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Portfolio construction by volatility forecasts:

Does the covariance structure matter?

Abstract

This paper explores the performance of a global minimum variance

(GMV) portfolio in dependence of the structure of the covariance matrix

and the type of volatility model. Different information sets of time series

are used to predict the future covariance matrix. We investigate diagonal

portfolio strategies based on univariate and multivariate GARCH models

for a portfolio consisting of the North America, Europe and the Pacific

region. The evaluation is based on a daily out-of-sample comparison from

25th May 1998 until 3rd April 2000. We find that variance forecasts are

more important than covariance forecasts and that multivariate volatility

models yield better results than univariate volatility models.

Keywords: Asymmetric GARCH Model, BEKK Model, Volatility Fore-

casts, Mean-Variance Portfolio, Diagonal Portfolios.
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1 Introduction

Markowitz [1] proposed the expected return (mean) and the variance of return

of the portfolio as criteria for optimal portfolio selection. He showed that the

expected return of the portfolio is a weighted average of the expected returns

of individual securities and the variance of return of portfolio is a particular

function of the variances of, and the covariances between, securities and their

weights in the portfolio. The performance of optimal mean-variance (MV) port-

folios depends on the quality of the forecasts of the first two moments, i.e. the

future mean returns and their variance matrix. Chopra and Ziemba [2] have

shown that estimation errors in the predicted returns are most influential for

the portfolio performance. Errors in variances and covariances are less impor-

tant. Pojarliev and Polasek [3] (PP henceforth) found in an empirical analysis

that the weights of a global minimum variance (GMV) portfolio are very sensi-

tive with respect to the inputs, i.e. the predicted variance matrix. Therefore the

structure of the variance matrix and the selection of the appropriate volatility

models will be important for the portfolio weights and determines the overall

portfolio performance.

In practice, the portfolio construction is a process divided into two parts: the

stock picking and the weights selection for the different stocks. Some portfo-

lio managers are trying to track the benchmark by selecting a subset of stocks

in order to reduce the transaction costs. Nevertheless, the number of assets

in actively managed portfolios is usually high, which leads to dimensionality

problems in the prediction of the variance matrix of the assets included in the

portfolio.

The ordinary (classical) time series approach for portfolio construction will be-

come numerically intractable for higher dimensional portfolios. Assuming a

diagonal structure for the variance matrix simplifies the prediction process and

would provide a solution for the high dimensional problem. What is the im-

pact of such information losses (e.g. by setting covariances equal to zero) on

the portfolio performance? We explore portfolios based on a diagonal structure
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for the variance matrix (of the assets which are included in the portfolio) and

we evaluate this strategy by comparing the ’diagonal portfolio’ with a portfolio

based on the full variance matrix. Furthermore, we compare diagonal portfolio

strategies based on univariate and multivariate GARCH models and we measure

the ”added value” of the multivariate modeling by the relative differences of the

Sharpe ratios.

This paper is organized as follows: Section 2 describes the univariate and mul-

tivariate GARCH models used to predict the conditional volatility. Section 3

presents the methodology for constructing the different portfolios and compares

the performance. Some concluding remarks are given in the final section.

2 Volatility forecasts

The volatility prediction of portfolio assets is one of the key factors for modern

portfolio selection problems. Furthermore, it plays a significant role in derivative

pricing. Many statistical models have been proposed to describe the behavior

of stock markets volatility, including rolling variance estimates, ARCH models

and non-parametric methods. Empirical research has provided a number of

stylized facts about the volatility of the stock markets and a recent survey is

given in Engle and Patton (2000) [4]. There exists a wide-spread consensus that

volatility processes exhibits persistence (i.e. the conditional return variances

have a lasting effect on the annualized variance over many periods ahead); these

conditional variances are assumed to be ’mean reverting’ such that there is a

certain level of volatility to which the conditional variances will return. We

investigate the volatility of the daily returns of the MSCI North America, MSCI

Europe and MSCI Pacific indices from 1st May 1995 until 3rd April 2000. The

first 800 observations (from 1st May 1995 until 22nd May 1998) are used as

a ”training” sample for the model selection and the rest for the out-of-sample

evaluation.

The following Table 1 contains the annualized standard deviations (SD) of the

daily returns of the three MSCI indices for the full sample and for the year
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1998. Table 1 shows that the year 1998 was an exceptional volatile year: The

MSCI region Pacific Europe North America

1998

annualized SD 28.44% 20.65% 19.40%

Full sample

annualized SD 20.73% 14.47% 16.97%

Table 1: Annualized standard deviations (SD) for the three MSCI indices for the full sample

(from 1st May 1995 until 3rd April 2000) and for the year 1998. Annualized SD is computed

by multiplying the standard deviation of the daily returns by
√

250.

annualized SD in 1998 is much higher for the three MSCI indices in comparison

to the annualized SD over the last five years (1st May 1995 until 3rd April 2000).

Presumably the Asia crisis in 1997/98 was responsible for the higher volatility

in the stock markets in 1998. This leads us to consider an asymmetric GARCH

model to forecast the volatilities of the three MSCI indices.

2.1 The asymmetric GARCH model

To predict volatilities we assume asymmetric GARCH models for the index

returns and normally distributed errors

rt|It−1 ∼ N [µ, σ2
t ] (1)

or

rt = µ + εt, t = 1, ..., T, (2)

where It−1 is the information set until time t− 1. We assume a constant mean

µ for the returns and for the errors εt a Gaussian distribution with mean zero

and variance σ2
t . We parameterize the conditional variances by an asymmetric

GARCH model of orders p and q, which is denoted as AGARCH(p,q) model
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and has the form (see e.g. Glosten et al. [5])

σ2
t = α0 +

p∑

i=1

(αi + γiSt−i)ε2t−i +
q∑

i=1

βiσ
2
t−i (3)

where St is the dummy variable for the negative residuals and is defined as

St =





1 if εt < 0;

0 if εt ≥ 0.
(4)

The idea behind the AGARCH model is that asymmetric behaviour of the neg-

ative shocks are sources for additional risk. We estimate an AGARCH(1,1)

model for the daily returns of the three MSCI indices using the last 800 obser-

vations (approximately 3 years) of our time horizon. For the estimation of the

(non-linear) model we use the BHHH algorithm of Berndt et al. [6].

The AGARCH(1,1) models for the daily returns of the MSCI regions (using the

last 800 observations of our data set, from 1st May 1995 until 22 May 1998) are

estimated as

1. MSCI Pacific index

σ̂2
t = 10−76.6 + (0.017 + 0.05St−1)ε2t−1 + 0.95σ2

t−1;

(t− val.) (1.87) (1.54) (3.58) (78.62)

2. MSCI Europe index

σ̂2
t = 10−74.1 + (0.043 + 0.02St−1)ε2t−1 + 0.94σ2

t−1;

(t− val.) (1.30) (1.96) (0.78) (52.33)

3. MSCI North America index

σ̂2
t = 10−63.3 + (0.003 + 0.18St−1)ε2t−1 + 0.86σ2

t−1.

(t− val.) (4.23) (0.19) (7.27) (44.21)

The comparison of the regional models exhibit several interesting results: First

note that the asymmetry parameter can be estimated significantly for the Pacific

and the North American region but not for Europe (for the period 1995-1998).

The asymmetry coefficient γ1 is the largest for the MSCI North America index
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but the α1 and β1 parameters are the smallest. This shows that the volatility

of the daily returns follows different patterns in the 3 regions and Europe was

exposed to a more balanced volatility (and risk) process than the rest of the

world at the end of 1997 when there was the volatility shock induced by the

Asian financial market crisis. This can be seen graphically from Figure 1 which

plots the conditional SD of the returns of the three MSCI indices and we can

see the higher volatility at the end of 1997 (between observations 650 and 750).

How does this asymmetry affect the persistence behavior? The sum of the

estimated ARCH coefficients α1 + β1 is less than 1 for positive shocks but

α1 + β1 + γ1 is larger than 1 for negative shocks. This means that negative

residuals at time t tend to lead to a higher conditional volatility in the period

t + 1.
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Figure 1: Conditional SD of the three MSCI indices from 1st May 1995 until 22nd May 1998

(see the estimation results above).

The goal of the volatility modelling is to use the GARCH approach for the
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portfolio construction. Using the AGARCH model we calculate the conditional

volatility forecasts for the next trading day (25 May 1998) by:

σ̂2
t+1 = α̂0 + (α̂1 + γ̂1St)ε2t + β̂1σ

2
t . (5)

This procedure is repeated 486 times using a rolling sample of 800 observations

and re-estimating the AGARCH(1,1) models for each region. This was a very

computationally intensive experience. We have used the S-GARCH module of

SPlus [7]. The 486 re-estimations of each model have consumed about 2 hours.

However it took more than 20 hours to re-estimate 486 times the multivariate

GARCH model described in the next section. Thus, we forecast the conditional

variances of the returns of the MSCI Pacific, MSCI Europe and MSCI North

America indices from 25st May 1998 until 3rd April 2000. Figure 2 plots as

an example the predicted conditional variance (σ̂2
t+1) of the daily returns of the

MSCI North America index.

2.2 The Multivariate GARCH (or BEKK) Model

Let rt = (r1
t , ..., rN

t )′ be a N dimensional vector of returns at time t and we

specify the following multivariate GARCH model

rt = µ + εt, t = 1, ..., T, (6)

with

εt|It−1 ∼ N(0,Ht) (7)

where µ is a constant mean vector of dimension N and the heteroskedastic

errors εt are conditionally multivariate normally distributed. Each element of

Ht depends on p lagged values of squares and cross-products of εl
t, l = 1, ..., N

and on q lagged values of Ht.

Defining ht = vechHt as the vectorisation of a symmetric matrix and ηt =

vec(εtε
′
t) then the multivariate GARCH(p, q) parameterization of the variance

matrix can be written as

ht = a0 + A1ηt−1 + ... + Apηt−p + B1ht−1 + ... + Bqht−q (8)
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One step ahead forecasted variance with AGARCH(1,1) model (Moving samle of 800 observations)

Figure 2: The out-of-sample analysis of volatility forecasts. The AGARCH (1,1) model is

estimated using the past 800 observations of the returns of the MSCI North America index.

After a volatility forecast is obtained for 25th May 1998, the parameters are re-estimated

using another 800 past observations to obtain the forecast for the next day. This procedure

is repeated 486 times.

where a0 is a n×1 vector with n = N(N +1)/2 and the Ai’s and Bi’s are n×n

parameter matrices. This parameterization is also called vec representation.

Bollerslev et al. [8] have proposed a diagonal representation, in which each

element of the variance matrix hjk,t depends only on past variances and the

past values of εl
tε

k
t . This means that the conditional variances depend on past

own variances and past squared residuals; likewise the covariances depend on

past own covariances and cross products of residuals. In the vec representation

the diagonal model is obtained by assuming a diagonal structure of the matrices

Ai and Bi.

In both representations it is difficult to impose the condition of a positive definite

variance matrix for the estimation procedure. Engle and Kroner [9] propose

the so-called BEKK representation which ensures the condition of a positive

definite conditional variance matrix by a special matrix form. This BEKK

9



representation parameterizes the variance matrix by the following way:

Ht = A0A
′
0 +

p∑

i=1

Ai(εt−iε
′
t−i)A

′
i +

q∑

i=1

BiHt−iB
′
i. (9)

For the order selection of the multivariate GARCH process we have calculated

the AIC or BIC values in Table 2. Using the AIC criterion, we select a

BEKK(2,1) model for the three MSCI indices. The BEKK(2,1) model was

preferred to the BEKK(1,1) model because the parameter estimates in the lag

2 matrix in equation (14) contain significant coefficients on the main diagonal,

i.e. will contribute to the forecasts of the conditional variances. Note that the

return vector rt in equation (7) is specified as rt = (rP
t , rE

t , rA
t )′ where the letters

P, E and A stand for the MSCI Pacific, MSCI Europe and MSCI North America

indices, respectively. We have used the geographical ordering (from east to west)

and the closing values of the indices to compute the returns. Thus, the variance

AIC BIC

BEKK(1,1) -16388 −16135∗

BEKK(2,1) −16400∗ -16035

BEKK(2,2) -16323 -15901

BEKK(3,2) -16164 -15658

Table 2: AIC and BIC values for different lag orders of the BEKK model. The star (*)

denotes the smallest values.

matrix forecast is obtained from

Ĥt+1 = Â0Â
′
0 +

p∑

i=1

ÂiEt(εt+1−iε
′
t+1−i)Â

′
i +

q∑

i=1

B̂iHt+1−iB̂′
i, (10)

where Et is the conditional expectation operator. The estimated coefficients of

the BEKK(2,1) model for the period of 800 observations are given by (t-values
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are in parenthesis):

µ̂ =




−0.00029(−0.90)

0.00083(3.52)

0.00073(2.49)


 (11)

Â0 =




0.0004(0.30) % %

0.0014(0.30) −0.0016(−0.23) %

0.0002(0.00) 0.0012(0.00) 0.0006(0.00)


 (12)

Â1 =




0.22(5.95) 0.08(2.19) −0.01(−0.37)

0.02(0.33) 0.03(0.58) −0.11(−1.77)

−0.18(−4.09) −0.13(−4.48) 0.12(4.05)


 (13)

Â2 =




−0.08(−1.35) −0.10(−2.79) −0.03(−0.90)

0.11(1.49) 0.22(4.93) 0.09(1.57)

0.04(0.67) −0.01(−0.32) 0.25(4.67)


 (14)

B̂ =




0.96(111.90) −0.01(−1.22) 0.00(0.13)

−0.06(−1.45) 0.90(27.96) 0.03(0.84)

0.03(0.70) 0.05(1.82) 0.90(25.60)


 (15)

Note that all non-diagonal elements of the matrix B̂ in (15) are not signifi-

cant and that only a few non-diagonal elements of the matrices A1 and A2 are

estimated significantly.

2.2.1 Diagnostics and Forecasting

As an overall diagnostics check we have calculated the residual autocorrelation

function (ACF) of the sum of squared returns which corresponds to the squared

norm of the return vector. The ACF of the squared norm of the returns of the

three MSCI indices exhibits significant correlation and has motivated the use of

a multivariate GARCH model. The second panel of Figure 3 shows the ACF of
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the squared norm of the standardized residuals for the fitted BEKK(2,1) model.

Except for lag 1 all significant autocorrelations stay within the asymptotic (+/-

2) standard error bounds (dotted lines).
ac
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Figure 3: The ACF of the ”squared norm returns” of the MSCI Pacific, MSCI Europe and

MSCI North America indices and the squared norm of the standardized residuals. The norm

is computed as the square root of sum of squares of the returns of the three MSCI indices.

With the estimated parameters of the BEKK model in (10) and (11) we calculate

the one-step-ahead forecasts for the next trading day (25 May 1998). As for the

AGARCH model, we repeat this procedure 486 times using a rolling sample of

800 observations where we re-estimate the BEKK(2,1) model each time. Figure

4 shows these forecasts for the variance of the MSCI Europe index in the lower

panel (the second diagonal element of the forecasted variance matrix Ĥt+1).

2.3 Volatility performance

In this section we address the problem of finding good volatility models for

portfolios. The performance of a volatility model is measured by its ability to

forecast future volatilities. To evaluate the actual predictive power of a model,
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we will use a back-testing procedure. Unfortunately, the actual volatility is

unobservable. Pagan and Schwert [10] have proposed an auxiliary linear re-

gression model to evaluate the forecasting performance of volatility models. In

their model the actual volatility is approximated by the squared observed re-

turns. Thus, we regress the squared returns r2
t on a constant and the forecasted

volatility σ̂2
t :

r2
t = α + βσ̂2

t + εt, t = 1, ..., T. (16)

The R2 of this auxiliary regression is an overall measure of the forecasting per-

formance. Table 3 summarizes the results of the auxiliary regressions for the

volatilities forecast obtained from the univariate GARCH (1,1) model, the asym-

metric AGARCH(1,1) and the multivariate BEKK model. While all the R2 val-

Pacific Europe North America

GARCH(1,1) 0.017 0.111 0.032

AGARCH(1,1) 0.028 0.126 0.058

BEKK(2,1) 0.026 0.111 0.034

Table 3: The R2 from the auxiliary regression of the squared returns of the MSCI indices and

the one step ahead variance forecast from 25th May 1998 until 3rd April 2000. The forecasts

by the GARCH model are obtained in the same way as for the AGARCH model. In the

multivariate case the forecasts of the volatilities are the diagonal elements of the forecasted

conditional variance matrix.

ues are disappointingly low we can see small differences between the forecasting

abilities for the MSCI indices. The daily volatility of the MSCI Europe shows

the highest R2 for the period 25th May 1998 - 3rd April 2000. The AGARCH

model provides the best forecasting performance in this comparison, even for

Europe where the asymmetry parameter was not estimated significantly.

Anderson and Bollerslev [11] are critical about the simple application of the

auxiliary equation (16) to evaluate volatility forecasts. But our main point is

that ’bad’ volatility forecasts according to evaluation criteria don’t necessarily

imply that these volatility forecasts are not useful for improving portfolio per-
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formances (and vice versa). Ultimately the portfolio performance is important

for the investors. This means that the relationship between volatility forecasts

and portfolio performance needs to be more explored. Thus, in the next section

we compare the performance of the portfolio based on the different volatility

forecasts.

3 Portfolio construction and volatility forecasts

Assuming a portfolio which consists of the 3 MSCI indices, we have to compute

the weights of the portfolio for each index. The weights of the global minimum

variance (GMV) portfolio wi depend only on the predicted variance matrix

Ht+1 (see [12]). Thus, by predicting the variance matrix for time t + 1, we can

compute the optimal (expected) weights of a GMV portfolio. We investigate

the following questions: First, what is the ’portfolio gain’ when we go from

univariate forecasts to multivariate forecasts, i.e. can we quantify the value of

the information gained by multivariate time series forecasts? Second, how do

portfolio weights depend on a changing covariance structure?

1. Univariate diagonal (UD) portfolio

We assume a diagonal variance matrix for the three MSCI indices to com-

pute the optimal weights of portfolio one. The weights of the univariate

diagonal portfolio are given by the share of an asset precision (inverse

variance) over the sum of all precisions:

wt,i =
σ̂−2

t+1,i∑3
j=1 σ̂−2

t+1,j

, i = 1, 2, 3, (17)

where σ̂2
t+1,i is the predicted conditional variance of the daily returns of

the ith MSCI index (for i = North America, Europe and the Pacific region)

by the AGARCH(1,1) model as described in the previous section.

2. Multivariate diagonal (MD) portfolio

We compute the weights for portfolio two using again equation (17), but
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the forecasted volatilities are the diagonal elements of the predicted vari-

ance matrix by the BEKK model. Figure 5 shows the weights of the MD

portfolio.

3. Global minimum variance (GMV) portfolio

The GMV portfolio is based on the full variance matrix forecasts from

the BEKK model, hence it is the same as in PP [3] and the weights are

computed as follow:

wt =
Ĥ−1

t+1ι

ι′Ĥ−1
t+1ι

. (18)

where ι is vector of ones.

We have also calculated the returns for the optimal Sharpe ratio portfolio, i.e.

a portfolio with a riskless return (see Campbell et el. [12] p. 88 ). This portfolio

produced in all our calculations the worst portfolio performance and therefore

we have omitted it for the comparison. The bad performance of this portfolio has

at least two reasons. Firstly, as mentioned before, the estimation errors in the

predicted returns are very harmful for the portfolio performance and secondly,

although daily asset returns are rather unpredictable, return volatilities are

much more predictable. Ironically the maximum Sharpe ratio portfolio has a

lower Sharpe ratio than the global minimum variance portfolio. Since the GMV

portfolio depends only on the predicted variance matrix it does not depend on

return forecasts. Figure 6 shows the dependence of the portfolio weights on

the predicted variances. The first panel compares the variance forecasts of the

AGARCH models and of the BEKK model for the returns of the MSCI Pacific

index. The second panel plots the resulting weights of the univariate diagonal

(UD) portfolio and multivariate diagonal (MD) portfolio for the Pacific region.

We see that the weights fluctuate considerably since they are very sensitive to

the input, i.e. the inverse of the predicted variance matrix Ĥt+1. Therefore

the selection of a reliable volatility model will mainly determine the portfolio

performance.

15



0 200 400 600 800 1000 1200

-0
.0

4
0.

0
0.

02
0.

04

Returns of the MSCI Europe index from 1st May 1995 until 3rd April 2000

0 200 400 600 800 1000 1200

0.
00

01
0.

00
03

0.
00

05

One step ahead forecasted variance with BEKK(2,1) model (Moving sample of 800 observations)

Figure 4: Out-of-sample volatility prediction for the 25th May 1998 and the following 485

days: The upper panel plots the daily returns for MSCI Europe; the lower panel plots the

predicted conditional variance for MSCI Europe using the BEKK (2,1) model.
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Figure 5: The figure plots the weights of the MD portfolio from 25th May 1998 until 3rd

April 2000. The weights for 25th May 1998 are computed from equation (18) using the

forecasted variance matrix by the BEKK model for 25th May 1998.
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Figure 6: The first panel shows the one step ahead volatility forecast of the AGARCH and

the BEKK model for the daily returns of the MSCI Pacific index from 25th May 1998 until

3rd April 2000. The second panel plots the weights of the UD and MD portfolios for the

Pacific region, computed by equation (18).
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3.1 Portfolio Evaluation

We compare the performance of the three portfolios with the MSCI World index

from 25th May 1998 until 3rd April 2000. Table 4 summarizes the cumulative

returns, the standard deviations of the returns, the resulting Sharpe ratios and

the annualized returns and standard deviations. Although the Sharpe ratio is

defined as the ratio of the excess portfolio return over volatility, many investment

funds simply use the ratio of the cumulative portfolio return and the volatility

for a given period. Therefore, we compute the Sharpe ratio as SRP = µP /σP

with µP the cumulative return and σP the standard deviation of the portfolio

from 25th May 1998 until 3rd April 2000. Comparing the results for the portfolio

returns and their SDs are quite interesting. We see that the MD portfolio and

the GMV portfolio beat the benchmark, because they have larger annualized

average returns and smaller annualized SDs. The univariate diagonal (UD)

UD MD GMV bench-

portfolio portfolio portfolio mark

returns 20.02% 29.63% 31.85% 27.46%

SD 20.77% 20.38% 20.62% 21.11%

Sharpe ratio (RpV) 0.96 1.45 1.54 1.30

Annualized returns 10.30% 15.24% 16.39% 14.13%

Annualized SD 14.90% 14.61% 14.80% 15.14%

Table 4: Performance of the portfolios and the benchmark (MSCI World index) from 25th

May 1998 until 3rd April 2000 (486 trading days). The returns are calculated as
∑486

t=1
rt.

The SD is computed by multiplying the standard deviation of the daily returns by
√

486.

The annualized returns are computed as the mean portfolio returns multiplied by 250, the

annualized SD as the standard deviation of the portfolio returns multiplied by
√

250.

portfolio has the lowest cumulative returns (20.02%) and the lowest Sharpe

value (0.96). Thus, the R2 obtained from the auxiliary regression model (see

Table 3) does not provide a good measure for the performance of volatility

prediction, because according to this criteria the univariate AGARCH model
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Figure 7: Cumulative returns for the univariate UD and multivariate MD portfolios from

25 May 1998 until 3 April 2000. The MD portfolio yields 9.6% more returns in this period.

The MD portfolio uses multivariate BEKK volatility forecasts and the UD portfolio univariate

AGARCH forecasts.

has outperformed the BEKK model. The multivariate MD portfolio yields 5%

more returns p.a. and has a smaller standard deviation than the UD portfolio.

The relative difference of the Sharpe ratios can be used as a measure for the

improvement (value added) through the BEKK model. The MD portfolio has

a Sharpe ratio which is about 50 percent larger than the Sharpe ratio of the

UD portfolio. The best portfolio performance is obtained from the multivariate

BEKK model forecasts with GMV weights where we see an annualized return of

16.39% (column GMV portfolio in Table 4) and the highest Sharpe ratio (1.54).

This portfolio beats the benchmark by 4.5% for an evaluation period of two

years. If we approximate the full GMV portfolio by the multivariate diagonal

(MD) portfolio we see that the cumulative returns decrease only by 1.1% p.a.

The Sharpe ratios also differ only slightly. This confirms that the covariances

are much less important for the optimal weights than the variances. Thus,
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the information loss (covariances assumed to be zero) do not much harm the

portfolio performance. The choice of the appropriate volatility model is much

more important as it improves the Sharpe ratio by 50%.

4 Conclusion

The main motivation of this paper was to answer the question how portfolio

managers should construct their portfolios. In previous research it was found

that 1) errors in the predicted returns are more harmful for the portfolio perfor-

mance than errors in the predicted variances and covariances and 2) volatilities

are more reliable for prediction than returns, we have focused on the portfo-

lio construction using only volatility models. This points to the question what

kind of volatility models lead to better portfolio performance. The comparison

between the different volatility models was also motivated by the high dimen-

sional parameter problem (i.e. dimensionality restrictions in the prediction of

the variance matrix) in the portfolio construction process.

Global minimum variance (GMV) portfolios based on volatility forecasts by the

multivariate BEKK model dominate clearly the benchmark in the period from

25th May 1998 until 3rd April 2000. The MD portfolio based on the multi-

variate volatility model also dominates the benchmark and has a Sharpe ratio

which is about 50% larger than the Sharpe ratio of a UD portfolio based on

volatility prediction by the univariate AGARCH models. The performance of

the volatility models can be measured by the Sharpe ratio of portfolios based on

these forecasts. The relative differences of the Sharpe ratios can be used as an

empirical measure for the performance of the volatility prediction model. The

R2 obtained from an auxiliary regression model should be interpreted with care

in the sense that volatility models which lead to higher R2 in the auxiliary re-

gressions comparison will not necessary lead to better portfolios based on those

forecasts.

There is also an important result for the construction of high dimensional port-

folios based on time series forecasts. The performance evaluation of the MD
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portfolio and the ’full-information’ GMV portfolio have shown that portfolios

with an appropriate covariance structure can come close to the returns of the

’full-information’ portfolio. We have found that volatility forecasts obtained by

multivariate GARCH models are more important than those from univariate

GARCH models and the optimum results of quantitative portfolio management

can be approximated by appropriate partitioning of the information set.
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