or more—of the disjunctive
components of that consolidation point). We say that this last form of D∗

is in normal form.

Step 2

We can now generate the classification tree CT (D∗) to assign deals to con-
solidation points from a normalised consolidation point/name relation by a
recursive analysis.

1. Assuming that there is some non-empty conjunction in the list of pairs
in D∗, choose some basic consolidation point A that occurs in one of
these, and we build two new relations D∗

A and D∗
−A as follows:

D∗
A = { (R/A, n) | (R,n) ∈ D, (−A) 6∈ R }

D∗
−A = { (R/(−A), n) | (R, n) ∈ D,A 6∈ R }

15

where R/A is just the conjunction R with A, if it occurs, deleted (if A
is the only conjunct, we can denote the resulting empty conjunction
by >). Then we have:

A

CT (D∗) =

ª¡
¡

¡
¡

¡
false

@
@

@
@

@

true

R
CT (D∗

−A) CT (D∗
A)

2. If all the relations in D are of the form (>,name), then CT (D∗) is
just

CT (D) = { n | (>, n) ∈ D }

4.2 Adding multi-way branches

We now start to modify this basic idea for an algorithm to our particular
circumstances. The basic idea simply assumes that we have a collection of
unrelated sets of transactions (A, . . . , Z), which we combine together. How-
ever, this is not really the case. In reality, what we have is essentially a
disguised quantifier free predicate logic, where groups of sets correspond to
different instantiations of the predicate. Thus we have a group of sets corre-
sponding to different counterparties, different countries, different industries,
etc. We call these collections of sets judgement classes.

By ignoring the existence of judgement classes, we run the risk of serious
ineffiencies in terms of the size and the speed of the classification tree: While
at least some judgement classes (counterparty, transaction type, etc.) are
very likely to be relevant, one way or another, for a consolidation point, any
particular judgement is not. The result would be a classification tree that
is both very big, and very deep (meaning slow, since it would long paths
of the form: ’counterparty Goldman-Sachs?, counterparty J.P. Morgan?,
counterparty Merill-Lynch?, etc. Further, these paths could be thousands
of judgements long) which assign transactions in time linear in the number
of judgements in the class)11

We obviously want to avoid this happening. Thus, instead of having
trees split on binary judgments, we have trees split according to judgment

11These paths will be interleaved between judgment classes, of course, but they will be
there.

16

classes, e.g.,

counterparty (CP)=X

ª¡
¡

¡
¡

¡
X=G-S

@
@

@
@

@

X=M-L

R
. . .CT (D∗

CP=G.S.). . . CT (D∗
CP=Morgan)

X=Morgan

?
. . .CT (D∗

CP=M-L). . .

We can do this with a association table T from particular judgements
to classification trees. Such tables are, at worst, O(log N) where N is the
number of distinct judgements in a class; i.e. they are extremely fast. For a
given judgement class, say, counterparty = X, the domain of T is a subset
of the counterparties δ (note that not every member of δ may be mentioned
in an exposure point). Thus we have

T (x) = CT ({ (R/CP=M-L, n) | (R,n) ∈ D, (−CP=M-L) 6∈ R })

However we must also take care of the ‘none of the above’ option; i.e. where
none of the explicitly mentioned values x is relevant; thus we also have

T (otherwise) = CT ({ (R, n) | (R,n) ∈ D,¬∃x.(CP=x) ∈ R })

The result of this optimisation is obviously a classification tree with multiple
points at the beginning, and essentially boolean judgements as we move
towards the leaves. Thus we get our performance bound, as stated above:

If we assume at most one split of each judgement class, then the time
to reach the leaves is bounded by O(

∑
i log |Ji|) where Ji is the set of the

instances of a judgement class that we actually use.
Formally, this bound is not quite correct, since it is possible that a

judgement class need to be tested so we must be careful not to delete both
instances. This is, in practice, rare, however, and in most cases however,
judgments can be used only once; and in this case we can make an important
further refinement of T , as follows:

4.2.1 Exclusive judgements

When we build these multiway branches in the tree, we have assumed that
the judgements, though gathered together in a class, are still essentially
mutually independent. But this is clearly not always, or even only rarely,
the case. Thus, for instance, if the counterparty is in Japan, then he clearly
cannot be in the USA.12

To be precise, if a judgement class A1, . . . , An (e.g. counterparty in the
US, counterparty in France, counterparty in Germany, etc.) represent a

12An example where judgements are not necessarily exclusive is industries: a counter-
party might be exposed to the auto industry, and to the finance industry.

17

disjoint partition if the set of transactions, and we partition the set of con-
soldation points on it, then clearly not only can we delete Ai from each
entry assigned to that (as described above) but we can also ignore side any
consolidation point which depends on the truth of Aj where i 6= j.13

Selecting the right partition

Notice that we do not specify which judgement to choose to partition the set
of consolidation points at each step. We suggest choosing at each step that
judgement class Ai which minimises Max

⋃
i{|D∗

Ai
|} ∪ {|D∗

otherwise|}. This
ensures that the longest possible path in the classification tree is as short as
possible.

Deal assignment using the classification tree

With CT (D∗) in hand, it is now easy to assign transactions to sets of con-
solidation points: starting at the root of the tree, we compare the the trans-
action against each judgement class A(x) that we meet as we descend. The
leaf of the tree that we eventually reach this way contains the names of all
the consolidation points to which the transaction belongs.

5 Complexity, performance and optimisation

Essentially, in constructing CT (D∗), all we have done is to ensure that we
never have to ask the same question of the transaction twice, and tried
to find the most useful question to ask at any point. Further, since the
partition is on a judgment class at each step, the depth, and therefore the
time to classify the transaction is more or less proportional to the number
of judgement classes. Further, since all we are doing is negotiating a simply
structured decision tree, possible performance of this algorithm is extremely
high (back of an envelope estimates suggest that it should be able to classify a
transaction against a typical real set of consolidation points in a few hundred
thousandths of a second (as a result of some of the optimisations below; it
may also be be necessary to consult one or more subsidiary tables (see §5.1),
but access for these is also at worst log time).

The risk is that the payment for this speed can be enormous in terms of
space, if we are not careful.

Ideally, each partition would be perfect, with the result that the branch-
ing set of possible consolidation points reduces radically at each step and
the size of the tree is directly proportional to the number of consolidation
points. Our world is far from ideal: it would be extremely unusual that
some judgement class performs a perfect partition, but we should try to get

13This observation also provides a useful sanity check for any consolidation point defi-
nition, since no such can have, as one of its conjuncts, both Ai and Aj .

18

as close as possible. In fact the partition candidate we have proposed, al-
though not explicitly specified to do so, should behave well by this criterion.
Nevertheless, if we are to keep the size of the tree under control, we should
also implement some optimisations which we now consider. They are more
or less general, but all take address the nature of the specific structure of
a set of consolidation points, as compared to a random set of consolidation
points of the same size.

5.1 Factoring out a fixed class of points

In §4.2 we optimised the classification tree to take acount of judgement
classes, rather than just single judgments; we now add a further optimisation
to remove altogether from the tree any particularly large sets of consolidation
points which can be assigned by some fixed collection of judgements.

A serious problem for the tree size is that a set of consolidation points
is likely to have a large number of standard ones that are do not require
the machinery we have developed here. For instance there may be a limit
placed on each specific counterparty (of which there may be, let us say, a
thousand—there are probably more). The effect of the existence of this
subset of consolidation points D′ can be best imagined if we first construct
the classification tree without D′, CT (D−D′), and then add D′ separately.
The result (as already observed) is a chain of 1000 judgements appended to
each leaf (is the counterparty Merrill-Lynch?, is the counterparty Citibank
New York? . . . , etc.) The result is both an enormous expansion in the size
of the tree, and an enormous increase in response time (the effect is even
worse if we have more than one of these sets).14

But before we enter the extension to the classification tree produced by
D′, we already know almost all the relevant consolidation points; all that
adding the set D′ does is to add an extra (very inefficent) lookup table to
the leaf to find the one extra point that we need for this particular case.

Our optimisation is simply to detect when this is likely to occur, and
do the lookup ourselves. Every exposure point in D∗ has a type signature;
which is a collection of the names of the judgement classes which have to
be made in the process of deciding whether a transaction belongs to the
consolidation point. Note that occasionally (if the judgements in a class are
not exclusive—i.e. do not define disjoint sets of transactions) then the type
signature should record the number of times a judgment class is invoked. It
is an easy matter to count the number of instances of each different type
signature in D∗, and then to identify any disproportionately large set of
identically structured consolidation points. These can then be removed from
the classification tree to a separate lookup table (a possibly multidimensional

14Note that this blowup is not detectable in the process of generating the normal form
of D, since D′ = (D′)∗.

19

generalisation of that discussed in §4.2) which we can check for after exiting
the classification tree.

It may make sense to extract more than one such set of consolidation
points: for instance a system might, as a matter of course, set limits on both
company × instrument category and company group × instrument category,
where both sets would be very large relative to the total number of consoli-
dation points.

5.2 Standard disjunctions

A further possible cause of classification tree blowup is the use of defined
disjunctions in definitions. Thus, for instance, if transactions are naturally
identified with cities, rather than countries (e.g. direct counterparty in
Paris, direct counterparty in Lyon), it makes (as we have already observed)
theoretical sense to define countries simply as disjunctions of their relevant
cities; e.g.:

Counterparty location France ≡
Counterparty location Paris ∪ Counterparty location Lyon ∪ . . .

Such an approach may be theoretically elegant, but it can lead to problems
with large classification trees. The problem is that there may be many
classification points which refer to, e.g.,

Counterparty location France ∩ P

which is expanded into a series of n conjuncts

(Counterparty location Paris ∩ P) ∪ (Counterparty location Lyon ∩ P) ∪ . . .

each of which represents a different path through the tree. The roblem gets
amplified with each level of definition (the next step up would then be to
the EU, which would involve dozens of different cities).

The solution to this problem (if it has been identified as one) is simply
to introduce a definition mechanism where such disjuncts are redefined as
simple consolidation points; i.e. we introduce a new simple consolidation
point into the system, of type, say, country so that France itself becomes an
atomic judgment, and thus is no-longer expanded during the reuduction of
consolidation points to normal form.

Alternative choices for the partition judgement

On the other hand it is extremely difficult to suggest an alternative choice
for the partition judgement.

One possible alternative might result if we wanted to to make the clas-
sification tree as small as possible (i.e. select A to minimise (

∑
i |D∗

Ai
|) +

20

|D∗
Aotherwise

|) however, this should be done only after the other suggestions
for reducing the tree size have already been implemented, since it runs the
risk that we end up with a very suboptimal tree which first asks a lot of
questions about small groups of rarely used consolidation points, leaving
the most common points at the end of relatively long paths in the tree.

6 The problem of time

The most serious problem with the boolean language of consolidation points
we have presented is that the model does not treat time. It seems to provide
us with no way to define, say, the set of ‘short-term’ transactions (where
‘short-term’ is usually interpreted as meaning ‘matures inside one year’).
In this section we consider the extensions that are needed to make use of
temporal concepts, and argue that these extensions are purely ‘technical’;
i.e. they fit naturally within the conceptual framework of boolean algebra
that we have already developed.

First, we note an important feature about the sorts of temporal judge-
ments we want to make about transactions: they are relative, not absolute;
i.e. we are not usually interested in classifying transactions with respect to
time points such as June, 2003, but rather with respect to in six months
time. Second, not only are the judgements we want to make relative, but
there is clearly only a small fixed set of them; e.g. we might need

• within the last week,

• within the next week,

• within a month,

• short-term (within a year),

• long-term,

• within five years,

• within ten years

etc. But these judgements simply define new simply consolidation points,
which can be mixed with those that we already have.

In fact temporal judgements require almost no new machinery. We can
build the classification tree treating temporal judgments as essentially no dif-
ferent from other derived judgements: the deal arrives in the system stamped
with (one or more) absolute time values, and the relative judgements we
need are simply derived from these. We only have to realise that those deals
for which some relative judgement may change overnight (e.g. a transac-
tion could change from long to short-term) have to be redistributed. But

21

given the speed of the classification algorithm, it would not be a problem,
if necessary, simply to reclassify all transactions sometime during close of
business (although some more sophisticated method which calculated merely
the delta on the various consolidation points could be easily implemented,
and would have clear advantages).

Remarks on temporal logic

We have argued that we can get all the temporal facilities that we need
simply by defining a few extra simple consolidation points. However this is
not the only possible approach. An interesting and (at least theoretically)
natural alternative to consider might be, rather than to extend the set of
consolidation points, to extend the set of operators on consoliation points;
i.e. to add temporal connectives, extending boolean algebra to a modal tem-
poral logic. This would give us instead of a fixed set of new conosolidation
points, a fixed set of new connectives, which could then be applied to any
already defined set.

Such an approach would clearly be much more flexible: fortunately it is
not clear where we would need this flexibility—it would only be necessary if
the structure of a transaction changed radically over time, but in practice, if
,e.g., the counterparty is currently Merill-Lynch, then it will still be Merill-
Lynch in a week. This is forunate, since the structure of temporal logic is a
great deal more complex, with the result that there is no similarly effective
way of classifying transactions against temporal propositions.

7 Modifying the set of consolidation points

A further, and important, advantage beyond speed and expressiveness with
the approach we describe here, is that the core data structures easily absorb
minor modifications without serious effects on performance (further, these
modifications can be reasonably performed even on a running system). This
means that, e.g., risk managers are able to add new consolidation points, or
even modify those already in the system, without automatically triggering a
complete recompilation. For instance OPEC oil producers might suddenly
become interesting, with the result that it is suddenly necessary to add a
collection of new consolidation points to classify and monitor transactions
related to that group. Or it might even be necessary to change the definition
of OPEC itself (let us imagine that the United Kingdom decided to join),
in which case all consolidation points referring to OPEC would need to be
adjusted.

22

7.1 Adding a new consolidation point

Adding a new consolidation point to the classification tree requires only a
series of ‘local’ patches. All we do is to convert the consolidation point, as
usual, into normal form, and then for each conjunct of the disjunction, move
down the three from the top, comparing the judgements at each branch with
those in the conjunct:

• If the judgement is not relevant, then we take all branches,

• on the other hand, if the judgement is relevant, we take the appropriate
branch, and delete the judgement from the conjunction.

Finally, on reaching the leaves, either every judgement in the conjunct has
been deleted, in which case we add the name of the consolidation point to
the leaf set, or there are some judgements left, in which case we extend the
tree in the obvious manner.

The extended tree is almost unchanged, the only modifications are at
those leaves which transactions that might belong to the new consolidation
point reach, thus while the tree is no-longer quite optimal it is very nearly
so, and the only suboptimal behaviour is with respect to these transactions
(where a few extra judgements may have to be made). Clearly, the classifi-
cation tree should have no problem absorbing almost any reasonable number
of such extensions without serious performance degradation (especially if the
number of consolidation points used to build the original classification tree is
large, since the the result will then be almost optimal for most extensions).

Note that when we add a new consolidation point, we do not automat-
ically identify the transactions already in the system which correspond to
it. However we have already observed that it is an easy matter to construct
this set.

7.2 Deleting consolidation points

Consolidation points can be deleted just as easily as they can be added,
using the same procedure.

7.3 Modifying consolidation points

More complex is the case where it may be necessary to modify one or more
consolidation points (e.g. if the definition of OPEC were modified to include
the UK, then presumably a large number of separate consolidation points
would be affected).

However the basic principle is similar to that for adding/deleting a new
consolidation point. We could simply delete all the old definitions, and
add the new ones, but that would be more computationally intensive than
necessary. Instead, we can simply calculate the delta for the modification,

23

which is likely to be much smaller, and implement that: First must find the
set of affected consolidation points, then we must identify:

1. the set of leaves of the current classification tree to which the old
versions consolidation points are assigned

2. the leaves of the (possibly extended) tree to which the new versions of
the consolidation points are assigned

Finally, we can calculate the difference (i.e. the delta), and adjust those
leaves which have changed as a result (i.e. if a point has been deleted or
added to some leaf, or if it is added to a leaf of a new extension of the
classification tree.)

8 Reservations

It is not clear that it is possible to design a ‘perfect’ reservation logic. The
various requirements are simply not reconcilable. In this section we dis-
cuss some of the problems, provide a formal analysis, and presenta basic
method for calculating the resrvation/limit pairs which may interfere with
one another.

8.1 The non-local effects of reservations

The core problem with reservations is that they are not ‘local’: a transac-
tion which in itself has no relation to the consolidation point to which a
reservation has been attached may nevertheless influence it.

Consider an example: limits of 10 units have been placed on the consol-
idation points for

1. South America, and

2. banks

in our EMS, and we would like to guarantee that trader X has access to
5 units for future transactions against South America ∩ banks. While there
is currently no limit on that consolidation point, nevertheless, the limits
at 1 and 2 are clearly relevant, implying, at the least, that we are not
able to reserve more than 10 units. However, since there are currently no
reservations booked in the system, we have no problem doing that.

Now consider that a limit of 10 units is placed against a third reservation
point, say Banks ∪ Oil industry, and trader Y immediately tries to book a
transaction of 10 units against British Petroleum. Clearly, an immediate
consequence of accepting this transaction would be to void X’s reservation:
as a result of the third limit, the system will not allow any more transactions
to be booked against banks and, therefore, not against South American
banks.

24

8.2 A refinement of the problem

The problem cannot be resolved simply by having the system refuse to accept
the transaction, as we can see if we refine the example slightly, by refining
consolidation point 2 to banks ∪ Car manufacturers. Now Y ’s transaction
does not void X’s reservation; it merely means that X can book transactions
only against car manufacturers.

This refinement also raises a corollary question: what exactly does it
mean to make a reservation of U against A ∪B: that we can book transac-
tions of total value U against this consolidation point, or that we should be
able to book all of U against A or against B? The later option seems clearly
unacceptable (the result would be, e.g., that the system should ensure that
X is always able to book the whole reservation against a single transaction
with the smallest bank in the Lima suburbs, which is clearly not what is
intended—and also, as a side effect, lock down all other business with South
American banks). On the other hand, if we accept the first option, then
X may find that he has a reservation, but that it is not usable, since all
most interesting bits have been ‘chipped away’ by other transactions (local
or non-local) leaving him to do business with suburban banks in Lima after
all.

8.3 Formal analysis and notes on implementation

The practical details of the implementation of reservations is clearly complex
and application specific, so we will restrict ourselves to generally applicable
principle of how to detect when a limit and a reservation interact.

Consider a reservation against a consolidation point A, and a limit
against a consoliation point B, where A∩B 6= ∅. If a transaction t falls into
A∩B, then it is relevant since it is also booked against A, but even if it falls
into B/A, it still has, as explained, an effect on the reservation: if it uses
up the limit on B, then the reservation against A is only bookable against
A/B (the ’small banks in Lima’ set, which at the very least, we now have
to make sure is still allowed).

The problem then is to calculate those consolidation points which carry
limits relevant for a reservation consolidation point. Fortunately, we have
most of the machinery already available. Both limit points L and reserva-
tions R are associated with consolidation points and thus are equivalent to
formulae:

⋃

i

⋂

1≤j≤mi

([−]Li
j)

⋃
p

⋂

1≤q≤np

([−]Ri
p)

25

Further, the two sets intersect precisely if there exists a pair of a conjunct
in R and a conjunct in L which share a non-empty common subset of simple
consolidation points, and the signs on the points in that common subset
match.

Fortunately, we already have a list of all existing limit consolidation
points, reduced not only to normal form, but factored into conjuncts, D∗.
All we have to do now is to reduce the reservation (or set of reservations)
to similar form, and perform a join according to the method for identifying
an intersection we have just given.

Note that in calculating the join, we should also take account of the ex-
istence of exclusive judgements, as discussed in §4.2.1: if two conjunctions
share a positive judgement type then, even though the judgments thems-
selves are different, the two conjunctions do not intersect.

8.4 Remarks on reservations and limit management

There is clearly scope for a variety of different reservation facilities which
attempt to alleviate the problems we have described in different ad hoc
ways, but we make two remarks in passing: first that there is no require-
ment that a reservation be for a particular group of people: is it simply a
reservation against any consolidation point. Second, that a facility to set
a simple cumulative reservation, to which transactions are automatically
booked, against a consolidation point is a powerful tool for limit manage-
ment and thus should be made available alongside any other facility. (For
discussion of this, see §9.)

9 Limit management

In this section we provide an example of automatic limit management using
the facilities we have defined.

9.1 Manual limit management

The scenario is as follows: a risk manager has 15 units of resources which
he can distribute between three trading areas, the high risk/high return A
and the medium risk/medium return B, and the low risk/low return C; he
decides to allocate, by default, 5 units to each area. On request he is willing
to reallocate some resources temporarily, if they happen to be free, from the
higher risk to lower risk areas but not vice versa (i.e. from A to B or C,
and from B to C, but not from C to B or A, or from B to A). However he
is also loath to reallocate all resources from even A (let us say that he will
never reduce the allocation to any area below 3 units, even the resources are
not currently in use).

26

A regime like this clearly requires constant human monitoring. Not only
does the risk manager have to reallocate resources by hand on request, but
even after he has done so, he must monitor the three areas so that as soon as
resources are released, they can be redistributed to bring the the allocations
back to their defaults as soon as possible.

9.2 Automatic limit management

How might a risk manager use the facilities we have described to automate
his regime?

9.2.1 The limit structure

Rather than assign limits to individual transaction types, the risk manger
creates, and limits, the following consolidation points:

1. A ∪B ∪ C, limited to 15 units,

2. A ∪B limited to 10 units,

3. A limited to 5 units

Note that there is no limit at all on transactions of type C alone, these are
constrained only by the 15 unit limit on A∪B ∪C; similarly for B which is
constrained only by the limits on A ∪B and A ∪B ∪ C.

An examination of this arrangement shows that indeed—at least if we
think in terms of the manual model—resources can flow from high risk to
low risk areas and back again without manual intervention.

9.2.2 The reservation structure

However it is still possible for, e.g., a trader to book a 15 unit transaction
against C, thus using up all the resources that should be available to A and
B, even though we have decided that there shall always be at least 3 units
available in each of those areas.

The solution is as follows: we supplement the limits we have assigned
to the various points with a pair of reservations of 3 units against A and
B. Note that these are not reservations in the name of some person; they
are simply reservations for transactions of types A and B. Now, even if
nothing is currently booked against A or B, the largest transaction that can
be booked against C is 9 units; i.e. the other half of the constraint that the
risk manager defined on resource reallocation has been implemented.

If we examine this combination of reservations and limits, then clearly
it satisfies all the requirements of the original regime, except that now it is
completely automated; the risk manager need never intervene manually.

27

9.3 Emergency shutdowns

A second important form of manual limit management is ‘emergency shut-
downs’: in an emergency a risk manger might want to suspend temporarily
all transactions which increase exposure in some area. This area might be,
say, all companies registered in Gulf states (rumour of war), or all sub-
sidiaries of a Japanese bank (rumour of insolvency).

The sets of transactions which we want to block are definable as consoli-
dation points, therefore all we have to do to suspend all such business (and,
as importantly, if necessary, to free up again as quickly) by setting a limit
against a single consolidation point of 0 units. This limit could be a consol-
idation point already defined in the system (e.g. Company group=‘IBM’),
but it could equally easily be something like OPEC countries other than
Kuwait with a poor longterm rating:

Counterparty/OPEC
∩ −Counterparty location = Kuwait
∩ Counterparty/Country/rating longterm ≤ A.

10 Exceptions to the model

There are always exceptions to a formal model, and what we describe here,
though fast, expressive, and flexible, is no different in that respect: there
exist some more or less natural classes of consolidation point that are not
naturally captured by it, and for such cases it will still be necessary to add
some exception logic. However at least in the cases we have encountered or
imagined, the necessary facilities are not complex.

Consider, for example, the case of an issue limit. Some counterparty C
issues a series of bonds. These bonds are identical in every way, except for
the issue number, which is unknown in advance. The risk manger wants to
monitor exposure on these bonds, and, alongside limiting exposure to the
set of all such bonds as a set, to limit exposure on a per issue basis. We can
easily define a consolidation point CP which defines the set of all these bonds
together, but we have no way to formulate the requirement that there should
be a limit on each issue of this type. In such a case, we need to be able to
attach logic to CP which then sets up, automatically, a consolidation point
and a limit. Such an arrangement is exactly like the machinery we proposed
for automatic maintenance of, e.g., country-risk consolidation points, except
that it is triggered by a transaction landing in a particular consolidation
point. The same technique can be adapted to any particular special case
where the logic as provided is not suitable.

A further useful hook for handling exceptional judgements is the general
optimisation method described in §5.2 for treating definitions which threaten
to make the classification tree too large; this can also be used to integrate

28

cleanly arbitrary predicates that do not fit directly into the model developed
here (in fact we have already used it to implement temporal judgments, in
§6).

11 Comparison with other solutions, summary and
conclusions

In summary, we have presented a logic/technology for the modelling and
implementation of a system for monitoring and limiting counterparty ex-
posure, and in particular for performing pre-deal limit checks, in real time.
Our architecture has the following properties:

• It provides an expressive and intuitive language for defining consoli-
dation points, which allows a direct translation from original natural
language specifications. This language has been checked against the
consolidation point structure of two different large German banks.

• Transactions can be classified for pre-deal checks against limits essen-
tially instantaneously (we estimate in hundreds of a thousandth of a
second, or approx. O(

∑
i log Ni) where Ni are the sizes of (the utilised

parts of) the judgment classes). This estimate is dependent on the
particular properties of sets of consolidation points. Further, perfor-
mance should be essentially independent of the scale of the system (as
a result of the log bound).

• It allows a user to modify not just limits, but also introduce arbitrary
new consolidation points to the consolidation points relevant for pre-
deal limit checks, in real time and have these limits take immediate
effect (thus allowing a risk manager, e.g., to suspend immediately any
definable class of transactions).

• It allows a risk manager to implement a flexible limit management
regime automatically.

• We provide a general analysis of reservations, and a method for iden-
tifying in general when limits and reservations interact.

• We also define clean techniques for extensions, when necessary, to deal
with circumstances which the model cannot treat.

It is important to emphasize that in order to be practical, we require certain
optimisations, which reduce drastically the otherwise exorbitant memory re-
quirements of our architecture. Since the other solutions for this problem are
offered as commercial software, it is difficult to make explicit comparisons,
since we have not been able to discover detailed information about under-
lying principles (extensional or intensional). Comparisons must thus bbe

29

on the basis of user manuals when available, presentations, and anecdotes.
However we have seen no solid evidence that existing systems offer the sort
of flexibility described here. Presentations we have seen tend to present
the space of transactions in intuitive terms as a ‘cube’, with consolidation
points defined as consisting of one or more subcubes of this space; a model
like this corresponds to the fragment of our Boolean language without the
negation operator, but there is little or no suggestion of the full language as
we have defined it. No mention either is made in commercial presentations of
what we see as important properties of our model: first that it is insensitive
to scale; further, commercial systems seem to have detectable performance
limits defined as a function of the number of consolidation points. Finally,
existing commercial presentations do not discuss the possibility of entering
new consolidation points into the pre-deal checking logic, and therefore of
suspending an arbitrary class of transactions. (Note that this is different
from the much less strenuous requirement that a sytem be able to generate
reports on the exposure associated with an arbitrary consolidation point).

We should add that, alongside commercially available systems, we have
also seen an interesting design by Philipp Brune and Martin Exner, which
implements a logic similar, on inspection, to what we develop in this pa-
per. However this design has been developed under the constraint that it be
implemented in terms of a relational database, with the result that predeal
limit checks are O(N) in the number of (disjuncts of normalised) consolida-
tion points, with a large constant factor (the result of the overhead of the
relational logic), and that it seems to be less flexible than our design in, e.g.,
the freedom to modify the pre-deal checks in a running system.

Acknowledgements

The author would like to thank Philipp Brune, Martin Exner, Peter Friedl
and Robert Pfund, Mireille Khazaka, Karsten Wilhelmsen, and in particular
Jens Kramer of Remark Consulting, for discussions which in various ways
helped with the development of the ideas in this paper.

30

Appendix: a note on a possible natural modal ex-
tension for treating derivative transactions

We have discussed, and dismissed, the idea of modal extensions to our lan-
guage for the purposes of formalising time judgements, on the grounds that
we neither need the expressiveness, nor know how to implement the resulting
system efficiently. However it is interesting to record briefly—if only for the
sake of theoretical interest—another modal extension that might be useful,
efficient to implement, and consistent with the model we have developed in
this paper.

In a more complex counterparty monitoring system, we are sure to en-
counter derivative transactions. In most of these, the immediate counter-
party is of interest, however in the special, but common, case of a credit
derivative, we are interested in the properties of both the direct counterparty
and the underlying counterparty. But the mapping from set of instruments
to set of underlying instruments has obvious similarities to an accessibility
relation in a Kripke-style model. Further, the implementation we have de-
scribe in this paper could be easily extended to take account of it (since the
the ‘modality’ has a particularly simple meaning: just a redirection to the
underlying instrument).

Thus in theory there is no reason why we could not extend our lan-
guage of consolidation points (viewed as a propositional logic, rather than
a boolean algebra) with a modal connective for handling derivative transac-
tions. Indeed, taking the common (technical) view of modal logic as simply
the controlled introduction of, essentially, predicate logic into a proposi-
tional setting, then this would be an example of the controlled introduction
of relational algebraic concepts into a boolean setting.

It should be added that in practice, so far, we have not seen the need for
this sort of flexibility: the same approach as we have proposed with time—of
adding a few specific new judgements—seems to be sufficient.

31

