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Valuation in Integrated
Financial and Insurance Markets

Abstract: A market is presented in which actuarial risk is traded through
both insurance and financial contracts. The coexistence of these contracts leads
to a new price selection criterion. Financial prices have to be actuarially consis-
tent with insurance premiums to exclude arbitrage opportunities in the market.
Even though this additional restriction on price dynamics does not imply unique
price determination, a representation of actuarially consistent prices is deduced.
In this representation, the underlying stochastic structure is separated from the
contract’s specifications and a link is established between financial prices and
insurance premiums. This connection is examined in more detail for commonly
used premium calculation principles.
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1 Introduction
The importance of the interface of capital markets and insurance markets has
been increasingly emphasized by both the private and public sector. This eco-
nomic and political debate has its roots in the growing concerns amongst indi-
viduals of the long-term risks over the lifecycle as the nature and magnitude of
some of these risks have become apparent only recently. In the past 30 years,
financial costs from natural catastrophes have risen, risk to social capital and
risk of inflation have become more severe. These developments suggest that in-
novations in risk management would make a valuable contribution in reducing
risk over individuals’ lifecycle. In response, one major focus in recent years has
been the idea of making risks tradeable in financial markets, that were tradi-
tionally spread through insurance and reinsurance contracts. This attempt at
risk securitization results in the emergence of financial products that capture
insurance related risks, e.g. catastrophe insurance derivatives, index-linked life
insurance contracts, index-linked debt, or funded pension schemes.

This overlap of insurance and financial markets raises several questions on
risk valuation and suggests examining the similarities and differences between
methods that have been developed in both insurance mathematics and mathe-
matical finance. It is possible to classify these issues and the related literature
using two factors, the specification of the contracts that are available on the
market and the source of uncertainty. To be more precise, our classification is
based on whether the economy contains

• financial and/or insurance contracts

that are based on

• financial and/or insurance related risk.

The type of contract is related to the concept upon which valuation is based,
whereas the type of underlying risk is connected to the appropriate class of
stochastic processes that is used to model the evolution of market uncertainty.

Prior to the convergence of capital and insurance markets, exclusively either
financial contracts based on financial risk or insurance contracts based on insur-
ance related risk had been introduced to the market. Stochastic models for the
underlying risk processes and methods for the valuation of the corresponding
contracts have been developed separately in mathematical finance and insurance
mathematics. We refer to Bjørk [4], Duffie [14], and Musiela and Rutkowski [30]
and the references therein for the former field of research, and to Bühlmann [7],
Gerber [20], and Grandell [22] for the latter.

In a sequence of papers by Brennan and Schwartz [6], Bacinello and Ortu
[2], and Nielsen and Sandmann [31], the pricing of equity-linked life insurance
contracts is investigated. The benefits of these insurance policies depend on
the performance of a reference portfolio that is traded on the capital market.
According to our classification, these contracts belong to a market containing
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insurance contracts that are based on both financial and insurance related risk
in form of policyholders’ mortality risk.

Aase [1], Cummins and Geman [9], and Embrechts and Meister [16] investi-
gate the valuation of financial contracts that are based on insurance related risk
such as catastrophe insurance derivatives. According to our classification, this
economy is one that consists of financial contracts based on insurance related
risk.
In two articles by Delbaen and Haezendonck [12] and Sondermann [33] the

authors show how premium calculation principles for reinsurance contracts can
be embedded in a no-arbitrage framework. The important contribution of these
papers lies in the construction of an analytical bridge between actuarial and
financial valuation. Referring back to our classification, the authors investigate
a market that consists of insurance contracts based on insurance related risk.
Recent papers by Schweizer [32] and Møller [28], [29] consider a capital

market in which a risk measure is a priori given that can be interpreted as
an actuarial premium. The authors use an indifference argument based on the
possibility of trading in financial instruments to transfer this a priori given
risk measure into an a posteriori risk measure. The resulting measure can be
interpreted as a financial premium.
We conclude that the literature, initiated by the convergence of capital and

insurance markets, has separately focused on markets consisting of insurance
contracts linked to financial market risk, on markets consisting of financial con-
tracts based on insurance related risk, and on embedding actuarial valuation
into a no-arbitrage framework.
In a global economy, in which capital and insurance markets merge, financial

investors and insurance companies additionally trade in contracts of the other
market with the aim of exploiting new investment opportunities and hedging
instruments. It is therefore relevant to consider an economy in which both fi-
nancial and insurance contracts coexist and to investigate price determination
in view of this coexistence. This idea of an integrated market and the valua-
tion therein captures exactly the aim of this paper and our contribution to the
existing literature.
To be more precise, we assume that an investor facing insurance related risk

is able to sell off the risk. This possibility reflects the existence of an insurance
contract in which the premium to be paid is specified. In addition, we assume
the existence of a traded financial contract that securitizes the underlying risk in
the form of a European derivative. To come back to our previous classification,
we investigate a market consisting of financial and insurance contracts that are
both based on insurance related risk.
One major difficulty in valuation of these contracts is the unpredictable na-

ture of insurance related risk. This feature makes it impossible to synthetically
provide a completely secure hedge by continuous trading in existing contracts.
Our integrated market is thus incomplete and there exists an infinite collection
of financial and insurance price processes that exclude arbitrage strategies.
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With the aim of tackling the multiplicity of no-arbitrage prices, we require
financial prices to be consistent with the actuarial valuation of the same un-
derlying risk. We therefore introduce a new price process selection criterion
in incomplete markets that originates in the coexistence of financial and insur-
ance contracts. In addition to the exclusion of arbitrage opportunities we thus
demand financial prices to be robust with respect to this new selection criterion.

It is shown that in general there exists still an infinite collection of financial
price processes that are consistent with actuarial valuation. However, the ad-
ditional selection criterion restricts the set of no-arbitrage price processes and
we explicitly characterize this remaining set. Building on a representation of
price processes that we deduce in this paper using Fourier analysis, we show
that the connection between financial and actuarial prices, emerging from ac-
tuarial consistency, is wholly incorporated in the characteristic function of the
underlying risk. These results are valid for a very general class of premium cal-
culation principles. We then pick out some principles that are commonly used
by the insurance industry and investigate in more detail the set of financial price
processes that correspond to the chosen premium principle.

The remainder of the paper is organized as follows: in Section 2 and 3 we
introduce the fundamentals of the market, the underlying risk process and the
contracts that are available in the market. Section 4 investigates actuarial and
financial valuation and introduces the concept of consistency with insurance
premiums. In Section 5 we examine certain premium calculation principles in
more detail before we conclude in Section 6.

2 The Fundamentals
In this section we introduce the stochastic structure and the underlying process
that represents insurance related risk in the market. In addition, we briefly
examine the change between equivalent probability measures and the effect that
it induces on the dynamics of the risk process.

2.1 Uncertainty

Uncertainty enters through different possible realizations ω of the world. All
realizations are collected in a sample space Ω. An event is defined as a subset
of Ω and F denotes the set of all possible events. We assume that F forms a σ-
algebra. The likelihood of events is represented by a probability measure P that
assigns probabilities to every event in F . The triple (Ω,F , P ) thus describes
the stochastic foundation of the market on which all following random variables
will be defined.

As we consider the stochastic evolution of prices we need to introduce time
and the amount of information that is available to market participants at every
point in time. We assume that the economy is of finite horizon T < ∞ and
the flow of information is modeled by a nondecreasing family of σ-algebras
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(Ft)0≤t≤T , a filtration. We assume that FT = F , each Ft contains the events
in F that are of P -measure zero, and the filtration is right-continuous, i.e.

Ft = Ft+,
where Ft+ = ∩

s>t
Fs.

In the following section we put more structure on the evolution of uncertainty
by taking into account the features of insurance related risk.

2.2 Risk Process

Risk in an insurance context is caused by single events such as accidents, death,
or natural catastrophes. One source of uncertainty is therefore the point in time
of events. Additionally one has to introduce some variable that measures the
impact such an event has on the economy. Let us imagine that this variable
measures insured losses and thus claims to be paid by an insurance company.
Hence the magnitude of losses represents a second source of uncertainty in the
economy.

We model the points in time and magnitudes of events as sequences of ran-
dom variables (Tn)n∈N and (Yn)n∈N where Tk denotes the point in time of the
k-th event causing a corresponding loss of size Yk. Let us now combine both
moment and magnitude risk by introducing a stochastic process X = (Xt)0≤t≤T
where for each point in time t the random variable Xt represents the sum of
claim amounts incurred in (0, t]. Therefore

Xt =
X

{k|Tk≤t}
Yk. (1)

The stochastic process X = (Xt)0≤t≤T is called accumulated claim process,
also referred to as risk process in the literature.

We assume that the past evolution and current state of the risk process X
is observable by every agent in the economy, i.e. X is assumed to be adapted to
the filtration (Ft)0≤t≤T . For simplicity, we shall assume that X generates the
flow of information, i.e. Ft = σ (σ (Xs, s ≤ t) ∪N ) where N denotes the events
of P -measure zero.

As regards occurrences of events we assume that the counting process N =
(Nt)0≤t≤T defined through

Nt = sup {k ≥ 1 |Tk ≤ t} (2)

is a homogeneous Poisson process with frequency parameter λ ∈ R+. The
probability of k events occurring in the time interval (0, t] is therefore

P [Nt = k] = e−λt
(λt)k

k!
,
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with the expected number of events

EP [Nt] = λt,

where EP [·] denotes the expectation operator under the measure P .
Furthermore, we assume that loss sizes Y1, Y2, Y3, ... are independent and

identically distributed random variables that are independent of the counting
process N . Let G denote their common distribution function with support
(0,∞].
In short, we model the risk process X as a compound Poisson process with

characteristics (λ, dG (y)).

2.3 Equivalent Probability Measures

In this section, we briefly review the change between equivalent probability
measures and the consequent change in characteristics of the process X.

Let us examine the set of probability measures Q on (Ω,F) that are equiv-
alent to the “reference” measure P and that preserve the structure of the un-
derlying risk process X, i.e. X is a compound Poisson process under the new
probability measure Q. This set has been characterized by Delbaen and Haezen-
donck [12] and can be parameterized by a pair (κ, v (·)) consisting of a nonneg-
ative constant κ and a nonnegative, measurable function v : R+ → R with
EP [v (Y1)] = 1. The density process ξt = E

P [ξT | Ft] of the Radon-Nikodym
derivative ξT =

dQ
dP is then given by

ξt = exp

Ã
NtX
k=1

ln (κv (Yk)) + λ (1− κ) t

!
, (3)

for any 0 ≤ t ≤ T .

Let us denote the measure Q corresponding to the constant κ and the func-
tion v (·) by Pκ,v. Under the new measure Pκ,v the process X is a compound
Poisson process with characteristics (λκ, v (y) dG (y)). κ can therefore be inter-
preted as market price of frequency risk, and v (·) as market price of claim size
risk.

Changing the probability measure plays a central role in the context of val-
uation of both insurance and financial contracts. In the following section we
introduce the contracts that are available on the market before proceeding to
the pricing of these contracts.
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3 The Market
Suppose an individual or a company is facing the risk process X, e.g. an insur-
ance company that has to pay out claims to their policyholders. The company
can make use of three assets that are traded on the market:

• one risk-free bond with price process B = (Bt)0≤t≤T and associated de-
terministic short rate of interest r. Without loss of generality, we assume
r ≡ 0, i.e. Bt ≡ 1 for all 0 ≤ t ≤ T ;

• one insurance contract that specifies the premium process of the underly-
ing risk process X;

• one European-style financial contract, i.e. at maturity T the contract’s
payoff depends on the realization of the risk process XT only.

Let us define the specifications of the latter two risky assets in more detail.

3.1 The Insurance Contract

We consider the setup of Delbaen and Haezendonck [12] in which the insurance
(reinsurance) contract allows the individual (insurance company) to sell off the
risk of the remaining period. Let pt denote the premium the individual (insur-
ance company) has to pay at time t to sell the risk XT −Xt over the remaining
period (t, T ].

The premium process p = (pt)0≤t≤T is a stochastic process that is assumed
to be predictable, i.e. it is adapted to (Ft−)0≤t≤T , where Ft− = ∨s<tFs.

Remark 1 Sondermann [33] considers dynamic reinsurance policies, i.e. the
insurance company can decide to sell off a certain fraction of their risk and
adjust their decision continuously. If the insurance company is allowed to only
adjust at finitely many times this approach can be embedded in the framework
of Delbaen and Haezendonck [12] by defining the maturities of several contracts
accordingly.

3.2 The Financial Derivative

We assume that the financial derivative securitizes insurance related risk re-
flected in the underlying risk process X. The buyer of this contract receives a
certain payment at expiry T of the contract that depends solely on the realiza-
tion of XT . In exchange the seller of the contract receives a certain price that
reflects the value of the payoff. The financial contract is therefore of European-
style, i.e. early exercise is not allowed and the contract is path-independent.

Let φ : R+ → R be a measurable function that specifies the buyer’s payoff
at maturity, i.e. at T the buyer receives φ (XT ). Let the random variable
πt denote the price at time t that one has to pay in order to enter into the
financial contract. Hence the stochastic process π = (πt)0≤t≤T is the financial
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price process that reflects the value of the payoff φ (XT ) at maturity T of the
contract.

We shall assume the following integrability condition:

φ (·)− k ∈ L2 (R+) , (4)

from some k ∈ R where L2 (R+) is the set of measurable, square-integrable
functions with respect to the Lebesgue measure. Financial contracts with a
structure that is similar to existing insurance or reinsurance contracts are spread
options that cover a certain layer of losses. These contracts with limited liability
fulfill the integrability condition specified in equation (4).

In the following section we investigate the price process p and π of the
insurance and financial contract in more detail.

4 No-Arbitrage Valuation
In this section, we examine the valuation of traded assets in the absence of
arbitrage strategies. First, we review the equivalence between the existence of
equivalent martingale measures and the absence of arbitrage opportunities in
the market. We then investigate the valuation of both insurance and financial
contracts under the assumption that the corresponding price processes exclude
arbitrage opportunities. Thereafter, we introduce the additional restriction that
financial prices should be consistent with actuarial pricing principles.

4.1 The Fundamental Theorem of Asset Pricing

The equivalence between the existence of equivalent martingale measures and
the absence of arbitrage opportunities in the market plays a central role in
mathematical finance. An equivalent martingale measure is a probability mea-
sure that is equivalent to the “reference” measure P and under which discounted
price processes are martingales. It is important to be aware of the specifications
of the model in which this equivalence is used since arbitrage has to be differently
defined to guarantee the existence of equivalent martingale measures.

Harrison and Kreps [23], and Harrison and Pliska [24] were the first to es-
tablish an equivalence result in a model based on a finite state space Ω. In a
discrete infinite or continuous world, the absence of arbitrage is not a sufficient
condition for the existence of an equivalent martingale measure. Other defini-
tions of arbitrage opportunity or restricting conditions on the dynamics of price
processes have been derived to guarantee the existence of martingale measures.
Fritelli and Lakner [17] give a definition of arbitrage, called “free lunch”, under
which the equivalence result is derived with high level of generality. The only
mathematical condition that is imposed on asset prices is that they are adapted
to the filtration (Ft)0≤t≤T which is a natural requirement.
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As asset price processes are not a priori assumed to be semimartingales
stochastic integrals that reflect achievable gains from continuous trading strate-
gies are not well-defined. To circumvent this problem, the set of trading strate-
gies is restricted to permit trading at either deterministic times or stopping
times. The “no free lunch” condition then postulates that the set of achiev-
able gains contains no positive random variables. In a continuous time setting
closure of the set of gains has to be considered which essentially depends on
the topology on this set. Under a topology that makes use of certain dualities,
Fritelli and Lakner [17] prove that there is “no free lunch” with trading strate-
gies at deterministic times if and only if there exists an equivalent martingale
measure. Furthermore, if every underlying process is right-continuous, then this
result holds additionally for trading strategies at stopping times.

Henceforth, we assume “no free lunch” in the market as outlined above, so
that the existence of an equivalent martingale measure is guaranteed.

In the following section, we examine the determination of insurance premi-
ums in a no-arbitrage framework as introduced by Delbaen and Haezendonck
[12].

4.2 No-Arbitrage Insurance Premiums

One ad-hoc approach of calculating insurance premiums would be to take the
mathematical expected value of the underlying risk. However, an insurance
company charging such a “pure premium” would not be able to survive. There-
fore, a sensible insurance premium should be greater than the “pure premium”
and the additional increase should reflect the insurer’s administrative costs, cap-
ital costs, and the nature of the underlying risk more specifically. In practice,
many different principles are used for calculating insurance premiums. The
loading factor could be proportional to the expected value of the underlying
risk or it could incorporate higher moments. Another loading factor could de-
pend on agents’ preferences that are reflected by some utility function. We refer
to Goovaerts et al. [21] for a comprehensive outline of premium calculation
principles.

Delbaen and Haezendonck [12] introduced the condition of “no-arbitrage” in
an insurance market. Under the additional assumptions of liquidity and divis-
ibility of insurance products, a premium calculation principle is deduced that
includes commonly used principles as special cases. In fact, premiums are cal-
culated as expected values under a different, equivalent probability measure. A
certain loading factor can then be obtained by choosing the equivalent proba-
bility measure accordingly.

Therefore, insurance premiums can be understood as emerging from a hy-
pothetical “no-arbitrage” framework. This standpoint has the advantage of
providing a methodological link between financial and actuarial valuation. In
this paper, we deduce results for financial prices that are consistent with specific
loading factors. Hence our results do not rely on the “no-arbitrage” framework
in the insurance market and can be derived independently for different premium
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calculation principles. In Section 5, we examine some commonly used principles.
Nevertheless, let us briefly review the setup given by Delbaen and Haezendonck
[12]:

Assume that the company’s liabilities are of the form

Xt + pt, (5)

for all 0 ≤ t ≤ T . The first component Xt denotes accumulated claims up
to time t and the second component pt describes the premium for which the
insurance company can sell off the risk of the remaining period (t, T ].

A trading strategy in this setup means the possibility of ‘take-over’ and the
company’s liabilities thus represent the underlying price process. According
to the fundamental theorem of asset pricing, the absence of arbitrage strate-
gies implies the existence of a probability measure Q that is equivalent to the
“reference” measure P and under which price processes are martingales.

If one further assumes that the predictable process p = (pt)0≤t≤T under Q
is linear, i.e. of the form

pt = p (Q) (T − t) , (6)

then Delbaen and Haezendonck [12] conclude that the existence of sufficiently
many reinsurance markets implies that the risk process X under Q is still a
compound Poisson process.

As our risk process X has stationary and independent increments the mar-
tingale property implies that the premium density takes the form

p (Q) = EQ [X1]

= EQ [N1] ·EQ [Y1] . (7)

In Section 2.3, the set of equivalent probability measures that preserve the
structure of the underlying risk process X has been characterized by the market
price of frequency risk κ and the market price of claim size risk v (·). Using
the notation Pκ,v for an equivalent probability measure the premium density
corresponding to the pair (κ, v (·)) is given by

p (Pκ,v) = EPκ,v

[X1]

= EPκ,v

[N1]E
Pκ,v

[Y1]

= λκ ·EP [Y1 · v (Y1)] . (8)

As pointed out and shown in an explicit example by Barfod and Lando [3],
the premium density is not in one-to-one correspondence to the set of equivalent
measures. This is a crucial difference to the one-to-one correspondence between
financial prices of insurance derivatives and the set of equivalent measures.
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In fact from the representation of the premium density (8) we deduce that
there are infinitely many market prices of risk and therefore equivalent proba-
bility measures that lead to the same premium process. It is indeed this inde-
terminacy that does not pin down a unique financial price process under our
additional requirement that financial prices should be consistent with actuarial
valuation of the same underlying risk.

Before introducing this additional requirement let us focus on financial val-
uation of insurance-related risk.

4.3 No-Arbitrage Financial Prices

We denote by πt the value at time t of a financial contract that pays out φ (XT )
at maturity T . In the absence of arbitrage strategies the fundamental theorem
of asset pricing (see Harrison and Kreps [23], Harrison and Pliska [24], Fritelli
and Lakner [17]) implies that the price process π = (πt)0≤t≤T is a martingale
under an equivalent probability measure Pκ,v. It can therefore be expressed as

πκ,vt = EPκ,v

[φ (XT ) |Ft ] , (9)

for all 0 ≤ t ≤ T where the superscript κ, v states the dependence on the market
prices of risk.

As the underlying risk process X is a Markov process and generates the
filtration (Ft)0≤t≤T πt is of the form

πκ,vt = fκ,v (Xt, t) = E
Pκ,v

[φ (XT ) |Xt ] , (10)

for some measurable function fκ,v with fκ,v (XT , T ) = φ (XT ).

Let us assume that φ : R→ R is a measurable function such that φ (·)− k ∈
L2 (R) =

n
g : R→ C measurable | R∞−∞ |g (x)|2 dx <∞

o
for some k ∈ R. This

assumption is satisfied by financial contracts with limited liability. We will now
make use of Fourier analysis to calculate the expected payoff in (10).

The Fourier transformation is a one-to-one mapping of L2 (R) onto itself. In
other words, for every g ∈ L2 (R) there corresponds one and only one f ∈ L2 (R)
such that the Fourier transform of f is the function g, that is

f (u) =
1

2π

Z ∞
−∞

e−iuxg (x) dx (11)

is the inverse Fourier transform of g.

Applying the Fourier transform, and thereafter the inverse Fourier transform,
to the function φ (·)− k ∈ L2 (R) we deduce

φ (x)− k =
1

2π

Z ∞
−∞

Z ∞
−∞

eiuxe−iuz (φ (z)− k) dzdu. (12)

11



With regard to (10) we get

πκ,vt = fκ,v (Xt, t) = E
Pκ,v

[φ (XT ) |Ft ]
= EPκ,v

[φ (XT )− k |Ft ] + k

=
1

2π
EPκ,v

·Z ∞
−∞

Z ∞
−∞

eiuXT e−iuz (φ (z)− k) dzdu |Ft
¸
+ k

=
1

2π

Z ∞
−∞

Z ∞
−∞

EPκ,v £
eiuXT |Ft

¤
e−iuz (φ (z)− k) dzdu+ k

=

Z ∞
−∞

EPκ,v £
eiuXT |Ft

¤
ϕ̌ (u) du+ k,

where we applied Fubini’s theorem and ϕ̌ (·) denotes the inverse Fourier trans-
form of φ (·)− k, i.e.

ϕ̌ (u) =
1

2π

Z ∞
−∞

e−iuz (φ (z)− k) dz. (13)

The inverse Fourier transform ϕ̌ (·) can be derived explicitly by specifying
the derivative’s payoff structure.

Since a compound Poisson process is a Markov process with stationary and
independent increments, we have

EPκ,v £
eiuXT |Ft

¤
= eiuXtEPκ,v

h
eiu(XT−Xt) |Xt

i
= eiuXtEPκ,v £

eiuXT−t
¤
.

EPκ,v £
eiuXT−t

¤
is the characteristic function of the random variable XT−t

under the probability measure Q and given by

χκ,vT−t (u) = exp
µ
λκ

µZ ∞
0

eiuyv (y) dG (y)− 1
¶
(T − t)

¶
(14)

(see for example Karlin and Taylor [25] p.428).

Hence, the price at time t of the financial contract is given by

fκ,v (Xt, t) =

Z ∞
−∞

eiuXtχκ,vT−t (u) ϕ̌ (u) du+ k. (15)

This representation of no-arbitrage price processes enables us to derive the
inverse Fourier transform of the price process in closed form. For a given value
of the loss index Xt = x, we have

1

2π

Z ∞
−∞

e−iux (fκ,v (x, t)− k) dx = χκ,vT−t (u) · ϕ̌ (u) . (16)
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The inverse Fourier transform is thus the product of two factors where the
first, the characteristic function, contains the whole stochastic structure and
the second solely depends on the contract’s payoff. Therefore the characteristic
function is the important component in linking financial prices with insurance
premiums under our concept of consistency that we introduce in the following
section.

4.4 Actuarially Consistent No-Arbitrage Prices

This section presents an internal consistency requirement that we impose on
financial prices in addition to the exclusion of arbitrage strategies. Although the
consistency requirement reflects a further restriction on the possible dynamics
of financial prices it is not strong enough to pin down a unique price process.
Nevertheless, we characterize the remaining set of price processes and derive a
connection between financial and actuarial prices.

As outlined above the market consists of an insurance contract and a finan-
cial contract that are both written on the same underlying risk process X. The
insurance specifies a premium process (pt)0≤t≤T of the linear form

pt = p · (T − t) (17)

with premium density p for selling off the remaining risk XT −Xt. The financial
contract specifies a price process (πt)0≤t≤T for the payoff φ (XT ) at maturity.

Internal consistency should require that the financial valuation is consistent
with actuarial valuation in the sense that market prices for frequency and claim
size risk that lead to the specified premium density are inherent in financial
prices.

The following proposition is the main result of this paper linking financial
with actuarial prices on the basis of internal consistency as described above.

Proposition 2 Let X = (Xt)0≤t≤T be a compound Poisson process with char-
acteristics (λ, dG (y)) and let (pt)0≤t≤T be a linear premium process specified
in the insurance contract. Suppose that the function φ : R+ → R specifies the
payoff of the financial contract at time T and satisfies the integrability condition
φ (·) − k ∈ L2 (R+) for some k ∈ R. Then for a given market price of severity
risk v : R+ → R with EP [v (Y1)] = 1 the function fv : R+ × [0, T ] → R defin-
ing the financial price process (fv (Xt, t))0≤t≤T that excludes arbitrage strategies
and is consistent with the premium process can be represented as

fv (x, t) =

Z ∞
−∞

eiux exp

Ã
pt ·

EP
£
eiuY1 · v (Y1)− 1

¤
EP [Y1 · v (Y1)]

!
ϕ̌ (u) du+ k, (18)

where ϕ̌ (·) is the inverse Fourier transform of φ (·)− k.
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Proof. Internal consistency requires that the market prices of risk charac-
terizing financial no-arbitrage prices lead to the same premium process. This
set of market prices of frequency risk κ and claim size risk v (·) can be described
by equation (8), that is

p = λκ ·EP [Y1 · v (Y1)] ,

and the corresponding premium process (pt)0≤t≤T is thus given by

pt = λκ ·EP [Y1 · v (Y1)] · (T − t) .

Substituting this expression into the representation (15) of no-arbitrage fi-
nancial prices describes financial prices that are consistent with the specified
premium process and completes the proof.

If we subtract k and apply the inverse Fourier transform on both sides of
equation (18) we deduce for every given value Xt = x

1

2π

Z ∞
−∞

e−iux (fv (x, t)− k) dx = exp

Ã
pt ·

EP
£
eiuY1 · v (Y1)− 1

¤
EP [Y1 · v (Y1)]

!
· ϕ̌ (u) ,

or alternatively

pt = ln

ÃR∞
−∞ e−iux (fv (x, t)− k) dxR∞
−∞ e−iux (φ (x)− k) dx

!
· EP [Y1 · v (Y1)]
EP [eiuY1 · v (Y1)− 1] .

We observe that financial prices under the additional requirement of actu-
arial consistency can still not be determined uniquely. Nevertheless, the set of
prices can be parameterized solely by the market price of claim size risk. The
indeterminacy is an implication of the fact that there are many market prices
of risk that lead to the same actuarial price.

This is an important difference to financial prices where it is possible to back
out market prices of risk from financial prices in a unique way. We therefore
conclude that a premium process is uniquely determined by requiring it to be
consistent with a given financial price process as it uniquely determines the
market prices of risk. The consistent premium density is then determined by
equation (8).

In the following section, we investigate some premium calculation principles
that are commonly used by the insurance industry and derive financial price
processes that are actuarially consistent.
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5 Premium Calculation Principles
As mentioned in the beginning of Section 4.2, reasonable insurance premiums
contain a factor in addition to the “pure” mathematical expectation of the un-
derlying risk. The explicit form of this loading factor differs depending on the
risk’s nature. In the no-arbitrage framework introduced by Delbaen and Haezen-
donck [12] this is reflected by the fact that the expected value of the underlying
risk is taken under different probability measures. The additional factor is thus
inherently related to the choice of the equivalent probability measure, i.e. to
the market prices of frequency and claim size risk.

We examine three different premium calculation principles and derive a rep-
resentation of the corresponding market prices of risk. This allows us to repre-
sent financial prices that are in line with the respective insurance premiums.

5.1 Expected Value Principle

Under the expected value principle the premium density is given by

p = (1 + δ)EP [X1] = (1 + δ)λEP [Y1] ,

for some δ > 0. This premium calculation principle is mainly used in life
insurance because of the homogeneity of the collectives.

If we choose

κ = (1 + δ)
EP [Y1]

EP [Y1 · v (Y1)]
as a function of v (·) with EP [v (Y1)] = 1 we have thus characterized the set of
parameters κ and v (·) that correspond to this premium calculation principle.

Furthermore, for any market price of claim size risk v (·) with EP [v (Y1)] = 1
the function fv defining the financial price process that is consistent with the
expected value principle can be represented as

fv (Xt, t) =

Z ∞
−∞

eiuXtχvT−t (u) ϕ̌ (u) du+ k,

where the characteristic function is given by

χvT−t (u) = exp

Ã
λ (1 + δ) · E

P [Y1] ·EP
£
eiuY1v (Y1)− 1

¤
EP [Y1v (Y1)]

· (T − t)

!
.

5.2 Variance Principle

The variance principle is mostly used in property and casualty insurance. It
additionally includes fluctuations of X and the premium density is calculated
according to
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p = λ
³
EP [Y1] + β ·VarP [Y1]

´
,

for some β > 0.
To be consistent with this premium density the market price of frequency

risk for a given market price of claim size risk v (·) with EP [v (Y1)] = 1 has to
be determined through

κ =
EP [Y1] + β ·VarP [Y1]

EP [Y1 · v (Y1)] .

The function fv defining financial price processes that are consistent with
this premium calculation principle can be represented as

fv (Xt, t) =

Z ∞
−∞

eiuXtχvT−t (u) ϕ̌ (u) du+ k,

where the characteristic function is given by

χvT−t (u) = exp

λ ·
³
EP [Y1] + βVarP [Y1]

´
·EP

£
eiuY1v (Y1)− 1

¤
EP [Y1v (Y1)]

· (T − t)

 .
5.3 Esscher Principle

The last example of premium calculation principles we investigate is the so-
called Esscher principle that is gaining more and more attention as it can be
derived from equilibrium analysis or from the minimization of a particular loss
function. It is defined by a premium density of the form

p = λ · E
P
£
Y1e

γY1
¤

EP [eγY1 ]
,

for some γ ∈ R\ {0}.
Here κ depends on the density function v (·) through

κ =
EP

£
Y1e

γY1
¤

EP [eγY1 ] ·EP [Y1 · v (Y1)] ,

and the function fv defining the price process that corresponds to this premium
principle for a given market price of claim size risk v (·) can be expressed as

fv (Xt, t) =

Z ∞
−∞

eiuXtχvT−t (u) ϕ̌ (u) du+ k,

where the characteristic function is given by

χvT−t (u) = exp

Ã
λ ·EP

£
Y1e

γY1
¤ ·EP

£
eiuY1v (Y1)− 1

¤
EP [eγY1 ] ·EP [Y1v (Y1)]

· (T − t)

!
.
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6 Conclusion
In this paper we investigated valuation in a market that contains both insur-
ance and financial contracts written on the same underlying compound Poisson
process. We examined both corresponding valuation principles - actuarial and
financial - on the basis of excluding arbitrage opportunities and deduced a rep-
resentation of prices for given market prices of frequency and claim size risk.

We introduced a new concept arising from internal consistency that origi-
nates in the coexistence of financial and insurance contracts. Financial prices
should be consistent with the actuarial valuation of the insurance contract. Al-
though financial prices cannot be uniquely determined, under this additional
restriction on their dynamics, we characterized the set of prices that fulfill both
absence of arbitrage and actuarial consistency. Through this characterization
we established a link between financial price processes and insurance premi-
ums. This connection is wholly incorporated in the characteristic function of
the underlying risk process.

We clarified that an important difference between financial and actuarial
valuation is contained in the mapping between price processes and market prices
of risk. The mapping between financial price processes and market prices of
risk is one-to-one whereas there are infinitely many market prices of risk that
lead to the same premium process. This implies that premium processes are
uniquely determined by assuming them to be consistent with a given financial
price process. However, consistency with a given premium process is not strong
enough for financial prices to be uniquely determined.

Finally, we examined three premium calculation principles that are widely
used by the insurance industry. A representation of financial price processes were
derived that are consistent with the respective premium calculation principle.
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