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Model Uncertainty and Portfolio Insurance 

Abstract. Some real-world insurance products contain a minimum wealth or a income 

stream guarantee, both of which have to be met irrespective of capital market conditions. 

Therefore, the seller of such products will have to choose that portfolio strategy that per-

forms best in a reasonable worst case capital market scenario, as the literature under model 

uncertainty (in particular Anderson/Hansen/Sargent (2000)) suggests, if he wants to avoid 

additional cash payments. 

This paper shows that this solution to the portfolio problem crucially hinges on the as-

sumption that model uncertainty is taken into account by adding an explicit preference for 

models’ similarity to the objective function of the decision problem, a so-called preference 

for robustness. If there are strictly to meet minimum investment goals instead, as in the 

case of the real-world insurance products cited above, the Anderson/Hansen/Sargent 

(2000) solution will not exist in general. Then, only one trivial portfolio strategy is able to 

defend minimum investment goals, namely invest in the riskless asset the amount guaran-

teed discounted at the riskfree rate. 

 

Key Words: model uncertainty, portfolio selection, minimum wealth or income stream 

guarantee, Portfolio Insurance, robustness 
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Model Uncertainty and Portfolio Insurance∗ 

1 Preliminaries 

1.1 Introduction to the problem 

In real-world financial markets, insurance products are observable that offer their buyers a 

minimum wealth or a income stream guarantee. Two prominent examples are money back 

guarantees at maturity (guaranteed minimum wealth), in Germany known under the label 

“Riester products”, and life annuities (guaranteed income stream). By construction, sellers 

of these products are obliged to meet their guarantees irrespective of capital market condi-

tions. Therefore, they will be well-advised to pursue a portfolio strategy that is able to ful-

fill this requirement if they want to avoid additional cash payments. 

The literature under model uncertainty (see in particular Anderson/Hansen/Sargent (2000)) 

seems to offer a solution to this portfolio problem by proposing the following non-trivial 

portfolio strategy, non-trivial in the sense that wealth is not completely invested in the risk-

less asset: follow that portfolio strategy that performs best in a reasonable worst case capi-

tal market scenario. Reasonable is particularized as in a certain way close to a reference 

model (see Cagetti/Hansen/Sargent/Williams (2002), p. 374). 

It is the objective of thi s paper to show that Anderson/Hansen/Sargent’s (2000) solution 

does not work in general under model uncertainty. The reason for this outcome is that their 

solution procedure crucially hinges on the assumption that model uncertainty is taken into 

account by adding an explicit preference for models’ similarity to the objective function of 

the decision problem, a so-called preference for robustness. This preference for robustness 

indeed leads to a more conservative investment strategy (see Cagetti/Hansen/Sargent/Wil-

liams (2002), p. 373). However, this investment strategy will be still too aggressive if there 

are strictly to meet minimum investment goals. As a rule, only a full investment of the 

amount guaranteed in the riskless asset is able to meet these mini mum investment goals. 

To offer a proof of this statement, portfolio strategies for defending a guaranteed minimum 

wealth (Option Based Portfolio Insurance) and a guaranteed income stream (Constant Pro-

portion Portfolio Insurance) are calculated for several capital market scenarios. 

                                                             
∗ I thank participants of the “3rd Passauer Finanzwerkstatt”, in particular Ariane Reiß, for their valuable 

comments. In addition, special thanks goes to Alexander Kempf, whose suggestions have significantly 

improved the paper. 
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Option Based Portfolio Insurance calls for duplication of the option implied by this mini-

mum wealth guarantee. A duplication portfolio, though, is fitted to a concrete price process 

and can handle this price process only. For that reason, there is just one price process that 

allows for duplication and this price process is the worst case scenario at the same time 

which means that the idea of a worst case scenario is reduced to absurdity. Consequently, 

the only portfolio strategy that is capable of defending guaranteed wealth irrespective of 

the capital market environment reads: invest in the riskless asset guaranteed wealth dis-

counted at the riskfree rate. 

In the case of Constant Proportion Portfolio Insurance, things turn out to be slightly more 

sophisticated. Whenever there is a non-trivial portfolio strategy, there is no pronounced 

worst case scenario, in that all portfolio weights have the same structure irrelevant of the 

capital market scenario chosen. A clear-cut worst case scenario will occur, however, if 

stock market crashes are added to capital market conditions: the maximum possible nega-

tive jump amplitude ϕextr. But then the optimum portfolio weight turns out to be trivial; it 

invests in the riskless asset ( extr1 ϕ− ) times guaranteed income per period discounted at the 

riskfree rate. 

The results of the paper sketched above extend the literature in two ways. First, they inte-

grate an environment observable in the pragmatic world (minimum investment goals) into 

portfolio selection under model uncertainty. The model uncertainty literature so far, fol-

lows Anderson/Hansen/Sargent’s (2000) setup and copes with model uncertainty solely 

with the help of a theoretical concept, an explicit preference for robustness – although this 

preference shows different degrees of complexity in Maenhout (2001), Trojani/Vanini 

(2001), and Uppal/Wang (2002). Second, the paper supplements the Portfolio Insurance 

literature. It shows how to adapt Option Based Portfolio Insurance even to an environment 

with several sources of uncertainty by using roll-over Option Based Portfolio Insurance. 

Thereby, Rubinstein (1985) is generalized and a guess formulated in Geman (1992) and 

Leland (1992) proven. In addition, Constant Portfolio Insurance strategies are modified to 

work in a stochastic volatility environment, which means Black/Jones (1987) is extended. 

This article is organized as follows. The rest of Section 1 gives some definitions, and out-

lines the framework of the model used. Section 2 calculates dynamic Portfolio Insurance 

strategies for various classes of stock price processes. These results are interpreted in the 

light of model uncertainty in Section 3. Section 4 concludes the paper; an appendix fol-

lows. 
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1.2 Characterization of model uncertainty 

1.2.1 Definition and particularization 

A comprehensive definition of model uncertainty is missing in the literature. There are just 

some scattered, not always consistent descriptions. For example, Xia (2001, p. 211) de-

notes a situation in which the drift parameter of a geometric Brownian motion is not ex-

actly known “parameter risk” (or estimation risk), whereas the same situation is called 

“model misspecification stemming from parameter risk” by Maenhout (2001, p. 3). Ander-

son/Hansen/Sargent (2000, p. 6) argue that model misspecification/uncertainty results in an 

additional risk term g(t) besides the increment d z(t) of a Wiener process. Therefore, total 

risk reads g(t) + d z(t), i.e., is the sum1 of model uncertainty g(t) and market risk d z(t), 

where the decision maker does not know the distribution of g(t) (see Ander-

son/Hansen/Sargent (2000, p. 7)). Finally, Anderson/Hansen/Sargent’s (2000, p. 9) and 

Cagetti/Hansen/Sargent/Williams (2002, p. 374) point out that model uncertainty must be 

close to the reference model d z(t) – a reasonable worst case scenario must exist – because 

otherwise the reference model would be easily rejected empirically.  

Structuring the arguments of the above paragraph, it is first necessary to distinguish be-

tween parameter risk and model uncertainty. Under parameter risk, the parameters of a 

stochastic process change stochastically over time like, e.g., in Merton’s (1973) stochastic 

volatility model. However, the presence of two types of risk, estimation and market risk, is 

not sufficient for model uncertainty to be present; model uncertainty means that the shape 

of market risk itself must shift unforeseeably as Anderson/Hansen/Sargent’s (2000) and 

Uppal/Wang’s (2002) formulation g(t) + d z(t) implies. Therefore, second, the question 

arises how to particularize an unforeseeable shift of the shape of market risk. “Unforesee-

ably” means that the probabilities of this shift are unknown2 to the decision maker. A shift 

of the shape of market risk signifies that the form of the stochastic process shifts (and not 

just its parameters). Reviewing the examples contained in Anderson/Hansen/Sargent’s 

(2000), Maenhout (2001), and Trojani/Vanini (2001), one particularization of a shift of the 

                                                             
1 Alternatively, this statement can be formulated as follows: the distribution function of market risk is sub-

ject to a multiplicative distortion – a Radon-Nikodym derivative unequal to one – (see Ander-

son/Hansen/Sargent (2000), p. 22 and Uppal/Wang (2002), p 4). 

2 That is the reason why I speak of “model uncertainty“ and not “model risk”. Since for estimation risk 

there is a stochastic process describing its distribution, see, e.g., Merton’s (1973) stochastic volatility 

model, the term “parameter risk” is justified. 
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form of a stochastic process encompasses a shift between diffusion processes, e.g., the 

transition from a constant opportunity set to a deterministic or stochastic opportunity set, or 

between jump processes in the same mold. Another way to particularize Ander-

son/Hansen/Sargent’s (2000) and Uppal/Wang’s (2002) formulation of model uncertainty 

is to make shifts between diffusion and jump/diffusion processes admissible. Yet, a shift 

from “normal” to extraordinary price movements seems to violate Cagetti/Hansen/Sar-

gent/Williams’s (2002) empirical detection criterion. There are two arguments, though, 

that indicate this conclusion might be too hasty. First, the inclusion of jumps does not nec-

essarily change stocks’ distribution. For example, if 1 + jump amplitude is logarithmic-

normally distributed as in Merton (1976), investor’s wealth has the same type of distribu-

tion as in the case of a (pure) geometric Brownian motion. Second, Bates (2000, p. 182, 

183) points out that there are two models vying to explain negative skewness in stocks’ 

returns after the ’87 crash: stochastic volatility and jumps. Since both explanation describe 

the same phenomenon, they are rather difficult to distinguish empirically. 

To be able to differentiate between both particularizations of model uncertainty, I call an 

intra-model-shift (from diffusion to diffusion or jump/diffusion to jump/diffusion) ho-

mogenous model uncertainty, an inter-model-shift (from diffusion to jump/diffusion) het-

erogeneous model uncertainty. It is important to remember, however, that both homoge-

nous and heterogeneous model uncertainty are nevertheless particularizations of Cagetti/ 

Hansen/Sargent/Williams’s (2002, p. 374) phrase “close to the reference model”. 

Based on the discussion above, I define and particularize model uncertainty as follows: 

model uncertainty denotes an unforeseeable shift between different classes of stock price 

processes where the probabilities of this shift are unknown. This shift might involve ho-

mogenous model uncertainty (e.g., shift from a diffusion process with one source of risk to 

one with two sources of risk) or heterogeneous model uncertainty (e.g., shift from a diffu-

sion to a combined jump/diffusion process). 

Comparing my definition and particularization of model uncertainty with the literature, 

there are two differences. First, I particularize Anderson/Hansen/Sargent’s (2000) and Up-

pal/Wang’s (2002) general formalization of model uncertainty by identifying it as an un-

foreseeable shift from one class of stochastic process to another. Second, I generalize exist-

ing particularizations of model uncertainty in continuous time, which all (see Ander-

son/Hansen/Sargent’s (2000), p. 25, 26, Maenhout (2001), p. 13, Trojani/Vanini (2001), p. 

7, and Uppal/Wang (2002), p. 10) work within homogenous model uncertainty, by increas-

ing the degree of heterogeneity of model uncertainty.  
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1.2.2 Integration of model uncertainty into portfolio selection 

To integrate model uncertainty into the decision problem “portfolio selection”, the litera-

ture follows two different directions. First, a Bayesian framework can be used, like in Xia 

(2001) for pure estimation risk, and in Avramov (2001) for pure model risk.3 This means, 

decision makers integrate in the calculation of expected utility not just the probabilities for 

certain payoffs within market risk, but also their probability estimates with respect to the 

class of the stock price model itself. Critical for this procedures is the knowledge of the 

probability that a certain class of price process will occur. Since this information is missing 

according to the definition of model uncertainty proposed in this article, the Bayesian ap-

proach is not pursued any further. Second, Anderson/Hansen/Sargent (2000) take model 

uncertainty into account by adding an explicit preference for models’ similarity, so-called 

robustness, to the objective function of the decision problem. The economic reason for this 

is explained best by Cagetti/Hansen/Sargent/Williams’s (2002, p. 373): a preference for 

robustness leads to a more conservative investment strategy. Technically, a preference for 

robustness is obtained from a two person game (see Anderson/Hansen/Sargent (2000), p. 

9). A malevolent player chooses the state of nature while large deviations from a reference 

model are penalized so that the state chosen remains (rather) close to the reference model. 

The decision maker (second player) then selects the best portfolio strategy depending on 

the (worst) state selected by the first player. 

Although this approach is undoubtedly able to integrate model uncertainty into the decision 

problem, its resulting portfolio strategies are not appropriate to handle the obligations from 

real-world insurance products with minimum investment goal. A preference for robustness 

results in a portfolio strategy that tries to minimize the utility loss in the worst case state. 

This utility loss, however, might be too low to persuade a decision maker to defend mini-

mum investment goals. The only way to achieve this, will be to impose a utility of –∞ on 

the decision maker if minimum investment goals are not met, i.e., to add a strict minimum 

wealth or a income stream constraint to the decision problem. 

For that reason, I take model uncertainty into account by analyzing the following decision 

problem: decision makers maximize their expected utility subject to a mini mum wealth or 

a income stream constraint. That is, I fall back on the ideas of the Portfolio Insurance lit-

erature (e.g. Black/Perold (1992)) to analyze model uncertainty although this literature 

                                                             
3 Since the Bayesian approach works with probabilities, the term “model risk” instead of “model uncer-

tainty” is justified. 
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does not refer to model uncertainty in an explicit way. I do not follow the model uncer-

tainty literature in narrower sense, who always works with an explicit preference for ro-

bustness: Anderson/Hansen/Sargent (2000), the pioneering work, and their extensions in 

form of several formalizations of robustness (minimum entropy, homothetic, and con-

strained robustness) (see Tojani/Vanini (2001)) or “differences in the degree of ambiguity” 

about the returns of different assets (Uppal/Wang (2002), p. 3). 

1.3 Framework of the analysis 

To be able to elaborate what consequences the transition from a preference for robustness 

to minimum investment goal constraints has for portfolio selection under model uncer-

tainty, a framework of the analysis is needed that corresponds with the one of the literature 

aside from the objective function of the decision problem. Therefore, it is well-advised to 

use the literature’s standard set of assumptions:4 

1. Capital markets are free of arbitrage and perfect, i.e., short selling constraints or transac-

tion costs do not prevent minimum investment goals from being met.  

2. Trading happens in continuous time, i.e., a potential lack of transaction speed does not 

cause a violation of minimum investment goals. 

3. There is a riskless asset in the market with dynamic 

d  P(t) = td)t(Pr  (1) 

where P(t) denotes the price of the riskless asset at time t, r its interest rate, and d t a 

time period of infinitesimal length 

4. There is one risky asset (stock market index), i.e., there is no basis risk that endangers 

minimum investment goals. 

In addition to these four standard assumptions, another one is added that reflects the par-

ticularization of model uncertainty developed in this paper: 

5. The price process of the stock index is subject to model uncertainty since it can follow a 

geometric Brownian motion (one source of risk), Merton’s (1973) stochastic volatility 

model (two homogenous sources of risk due to estimation risk), and a combined jump/ 

                                                             
4 These assumptions are extracted from the core articles of the model uncertainty and the Portfolio Insur-

ance literature, i.e., And erson/Hansen/Sargent (2000), Maenhout (2001), Trojani/Vanini (2001), Cagetti/ 

Hansen/Sargent/Williams (2002), and Uppal/Wang (2002) as well as Black/Perold (1992). 
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diffusion model (infinitesimal and non-infinitesimal price changes and, thus, two het-

erogeneous sources of risk). 

Start with the formalization of the geometric Brownian motion, the reference model (or 

with g(t) = 0 in the language of Anderson/Hansen/Sargent (2000)): 

d  S(t) = )t(zd)t(Std)t(S σ+α  (2) 

where S(t) denotes the price of the stock index at time t, d S(t) its infinitesimal price 

change, α its per unit time mean, σ its per unit time standard deviation, and d z(t) the in-

crement of a Wiener process, the only source of risk in this class of stock price model. 

Under a combined jump/diffusion process the index evolves according to (or g(t) = the 

stochastic differential equation for a Poisson process, see Merton (1976), p. 128) 

d  S(t) = )t(zd)t(Std)t(S σ+α  (3) 

with probability 1 – λ d t (diffusion case) 

( ) )t(S1)S(tS(t) −− −ϕ+=∆  

with probability λ d t (jump case) 

with ∆ signifying a large jump-induced, i.e., non-infinitesimal price change, λ  d t denoting 

the probability that a jump occurs between time t and t + d t5, and −t  meaning a point in 

time immediately before time t 

Finally, Merton’s (1973, p. 873) stochastic volatility model reads6 

)t(zd)t(gtd)t(f)t(d σσ+σ=σ  (4) 

with f and g denoting per unit time mean and standard deviation of 
)t(
)t(d

σ
σ

, the relative 

change in volati lity 

                                                             
5 This specification of a jump probability does not contradict the statement that decision makers are unable 

to specify probabilities for a certain stock price process under model uncertainty. For this probability just 

states that a jump occurs with probability λ d t assuming that a combined jump/diffusion model is the cor-

rect specification of the stock price model. It should, thus, not be confused with an assertion on the prob-

ability that the combined jump/diffusion model itself is valid. 

6 For simplicity, a stochastic drift is not considered. It does not produce any insights that exceed those of 

stochastic volatility. 
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Consequently, one obtains the following dynamic of the index under stochastic volatility 

(or g(t) = ( ) )t(zd)t( σ−σ ): 

d  S(t) = )t(zd)t(S)t(td)t(S σ+α  (5) 

2 Portfolio Insurance 

Decision problems considered in this article, namely maximization of expected utility un-

der a minimum investment goal constraint, belong to the category of so-called Portfolio 

Insurance strategies. It is necessary, however, to distinguish between Portfolio Insurance 

strategies under minimum wealth guarantee constraints (Option Based Portfolio Insurance) 

and those under a guaranteed income stream constraint (Constant Proportion Portfolio In-

surance). Although wealth can be transformed into an annuity, a minimum wealth guaran-

tee is unequal to an income stream guarantee because this annuity turned wealth may or 

may not last over the uncertain lifespan of an individual whereas a guaranteed income 

stream is due during the whole lifespan of an individual. Likewise, a guaranteed income 

stream differs from a minimum wealth guarantee; from the fact that it is possible to defend 

an income stream and the observation that an income stream can be accumulated to a 

wealth level cannot be concluded that it is possible to defend guaranteed minimum wealth 

with the help of this detour. This income stream needs some re-investment to be trans-

ferred into wealth wherefore the search for a non-trivial portfolio strategy to guarantee 

minimum wealth starts anew. 

2.2 Option Based Portfolio Insurance 

A minimum wealth guarantee promises its buyer – to keep things simple, I assume that 

there is just one buyer – at the beginning of his retirement at T to pay back his investment 

in bad states and to capitalize on a positive wealth development in good state: the buyer 

receives wealth minus some administrative fees; formally: 

( ){ }K),T(Wk1max −  (6) 

where W(T) denotes total wealth of the seller’s portfolio, K the guaranteed minimum 

wealth (so-called floor), and k the percentage of (proportional) administrative fees 

Having modeled the obligatory payoff for the seller of the guarantee in equation (6), he, 

i.e., the decision maker in my framework, faces the following decision problem 
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[ ]{ })T(WkUEMax
)t(w

⋅  (7) 

s.t.  ( ) K)T(Wk1 ≥−  

 wealth dynamic according to either (2) or (3) or (5) 

In words, he maximizes his expected utility of (risky) payoffs from administrative fees at 

time T under an minimum wealth constraint by choosing an optimum portfolio strategy. 

The key element of the decision problem (7) is the constraint (6) which can be written as 

( ){ } ( ) ( ){ }4444 34444 21
F

0),T(Wk1Kmax)T(Wk1K),T(Wk1max −−+−=−  (8) 

that is, the constraint is identical with an investment in the index and the purchase of a put 

option with strike price K and maturity at T. 

Since real-world options do not necessarily offer the desired strike price nor the adequate 

maturity, the implied put’s payoff at time T has to be duplicated by a dynamic portfolio 

strategy. This means, the solution to the decision problem (7) involves as an integral part a 

well-known portfolio strategy, namely Option Based Portfolio Insurance, as Grossman/ 

Zhou (1996, p. 1379) have shown. Depending on the assets from which the duplication 

portfolio is constructed, there is: first, “classical” Option Based Portfolio Insurance (see 

Leland (1980) and Rubinstein/Leland (1981)), which uses a portfolio made of the option’s 

underlying and the riskless asset; second, roll-over Portfolio Insurance with options (see 

Rubinstein (1985)). It employs traded options on the same underlying, but with shorter 

maturities to duplicate the implied put. After the maturity of the first set of options, it 

switches to the next set of options and so forth, until the implied put becomes due at time 

T. 

2.2.1 “Classical” Option Based Portfolio Insurance under different volatility scenarios 

Leland (1980) has demonstrated under geometric Brownian motion that the price of the 

implied put option at every time t and, thus, also at maturity T, can be duplicated by trad-

ing in the index and the riskless asset because implied option and index depend linearly on 

the same single source of risk. The duplication portfolio consists of investing the number 

FS in stocks (delta of the option calculated with the help of the Black/Scholes formula) and 

the amount SFF S−  in the riskless asset. However, both under combined jump/diffusion 

processes (see Merton (1976)) and stochastic volatility (see Johnson/Shanno (1987), and 

Hull/White (1987)) duplication fails. There are two types of risk, but just one risky asset. 
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Therefore, decision makers can eliminate one risk only, leaving them fully exposed with 

respect to the other type of risk.  

2.2.2 Roll-over Portfolio Insurance with options under geometric Brownian motion 

The dynamic of every derivative Fj in the market under geometric Brownian motion reads: 

td)t(SF
2
1

)t(zd)t(SFtd)t(SFtdF)t(Fd 22j
SS

j
S

j
S

j
t

j σ+σ+α+=  (9) 

Complete replication requires that the stochastic component of the implied put F must co-

incide with the one of another derivative Fi. This can be achieved (see Rubinstein (1985), 

p. 46) by acquiring the number 

S

i
Si

F
F

)t(N =  (10) 

of one arbitrary derivative Fi. 

2.2.3 Roll-over Portfolio Insurance with options under combined jump and diffusion risk 

td)t(SF
2
1

)t(zd)t(SFtd)t(SFtdF)t(Fd 22j
SS

j
S

j
S

j
t

j σ+σ+α+=  (11) 

with probability 1 – λ d t (diffusion case) 

( )( ) ))t(S(F1)S(tF jj −− −ϕ+  

with probability λ d t (jump case) 

denotes the price dynamic of every derivative Fj under combined jump/diffusion risk. 

Since there are two sources of uncertainty, jump and diffusion risk, two derivatives are 

required to duplicate the implied put option. At exactly this point the advantage of roll-

over Portfolio Insurance over “classical” Portfolio Insurance becomes visible. Following 

Ross (1976), increasing the number of derivatives makes the market “more complete”, i.e., 

allows for more sources of risk to be duplicated, although the number of spot market in-

struments does not change. Consequently, the desired duplication portfolio under com-

bined jump/diffusion risk first exists and, second, reads 

=)t(N i  ik
S

Ki
S

k
S

k
S

FFFF
FFFF

∆−∆
∆−∆

 (12a) 



 13

=)t(N k  ik
S

Ki
S

i
S

i
S

FFFF
FFFF

∆−∆
∆−∆

 (12b) 

Equations (12a) and (12b) put in place a widely found statement (see, e.g., Geman (1992), 

p. 187, and Zhou/Kavee (1988), p. 54) namely that Option Based Portfolio Insurance does 

not work in a jump/diffusion environment. These equations demonstrate that this statement 

is true for “classical” Portfolio Insurance only, but not for roll-over Portfolio insurance 

strategies. That way, equations (12a) and (12b) elaborate Leland’s (1992, p. 155) idea of 

extending Option Based Portfolio Insurance to an environment of combined jump/diffusion 

risk and generalize a result of Rubinstein (1985, p. 49), who just uses one option Fi to du-

plicate the implied put. His result, however, holds just when both i
SS FaF ⋅=  (with a an 

arbitrary constant) and iFaF ∆⋅=∆  are true. 

2.2.4 Roll-over Portfolio Insurance with options under stochastic volatility 

The price of every derivative Fj in a market under stochastic volatility has the following 

dynamic: 

=)t(Fd j  td)t(S)t(F
2
1

)t(zd)t(S)t(Ftd)t(SFtdF 22j
SS

j
S

j
S

j
t σ+σ+α+  (13) 

 td)t(gF
2
1

zd)t(gFtd)t(fF 22jjj σ+σ+σ+ σσσσσ  

To eliminate both sources of uncertainty, diffusion and volatility risk, the duplication port-

folio of the implied put consists of two derivatives, whose numbers can be obtained in a 

way similar to equations (12a) and (12b): 

=)t(N i  
ik

S
ki

S

k
S

k
S

FFFF
FFFF

σσ

σσ

−
−

 (14a) 

=)t(N k  
ik

S
ki

S

ik
S

i
S

FFFF
FFFF

σσ

σσ

−
−

 (14b) 

Again, equations (14b) and (14b) put into practice an idea of Leland (1992, p. 155) to 

adapt Option Based Portfolio Insurance to stochastic volatility, specify Geman (1992, p. 

187), namely that only “classical” Option Based Portfolio Insurance does not work under 

stochastic volatility, and generalize Rubinstein (1985, p. 49), who uses just one option Fi to 

achieve duplication; thereby he must assume that i
SS FaF ⋅=  implies iFaF σσ ⋅= . 
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2.3 Constant Proportion Portfolio Insurance 

By selling a life annuity, the seller guarantees that the buyer can withdraw every period the 

amount tdK  as long as he lives – as opposed to a minimum wealth guarantee, K denotes 

now withdrawal per unit time, i.e., a rate, and not an amount of money.7 

With the obligation to pay tdK , the seller of this annuity faces the following decision 

problem 













γ∫
∞

γ
ρ−

0

t
0

)t(w),t(C
td

)t(C
eEMax  (15) 

s.t.: KC  C(t) min =≥  

 wealth dynamic according to either (2) or (3) or (5) 

where 1 – γ denotes decision maker’s (constant) relative risk aversion 

In words, the decision maker maximizes his utility from aggregate consumption subject to 

a minimum consumption constraint by optimizing his consumption and portfolio strategy. 

His planning horizon is assumed to be infinity because this trick circumvents the problem 

of specifying a date at which the buyer of the annuity will die and, thus, the obligation to 

pay the annuity will end. The consumption constraint contains the guaranteed income 

stream. Since both consumption and payment for the annuity are withdrawals, they are 

integrated in one constraint. However, only consumption, i.e, a withdrawal above K, makes 

a positive contribution to utility. Therefore, the utility function is normalized so that 

U[Cmin] = 0 holds. 

Black/Jones (1987) label investment strategies that cope with minimum withdrawals per 

unit time Constant Proportion Portfolio Insurance. 

                                                             
7 Technically speaking, the seller of such a product offers its buyer a revolving forward contract with con-

stant forward price tdK  and maturity after the period d t. Owing to these institutional reasons, an analysis 

of Constant Proportion Portfolio Insurance under a stochastic floor as in Grossman/Zhou (1993) is omit-

ted. 
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2.4.1 Constant Proportion Portfolio Insurance under geometric Brownian motion 

Black/Perold (1992, p. 420, 425 n.) prove that the following portfolio strategy solves the 

decision problem (15) under geometric Brownian motion: 










<



 −⋅

σ
−α

⋅
γ′

≥⋅
σ
−α

⋅
γ=⋅

+

+

W W(t) für
r
K

)t(W
r

-1
1

W W(t) für)t(W
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with 
γ′−γ

−γ
⋅=+ 1

r
K

W  

According to equation (16), the optimum portfolio weight of the risky asset calls for a divi-

sion of the portfolio strategy into two parts: above wealth level W+, decision makers follow 

the well-known portfolios strategy under geometric Brownian motion (see Merton (1969)). 

Below the critical wealth level W+, the strategy changes and becomes more conservative in 

two respects. First, the structural component of the optimum portfolio weight is no longer 

calculated from total wealth, but a portion of it, namely wealth minus the floor discounted 

at the riskfree rate. Second, the volume component, i.e., the factor with which the structural 

component is multiplied, depends on mean and variance of the index as well as the 

endogenously derived risk aversion parameter γ´8, which deviates from the one (γ) of the 

utility function. Since a geometric Brownian motion is a diffusion process, trading in con-

tinuous time assures that portfolio restructuring occurs fast enough to protect the floor and, 

thus, the volume component does not have an exogenous upper limit, but is determined 

model endogenously. 

2.3.2 Constant Proportion Portfolio Insurance under combined jump/diffusion risk 

Under combined jump/diffusion processes, the optimum portfolio weight reads9 







 −

ϕ
−=⋅ −

r
K)t(W1)t(W)t(w

extr

 (17) 

As opposed to the situation under geometric Brownian motion, the optimum portfolio 

strategy under combined jump and diffusion processes (17) does not distinguish between a 

                                                             
8 γ’ can be calculated from equation (A.5a). This section, however, is interested in the fundamentals of the 

optimum solution and not in its details. Therefore, the explicit calculation of γ’ is omitted. 

9 A proof can be found in Appendix A. 
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critical and an uncritical region. Instead, its structural component is dominated by the criti-

cal region wherefore it does not alter between a more and a less conservative portfolio 

strategy. The reasons for this behavior are quite easy to understand. First, because there are 

two completely different types of risks involved, it is not possible to define a critical 

wealth level that works under both types of risk. Consequently, one encounters the same 

argument that has prevented the duplication of an option under combined jump/diffusion 

risk. Second, choosing a conservative structural component of the optimum portfolio 

weight is not enough – the large price movements caused by jumps can nevertheless vio-

late the floor. Therefore, the volume component is restricted from above by the maximum 

negative 10 jump amplitude (ϕ extr); this upper limit for the volume component is exogenous 

to the model. 

By adapting Constant Proportion Portfolio Insurance to jumps, equation (17) puts in place 

a statement by Black/Jones (1987, p. 49) namely that the performance of Constant Propor-

tion Portfolio Insurance under jumps is inappropriate. Instead, Constant Proportion Portfo-

lio Insurance can be modified to work under combined jump/diffusion risk. 

2.3.3 Constant Proportion Portfolio Insurance under stochastic volatility 

The optimum portfolio weight under stochastic volatility can be determined as follows11 
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Similar to the situation under combined jump/diffusion risk, the optimum portfolio strategy 

under stochastic volatility (18) does not distinguish between a critical and an uncritical 

region, i.e., does not alter between a more and a less conservative strategy. Instead, its 

structural component is determined from the critical region only. Since there are two com-

pletely different types of risks involved, it is not possible to define a critical wealth level 

that works under both types of risk – the same argument has prevented the duplication of 

an option under stochastic volatility. The volume component on the other hand, depends on 

                                                             
10 Concentrating on jumps with negative amplitude implies that the risky asset is not sold short in the opti-

mum. Otherwise, maximum risk would be the maximum price increase of the risky asset. 

 Yet, selling the risky asset short would signify that the only risky asset in the market would be worse than 

the riskless asset. Since this would mean that stocks cannot be in positive net supply, this case is excluded 

from further analysis. 

11 A proof can be found in Appendix B. 
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mean and variance of the index, as well as the endogenously derived risk aversion parame-

ter δ and terms evaluating the stochastic volatility risk. As the price process of the index 

remains a diffusion process even under stochastic volatility, trading in continuous time 

assures that portfolio restructuring occurs fast enough to protect the floor and, thus, the 

volume component does not have an exogenous upper limit, but is determined model 

endogenously. 

In other words, equation (18) adapts Constant Portfolio Insurance strategies – to my 

knowledge for the first time in literature – to work in a stochastic volatility environment.  

3 Model uncertainty 

3.1 Interpreting Portfolio Insurance strategies in the light of model uncertainty 

The analysis of “classical” Option Based Portfolio Insurance under several price process 

specifications and, thus (combined parameter risk and) model uncertainty, has shown that 

“classical” Option Based Portfolio Insurance can duplicate the desired option under geo-

metric Brownian motion only. Or to formulate this statement in a more general way: “clas-

sical” Option Based Portfolio Insurance has to operate in an environment which is charac-

terized by just one source of risk. Whenever there is a second source of risk (combined 

jump/diffusion processes, parameter risk, or model uncertainty) “classical” Option Based 

Portfolio Insurance cannot assure guaranteed minimum wealth.  

As opposed to “classical” Option Based Portfolio Insurance, roll-over Portfolio Insurance 

with options is able to duplicate options under all three classes of price processes consid-

ered. Therefore, model uncertainty seems to be absent at first sight. However, a closer look 

at the details of the respective duplication portfolios reveals that they require different 

numbers N(t) for different price processes. Under geometric Brownian motion, there is just 

one option involved (equation (10)), yet jumps need two options to finish duplication, for 

what equations (12a) and (12b) do not coincide with equation (10). The same is true under 

stochastic volatility. Again, two options are necessary, a fact which makes the duplication 

portfolios under geometric Brownian motion (equation (10)) and stochastic volatility 

(equations (14a) and (14b)) diverge. Moreover, the reaction of the option price to a change 

of volatility (F σ,  linear change of the option price) does not coincide with its price move-

ment due to a stock price jump (∆ F, non-linear change of the option price). Therefore, the 

number of options held under stochastic volatility (equations (14a) and (14b)) and jumps 

(equations (12a) and (12b)) are unequal. 
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One could argue, though, that increasing the number of options used for duplication pur-

poses might circumvent these problems. That is, to cope with model uncertainty, the fol-

lowing strategy is applied. One uses three options to be able to manage three types of risks: 

normal risk, jump risk, and stochastic volatility (parameter) risk. – The problem with this 

argumentation is that this strategy takes action against a situation in which all three types 

of risk are present at the same time, but its duplication portfolio does not work when a 

maximum number of two risks is present at the same time; in other words, roll-over Portfo-

lio Insurance with options cannot assure guaranteed minimum wealth under model uncer-

tainty. 

To sum up, roll-over Portfolio Insurance with options can solve the duplication problem 

within a specified class of price process and, thus, even under estimation risk. It is model 

uncertainty that makes roll-over Portfolio Insurance with options fail, an observation which 

delivers another proof of a statement made by Avramov (2001, p. 21) that model uncer-

tainty seemed to be more important than parameter risk. 

Constant Portfolio Insurance will be able to defend guaranteed income streams if a pure 

geometric Brownian motion (equation (16)), a pure combined jumps/diffusion risk (equa-

tion (17)), and a pure stochastic volatility (parameter risk; equation (18)) are considered 

separately – a result similar to that obtained for roll-over Portfolio Insurance with options. 

In addition, it can cope with model uncertainty. To see this, recall that the structural com-

ponents 
r
K

W −  of all portfolio weights coincide. Choosing the volume component accord-

ing to the maximum negative jump amplitude (ϕextr), (see equation (17)) assures the de-

sired income stream even under model uncertainty. Nevertheless, Constant Proportion 

Portfolio Insurance is influenced by model uncertainty because it calls for a portfolio strat-

egy that is too conservative under diffusion processes in general and in particular under 

geometric Brownian motion.  

3.2 Confronting the Anderson/Hansen/Sargent (2002) solution of portfolio selection un-

der model uncertainty with the findings from the analysis of Portfolio Insurance 

strategies 

Anderson/Hansen/Sargent (2000) demonstrate that the best non-trivial portfolio strategy 

under model uncertainty, non-trivial in the sense that wealth is not completely invested in 

the riskless asset, is a portfolio strategy that performs best in a reasonable worst case capi-
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tal market scenario. Reasonable is particularized as in a certain way close to a reference 

model (see Cagetti/Hansen/Sargent/Williams (2002), p. 374). 

This section aims to examine both aspects of Anderson/Hansen/Sargent’s (2000) solution, 

namely the existence of a reasonable worst case scenario and the existence of a non-trivial 

portfolio strategy, by confronting them with the findings from the analysis of Portfolio 

Insurance strategies. 

The worst case scenario is the most extreme scenario under which the minimum invest-

ment goal for portfolio selection is met. Should the idea of a worst case scenario be useful 

for decision purposes, there would have to be several other scenarios, that permit compli-

ance with the constraint, besides the worst one. In the case of defending a guaranteed 

minimum wealth this is not true which means the idea of a worst case scenario is reduced 

to absurdity. To see this, recall that portfolio selection under a minimum wealth guarantee 

calls for duplication of the implied put option. A duplication portfolio, though, is fitted to a 

certain price process and can handle this price process only. Therefore, there is just one 

price process that allows for duplication and this price process is the worst case scenario at 

the same time. 

The concept of a worst case scenario is better suited to a guaranteed income stream. Under 

geometric Brownian motion (see equation (16)), the portfolio strategy is divided into a 

more conservative (within the critical region) and a more aggressive part (within the un-

critical region); under stochastic volatility – estimation risk – (see equation (18)), just the 

more conservative investment style is appropriate. Thus, (the whole set of models under) 

stochastic volatility can be interpreted as a worst case scenario. However, within this class 

of stochastic processes no further worst case scenario can be identified. The structural 

components of the optimum portfolio weight under stochastic volatility, 
r
K

W − , remain 

the same and different volume components due to, e.g., different )t(cov Wσ , do not endan-

ger the guaranteed income stream because processes under stochastic volatility are charac-

terized by infinitesimal prices changes. – The situation will change if jumps are added. 

Owing to the non-infinitesimal movement of stock prices, the volume component plays a 

crucial role in protecting the floor (see equation (17)), a fact which in turn means that there 

is a clear-cut worst scenario: the jump with the maximum negative amplitude. 

With this evaluation of the (reasonable) worst case scenario approach in mind, its potential 

consequences for the existence of a non-trivial portfolio strategy, the second element of 

Anderson/Hansen/Sargent’s (2002) solution, can be examined. Since duplication just 
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works for one specific price process, there is only one trivial strategy that is able to defend 

guaranteed minimum wealth: invest in the  riskless asset guaranteed wealth discounted with 

the riskfree rate.12 This results holds irrespective of whether there is homogenous or heter-

ogonous model uncertainty. 

In the case of a guaranteed income stream, things turn out to be slightly more sophisti-

cated. Under homogenous model uncertainty the portfolio strategy is indeed non-trivial 

because it calculates a volume component which is not exogenously specified, but contains 

a risk aversion parameter that is determined model endogenously. However, this result 

breaks down in the case of heterogeneous model uncertainty. Then, the volume component 

is exclusively determined by the maximum negative jump amplitude and, thus, model ex-

ogenous. This fact makes the determination of the optimum portfolio weight rather trivial: 

invests in the riskless asset extr1 ϕ−  times guaranteed income per period discounted at the 

riskfree rate. To make things even worse, consider the situation when a stock exchange 

does not specify13 an upper limit for stock price movements. The maximum negative am-

plitude reads ϕextr = 1 making Constant Proportion Portfolio Insurance indistinguishable 

from a buy and hold strategy investing completely in the riskless asset. 

Taking these findings together, there are two reasons as to why Anderson/Hansen/Sar-

gent’s (2000) solution does not work in general under model uncertainty combined with 

minimum investment goals. First, a preference for robustness in the objective function is 

less demanding for portfolio selection than minimum investment goals thereby failing to 

work out different consequences of minimum wealth guarantees or guaranteed income 

streams with respect to portfolio selection. In particular, it is unable to elaborate that An-

derson/Hansen/Sargent’s (2000) solution performs far better for guaranteed income 

streams than minimum wealth guarantees. Second, Anderson/Hansen/Sargent (2000) have 

always a meaningful worst case scenario in their model’s setup because a penalty term 

(heavily) restricts the malevolent player in choosing the (worst case) state (see Ander-

son/Hansen/Sargent (2000), p. 9). Therefore, this approach to justify a preference for ro-

bustness cannot assure that all scenarios are captured that are critical for meeting minimum 

                                                             
12 Technically speaking, this strategy equals a super-replicating strategy in its extreme, i.e., most expensive 

form. 

13 See Roll (1989, p. 54) for an overview over stock exchanges that have limits for maximum possible price 

changes per day.  
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investment goals. For example, it ignores the role of heterogeneous model uncertainty un-

der Constant Proportion Portfolio Insurance. 

To sum up, under minimum wealth guarantees (Option Based Portfolio Insurance) there is 

no reasonable worst case scenario and there is only a trivial portfolio strategy – both as-

pects (worst case scenario and non-trivial composition) of Anderson/Hansen/Sargent’s 

(2000) portfolio strategy become inapplicable. This result holds irrespective of the degree 

(homogenous or heterogeneous) of model uncertainty. Under income stream guarantees the 

situation is different. Homogenous model uncertainty produces a non-trivial portfolio strat-

egy, yet the idea of a worst case scenario turns out to be not very telling: the whole class of 

processes under stochastic volatility (parameter risk) must be interpreted as worst case sce-

nario. Under heterogeneous model uncertainty there is a pronounced worst case scenario, 

but then, just a (rather) trivial portfolio strategy applies. 

4 Conclusion 

The point of departure for this paper was tha t in real-world market financial markets insur-

ance products are observable that offer their buyers a minimum wealth or income stream 

guarantee irrespective of capital market conditions, i.e., stock price processes assumed. 

Therefore, sellers of these products will be well-advised to pursue a portfolio strategy that 

is able to meet this requirement if they want to avoid additional cash payments. The litera-

ture under model uncertainty, in particular Anderson/Hansen/Sargent (2000), seems to of-

fer a solution to this portfolio problem by proposing the following non-trivial portfolio 

strategy, non-trivial in the sense that wealth is not completely invested in the riskless asset: 

follow that portfolio strategy that performs best in a reasonable worst case capital market 

scenario. Reasonable is particularized as in a certain way close to a reference model (see 

Cagetti/Hansen/Sargent/Williams (2002), p. 374). It is the objective of this paper to show 

that this solution does not work in general under model uncertainty. 

Defending a guaranteed minimum wealth (Option Based Portfolio Insurance) calls for du-

plication of the option implied by this minimum wealth guarantee. A duplication portfolio, 

though, is fitted to a concrete price process and can handle this price process only. There-

fore, the idea of a non-trivial portfolio strategy that is able to defend guaranteed minimum 

wealth even under a worst case scenario is reduced to absurdity; the only portfolio strategy 

that is capable of defending guaranteed minimum wealth irrespective of the capital market 

environment reads: invest in the riskless asset guaranteed wealth discounted at the riskfree 

rate. In other words, both aspects (worst case scenario and non-trivial composition) of An-
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Anderson/Hansen/Sargent’s (2000) portfolio strategy become inapplicable irrespective of 

the degree (homogenous or heterogeneous) of model uncertainty.  

In the case of Constant Proportion Portfolio Insurance, things turn out to be slightly more 

sophisticated. Under homogenous model risk, there is a non-trivial portfolio strategy, but 

no pronounced worst case scenario, in that all portfolio weights have the same structure. 

Heterogeneous model risk, on the other hand, makes a clear-cut worst case scenario occur, 

the maximum possible negative jump amplitude ϕextr. But then the optimum portfolio 

weight turns out to be trivial: it invests in the riskless asset ( extr1 ϕ− ) times guaranteed in-

come per period discounted at the riskfree rate. 

These results mean that confronting portfolio selection with a range of application often 

found in the pragmatic world (minimum investment goals) results in a pretty frustrating 

outcome. Either decision makers follow a trivial portfolio strategy, trivial in the sense that 

the investment goal is achieved by riskless investment, or they employ a sophisticated port-

folio strategy which has to accept that there is model uncertainty and speculate on it. This 

speculation, though, differs from that of “normal” portfolio selection. Whereas “normal” 

portfolio selection tries to forecast in particular stocks’ means, which is difficult as Merton 

(1980) has shown, a speculation on model uncertainty has to determine the probabilities 

that a certain class of price processes is the true one; this job might be an even tougher 

task. 

Appendix 

A Derivation of Constant Proportion Portfolio Insurance strategies under combined 

jump/diffusion processes 

After having particularized the wealth dynamic in the decision problem (15) with a com-

bined jump and diffusion process, the following Hamilton/Jacobi/Bellman equation is ob-

tained: 
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Following the line of argumentation developed by Black/Jones (1992), and Merton (1993, 

p. 186 n.), a candidate solution of equation (A.1) can be found by splitting the determina-

tion of the optimum investment strategy w(t) into two related, but unconstrained problems: 

the optimum portfolio strategy for a critical and for an uncritical region.  

To verify that this candidate is indeed the solution to equation (A.1), three steps are 

needed: 

1. Derivation of the optimum portfolio weight for the critical region. 

2. Derivation of the optimum portfolio weight for the uncritical region.  

3. Determination of a critical wealth level that separates the critical from the uncritical 

region. 

This third step serves in particular to verify that the two-step procedure delivers an ad-

missible solution, i.e., keeps the indirect utility function J[.] continuous and twice dif-

ferentiable. 

− Step 1 

The decision maker’s budget equations reads 

)t(E)t(E)t(W 0
−−− +=  (A.2) 

where E denotes the amount invested in the risky index and E 0 the one invested in the risk-

less asset 

Jumps entail a sudden and large change of wealth. Therefore, immediately after a jump 

wealth changes to (after having used the budget constraint (A.2) to substitute out E0) 

( ) [ ])t(E)t(W)t(1)t(E)t(W −−− −+ϕ+⋅=  (A.3) 

By assumption, the guaranteed income stream K, the so-called floor, must be defended. 

This means at the beginning of each period wealth must not fall below 
r
K

, which calls for 

a multiple m of the amount 
r
K

)t(W −−  to be invested in the risky asset. This multiple m 

can be determined by taking the worst environment, i.e., a jump with the maximum nega-

tive amplitude ϕext r, into account:  

( ) 













 −−+ϕ+⋅






 −== −−−

r
K

)t(Wm)t(W1
r
K

)t(Wm
r
K

)t(W extr  (A.4) 



 24

which yields 

extr

1
m

ϕ
−=  

− Step 2 

I omit the depiction of step 2 as will become clear shortly. 

− Step 3 

The third step involves checking whether J[.] is continuous and twice differentiable. To 

that end, the following boundary conditions are added: 
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Without having to rely on an explicit calculation of J[.], such a W+ cannot exist under 

combined jump/diffusion processes. To see this, define the critical wealth level based on 

the diffusion component, i.e., an infinitesimal price movement. A jump, however, signifies 

a non-infinitesimal price movements for what this W+ does not keep J[.] continuous in a 

jump environment. Conversely, it does not work to define W+ based on the maximum 

negative jump amplitude. The jump amplitude is defined as a percentage of current wealth 

– a relative quantity – whereas W+ is an absolute quantity. 

In other words, the only portfolio strategy that guarantees the floor under combined 

jump/diffusion processes employs the portfolio weight for the critical region and does not 

switch to a less “cautious” portfolio strategy. In particular, it does not split the optimum 

portfolio weight into a critical and an uncritical region. Therefore, the portfolio strategy 

depicted in equation (17) is obtained. 



 25

B Derivation of Constant Proportion Portfolio Insurance strategies under stochastic 

volatility 

After having particularized the wealth dynamic in the decision problem (15) with a diffu-

sion process under stochastic volatility, the following Hamilton/Jacobi/Bellman equation is 

derived: 
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To solve problem (B.1), the same procedure as in Appendix A is utilized. 

− Step 1 

Since the guaranteed income stream K must be defended, at the beginning of each period 

wealth must not fall below 
r
K

, which calls for a multiple m of the amount 
r
K

)t(W −  to be 

invested in the risky asset. 

− Step 2 

According to Merton (1973), the optimum portfolio weight (for both parts of the uncon-

strained problem (B.1)) reads: 
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− Step 3: 

To be able to figure out whether J[.] is continuous and twice differentiable, J[.] has to be 

determined explicitly. Substituting the portfolio weight (B.2) back into (B.1), yields the 

following differential equation for u/cJ  
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By analogy to Cox/Ingersoll/Ross (1985, p. 389), the solution of (B.3) reads 

• for the uncritical region 
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with A and G arbitrary functions of σ(t), and c a time preference rate, which is determined 

endogenously 

• for the critical region 
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with B and D arbitrary functions of σ(t), and δ a risk aversion parameter, which is deter-

mined endogenously 

Moreover, form boundary conditions (A.5b) and (A.5c), a candidate for the critical wealth 

level becomes sizeable: 
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where the only remaining unknown δ  might is accessible with the help of boundary condi-

tion (A.5a) 
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Yet, equation (B.7) demonstrates the dependence of δ on σ(t). Consequently, W+, as speci-

fied in equation (B.6), cannot be part of the solution of equation (B.1). However, (B.6) has 

been calculated with the help of the (Cox/Ingersoll/Ross-) solution of the unconstrained 

problem. This means that there is no wealth level W+ that is both part of the 
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(Cox/Ingersoll/Ross-) solution for J[.] and fulfils (B.7) at the same time, i.e., allows for a 

split of J[.] into Jc[.] as well as Ju[.], and nevertheless keeps J[.] continuous and twice dif-

ferentiable. 

Putting all these arguments together, the optimum portfolio strategy under stochastic vola-

tility employs the portfolio weight for the critical area as the sole optimum portfolio weight 

and does not split the optimum portfolio weight into a critical and an uncritical region. 

Therefore, the portfolio strategy depicted in equation (18) is obtained. 
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