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Evaluating Risk Models with Likelihood Ratio Tests: Use with Care! 

 

Abstract 

Most modern approaches to measure and control the risks of financial portfolios are either 
directly or indirectly based on density forecasts. Tools to evaluate the quality of such forecasts 
are therefore essential. In this paper we examine a recently proposed methodology to evaluate 
density forecasts from risk models that builds on likelihood ratio tests. We discuss three cases 
that are highly relevant in risk management where likelihood ratio tests fail to detect incorrect 
density forecasts. We illustrate this fact with Monte Carlo simulations and empirical 
examples. We also demonstrate that the likelihood ratio testing framework in conjunction 
with additional diagnostic tests is an attractive tool to evaluate risk models.      
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1 Introduction 

Traditionally, the forecast evaluation literature has primarily dealt with methods to evaluate 

point forecasts. However, over the last few years interest by the financial industry has 

increased into density forecasts. Financial institutions became interested to supplement 

standard risk measures as for example portfolio variance and correlation with broader 

information on portfolio risk. Especially in the area of risk management density forecasts are 

frequently generated since they provide a full picture of the uncertainty associated with a 

portfolio. Therefore, density forecasts and measures derived from such forecasts play a key 

role in modern risk management. In particular, Value at Risk (VaR), which is defined as a 

certain quantile of a forecast of the entire return distribution of a financial portfolio (1% and 

5% quantiles are typically used) has become the backbone of modern risk management 

(Jorion, 1996, Duffie and Pan, 1997). Moreover, regulatory authorities have permitted banks 

to use VaR estimates to determine their capital requirements to cover their exposure to market 

risk. Therefore, perhaps not surprisingly, techniques to evaluate the quality of such forecasts 

are of paramount importance for internal as well as regulatory purposes. 

 Various methods to evaluate density forecasts have been proposed in the literature. 

Methods that evaluate Value at Risk estimates directly have been proposed and examined in 

Kupiec (1995), Lopez (1998), Christoffersen (1998) and Christoffersen, Hahn and Inoue 

(2001). More general evaluation methodologies that take a broader view and consider the 

whole distribution instead of just a single quantile have recently been proposed in Crnkovic 

and Drachman (1997) and Diebold, Gunther and Tay (1998). In this paper we focus on the 

second kind of methodologies that evaluate density forecasts via the entire forecasted 

distribution. We examine an interesting extension of Diebold et all. developed in Berkowitz 

(2001) that suggests statistical tests of the quality of density forecasts within a likelihood ratio 

(LR) framework.  
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Although the LR-framework is attractive, there are important cases where the 

uncritical use of this framework or equivalent test procedures may lead to erroneous 

conclusions about the quality of density forecasts. We outline three cases where deficient 

density forecasts cannot be detected within the LR-framework and relate them to the 

evaluation of VaR models. In these cases variance/covariance models and historical 

simulation models to estimate VaR may not be rejected even if they deliver poor density 

forecasts. Using Monte Carlo simulations and an empirical illustration we highlight that in the 

three cases the basic LR-framework alone as well as an extended LR test that covers higher 

order dependencies and certain kinds of nonlinearities has little power to detect incorrect 

density forecasts. However, we also demonstrate that the LR framework in conjunction with 

additional diagnostic tests is a constructive and powerful framework to identify deficient 

forecasting models.   

The rest of the paper is organized as follows. Section 2 outlines the LR density 

forecast evaluation framework of Berkowitz (2001). The three cases that we consider are 

discussed in section 3. The Monte Carlo experiments and the empirical examples are reported 

in section 4. Some final remarks are provided in section 5.  

 
 
2 Density Forecast Evaluation and the LR Framework 
 
Let {xt}t = 1,..., m be a time series generated from the conditional densities {f(xt| It-1)}t = 1,..., m 

where It-1 denotes the information set available at time t-1 and let {p(xt| It-1)}t = 1,..., m be a series 

of one-step-ahead density forecasts for {xt}t = 1,..., m.1 The quality of such forecasts can be 

evaluated with the help of a probability integral transformation (PIT) suggested in Rosenblatt 

(1952) applied to each observed xt with respect to its predicted density pt(xt). The probability 

integral transformation for a single xt is given by 

                                                 
1 In what follows, ft(xt) and pt(xt) are sometimes used as shorthand notations for the true and the predicted 
conditional densities, respectively. 
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Diebold, Gunther and Tay (1998) show that the transformed series {zt}t = 1,...,m must be 

independently and identically uniformly distributed (iid U(0,1)) if a series of one-step-ahead 

density forecasts {pt(xt)}t = 1, ..., m coincides with the series of the true conditional densities 

{ft(xt)}t = 1,..., m.2  

Hence, the quality of density forecasts can be assessed by an examination of the 

properties of the z-series resulting from the PIT given by equation (1). Such examinations can 

either be based on descriptive diagnostic tools or on statistical tests as proposed in Crnkovic 

and Drachman (1997). Diebold et al. advocate graphical methods. However, there may be 

situations in which statistical testing is required. For example, within a financial institution 

one may have to compare the quality of Value at Risk forecasts across different trading books 

with the help of formal test procedures. Another example may be a regulatory authority that 

wants to assess the accuracy of risk measurement systems of different financial institutions. 

To assure a uniform treatment across the involved institutions the authority may therefore ask 

them to carry out statistical tests for a portfolio of financial instruments as defined by the 

supervision authority.  

Berkowitz (2000) emphasizes that statistical tests that are directly based on a z-series 

require rather large sample sizes to be reliable and suggests a further transformation of the 

individual zt's to obtain more powerful test statistics. The transformation for a single zt is 

given by 

                                                          )(zΦn t
1

t
−= ,                                                                 (2) 

where Φ-1(.) denotes the inverse of a standard normal distribution function. This 

transformation produces an n-series that is independently standard normally distributed (iid 
                                                 
2 This result can be further exploited to evaluate multivariate density forecasts- and multi-step ahead forecasts, 
respectively (Diebold, Hahn and Tay, 1999, Clements and Smith, 2000). It is also worth noting that this result 
does in no way depend on how the density forecasts were generated. Correct density forecasts, however 
obtained, imply a transformed series that is iid U(0,1). 
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N(0,1)) if the true- and the forecasted conditional distributions coincide. Berkowitz proposes 

likelihood-ratio tests against the first order autoregressive alternative  

t1tt εµ)ρ(nµn +−=− −                                          (3) 

to test for iid N(0,1) data. In this framework a joint test for independence, a mean of zero and 

a variance of one is given by  

( ) ( )( )ρ,σ,µL0,1,0L2LR 2 )))−−= ∼χ2(3),                                      (4) 

where σ2 is the variance of εt and L(.) denotes a Gaussian log-likelihood function. In 

simulation experiments he demonstrates that the test statistic has good small sample 

properties.  

He also suggests an extended LR test that covers the possibility of higher order 

dependence as well as nonlinear dependencies that may be constructed from the model 

t
2

hth
2

1t1mtm1t10t εnβ...nβnα...nααn +++++++= −−−− .                    (5) 

Acceptance of the hypotheses 1)Var(ε0,β...βα...α th1m0 =======  would indicate 

correct density forecasts. Specifications of this type could easily be extended to include more 

lags, higher powers of lagged nt’s or cross products of lagged nt’s. Individual or joint 

hypotheses about models (4) or (5) could also be tested within a regression framework using 

standard t-, F- and chi square tests.    

 

3 Three Critical Cases  

The LR-tests based on equations (4) or (5) or equivalent test procedures are attractive because 

they are easy to implement. Especially tests based on a setting like equation (5) appear to be 

quite general. However, the evidence from such tests must be interpreted with care. We now 

discuss three cases where the uncritical use of the LR-tests described above may lead to 

erroneous conclusions about the quality of density forecasts. We also point out how additional 

diagnostic tests may help to identify misspecified forecasting models. Since the discussion is 
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not only relevant for the evaluation of risk models but also important for the evaluation of the 

forecasting ability of time series models in general, we first describe the cases in a time series 

setting. Hereafter we point out how these cases may arise in the evaluation of a risk 

measurement system. 

We start by assuming that a time series of financial returns is generated by the 

(possibly) nonlinear time series model 

                                                        t1t1tt )ξσ(I)µ(Ix −− += ,                                                     (6) 

where µ(.) is the conditional mean and σ(.) is the conditional standard deviation. The available 

information set is denoted by It-1 and the error term tξ  is assumed to be a conditionally 

standardized martingale difference sequence (i.e. 0)IE(ξ 1tt =−  and 1)IVar(ξ 1tt =− ). As 

discussed in Bai and Ng (2001) this framework encompasses most standard linear and 

nonlinear time series models with or without exogeneous explanatory variables, traditional 

ARMA models and models with ARCH and GARCH disturbances. This model can also be 

interpreted as a representation for the evolution of the returns of a portfolio of financial 

instruments over time. Let us now describe the different cases within this framework. We 

assume that model (6) is the true data generating process.  

 

Case 1:  Suppose that a density forecaster has generated density forecasts from a misspecified 

version of model (6). He has correctly specified the first and second conditional moments. 

However, he incorrectly assumes that the error terms ξt
* are N(0,1) whereas the true error 

terms ξt are uncorrelated with mean zero and unit standard deviation but have a (possible time 

varying) distribution Dt(0,1) ≠  N(0,1) which differs from a normal distribution for all t. To 

assess the quality of his forecasts he applies the transformations given by (1) and (2) and 

performs an LR test of the kind described in section 2. Since the transformations simply 

produce nt = Φ-1(Φ(ξt
*)) = ξt

* he will obtain an n-series that has a zero conditional mean, is 
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uncorrelated and has a unit standard deviation.3 Because the LR test maintains the assumption 

of normality, the test will not reject although the n-series is not normally distributed and the 

density forecasts are incorrect. Without additional distributional tests for normality of an n-

series the inadequate density forecasts will therefore erroneously be accepted despite the fact 

that the true densities are definitely not normal.  

 

Case 2: Now assume that a density forecaster has issued density forecasts that only capture 

the conditional mean correctly. He erroneously assumes normally distributed density forecasts 

with constant unconditional standard deviation σ. Transformations (1) and (2) produce an n-

series that is uncorrelated with conditional and unconditional zero mean and a unit 

unconditional standard deviation if the estimated unconditional standard deviation σ is 

correct. However, the resulting n-series is heteroskedastic if the true conditional variance σ(It-

1) is time varying.4 Since LR tests based on (4) or (5) are not designed to detect 

heteroskedasticity, the forecaster will not be able to identify the inability of the forecasts to 

capture the true volatility dynamics without additional tests for heteroskedasticity. Of course, 

the neglected volatility dynamics of the density forecasts is likely to be reflected in the shape 

of the unconditional distribution of the resulting n-series because the time varying volatility 

tends to produce n-series with a fat tailed distribution. However, the presence of a fat-tailed 

distribution alone does not help to discriminate between an incorrect volatility dynamics and 

an incorrect shape of the conditional distributions. 

 

Case 3: Finally, assume that the forecaster correctly specifies the mean dynamics but uses the 

unconditional density of {xt}t = 1,…,m instead of the conditional densities as a density forecasts 

for future xt’s. If the true process is stationary then the integral transformation (1) with respect 

                                                 
3 For a similar result in the context of a z-series, see Diebold, Hahn and Tay (1999). 
4 This can be shown by noting that st = [xt – µ(It-1)]/σ and nt = Φ-1(Φ(st)) = st.  Using these relationships it can be 
shown that E(nt

2|It-1) = σ(It-1)/σ, E(nt|It-1) = 0, E(nt nt-j) = 0, E(nt) = 0 and E(nt
2) = 1. 
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to the unconditional distribution will produce an uncorrelated and almost perfectly uniformly 

distributed z-series.5 The subsequent transformation (2) with the inverse of the standard 

normal distribution will then of course create an uncorrelated n-series that has a distribution 

quite close to a standard normal distribution. The distribution of the n-series will be virtually 

standard normal despite the fact that the volatility dynamics is misspecified because the 

unconditional distribution of the original data ignores the order in which the observations are 

arranged. Given such a situation, neither the LR tests nor additional distributional tests for 

normality will indicate incorrect density forecasts. One way to detect an incorrect volatility 

dynamics of the density forecasts is to examine the time series of squared nt’s which will 

display clustering if the volatility dynamics has been neglected. The n-series will also be 

standard normal if the true conditional densities change over time due to other time dependent 

higher moments because this is also already reflected in the shape of the unconditional 

distribution. To identify additional deficiencies higher powers of the n-series would have to 

be investigated.  

 Having outlined the three cases in a time series setting we now point out how these 

cases may arise in an evaluation of the quality of a VaR-model. Consider a financial 

institution that uses a variance/covariance-model to calculate its daily Value at Risk (for a 

comprehensive discussion of this approach, see Jorion, 1997). In this risk model the VaR of a 

financial portfolio is a certain multiple of the forecasted conditional standard deviation of the 

distribution of the portfolio returns. It is typically assumed that the returns of the portfolio 

follow a conditional normal distribution. For correct VaR calculations the correct estimation 

of the portfolio volatility and the correctness of the normal distribution assumption are 

critical. Now suppose that the VaR model adequately captures the volatility dynamics of the 

                                                 
5 Because the unconditional distribution can only be estimated (for example with the empirical distribution 
function), small deviations from the uniform distribution may result from estimation errors. These errors are 
likely to be small if a sufficiently large number of observations are available.    
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portfolio but the normal distribution assumption for the portfolio does not hold.6 This may 

happen if the portfolio contains a significant amount of nonlinear instruments such as options 

or if the underlying risk factors are already not normally distributed. This situation obviously 

corresponds to case 1 outlined above. Therefore, it is very likely that the LR tests or 

equivalent tests do not to reject and give the impression that the VaR model is adequate 

despite the fact that the true VaR may be far away from the VaR estimated with the model. 

 An even more drastic example that corresponds with case 2 is a quite naïve 

variance/covariance model which is again built on the assumption of normally distributed 

portfolio returns and it is further assumed that the portfolio variance is simply constant. If the 

unconditional portfolio variance is estimated correctly then the LR tests will not reject the 

VaR model even if both assumptions are clearly violated. 

 Case 3 may arise if a financial institution uses a historical simulation for the purpose 

of VaR calculations. In the historical simulation the past observations of a set of risk factors 

are interpreted as possible future realizations of the risk factors. The return on a portfolio of 

financial instruments is computed under each of the historical scenarios of the risk factors and 

the VaR is then calculated as a certain quantile of the resulting portfolio return distribution. 

To obtain accurate VaR estimates 500, 1000 or even more historical realizations are often 

used. Since each historical scenario is equally weighted the resulting VaR is implicitly based 

on an estimate of the unconditional return distribution of the portfolio (Hull and White, 1998 

and Huisman, Koedijk and Pownal, 1998). If the unconditional distribution is stationary or 

only very slowly changing then for a fixed portfolio the marginal distribution of the resulting 

n-series used in the LR tests will be close to a standard normal distribution even if volatility is 

time varying. The LR tests will again not reject the null hypothesis of a correct risk model 

despite the fact that the volatility dynamics is ignored by the model.             

 

                                                 
6 For simplicity we assume in the discussion that the portfolio returns have zero mean.  
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4 Simulations and Empirical Illustrations  

We illustrate the three cases where the LR tests fail to identify incorrect density forecasts with 

simulation experiments and empirical examples for the daily returns on the S&P 500 and the 

FTSE 30 stock market indices. In the Monte Carlo simulations we consider a GARCH(1,1)-t 

model   

   rt = √σt
2[ν/(ν – 2)]-1/2εt            εt ~ t5 

   σt
2 = 0.004 + 0.03ε2

t-1 + 0.95 σ2
t-1, 

 

where rt denotes the simulated returns, σt denotes the conditional standard deviation and εt 

denotes an innovation drawn from a student t distribution with ν  = 5 degrees of freedom. This 

model is a standard model for financial returns. It implies fat tailed student t distributed 

density forecasts and produces the volatility clustering often observed in financial return 

series.  

 We use the simulated time series from the model to examine the three cases outlined 

in section 3. In case 1 we assume conditionally normally distributed density forecasts instead 

of student t5 distributed forecasts, and the GARCH(1,1) model is estimated under this 

incorrect distributional assumption. Since the estimated model parameters are still consistent 

(Bollerslev and Woooldrige, 1992, Lumsdaine, 1996) the volatility dynamics should be 

adequately captured despite the fact that the true distribution is a fat tailed student t 

distribution. In case 2 we incorrectly assume an unconditional normal distribution for the 

density forecasts. We thereby, in addition to the choice of an incorrect distribution, also 

misspecify the volatility dynamics because we use a simple estimate of the unconditional 

standard deviation instead of an estimate of the time dependent conditional variance. In the 

third case we take the empirical distribution function as our density forecasts and therefore 

again misspecify the conditional distributions of our density forecasts.      
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 We perform 10000 simulations of the model for samples of 500, 1000, 2000 and 4000 

observations. For each of the three cases we estimate the rejection rates of a likelihood ratio 

test (LR1) based on (4) and a likelihood ratio test (LR2) based on two lags of nt and nt
2 that 

considers the more general alternative (5) when applied to the resulting n-series for a 5% 

significance level. Using the same significance level, we also calculate the rejection rates of a 

Jarque-Bera normality test and an ARCH test for heteroskedasticity (ARCH) based on an F 

test of the restriction γ1 = γ2 = … = γ5 = 0 in the regression n2
t = γ0 + γ1n2

t-1 + … + n2
t-5 + ξt. 

The results of the simulation experiments are reported in table 1. 

  INSERT TABLE 1 ABOUT HERE  

From table 1 it is easily seen that in all three cases the LR1 and LR2 tests have little power to 

detect incorrect density forecasts. This is exactly what we would expect from our discussion 

in section 3. For example, the rejection rates of the LR1 test are extremely low and range from 

0.02 to 0.041 across the different sample sizes and cases. The rejection rates of the more 

general LR2 test are similar to the LR1 rejection rates in case 1 and slightly higher, but still 

very low, in the other two cases. On the other hand, note that the JB test virtually always 

rejects the incorrect density forecasts in case 1 and case 2 and never rejects in case 3. This 

finding is again consistent with the theoretical discussion. The same is true for the 

heteroskedasticity tests. The ARCH test virtually never rejects in case 1 because the volatility 

dynamics is correctly captured by the forecasts but rejects frequently in the other two cases 

where density forecasts ignore the volatility dynamics. Taken together, the results from the 

simulations clearly show that both LR tests are essentially unable to identify the incorrect 

density forecasts in each case. Without the additional normality- and heteroskedasticity tests 

the deficient forecasts cannot be detected.   

 Let us now turn to the empirical example. We evaluate successive one-step-ahead 

density forecasts for daily returns on the FTSE 30 and the S&P 500 from four different 

models. The first two models are the simple moving average model (MA) of squared returns 
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with a rolling time window of 250 trading days and the exponentially weighted moving 

average model of squared returns (EWMA) with a decay factor of 0.94, as suggested by J. P. 

Morgan. In both models we make the conventional assumptions that the mean of the daily 

returns is approximately zero and that the returns are conditionally normally distributed. 

These models are often used to generate the variance/covariance matrices used in VaR 

calculations.  The other two models are the standard GARCH(1,1)-n model where the errors 

are also assumed to be conditionally normal and the GARCH(1,1)-t model where 

conditionally t distributed errors are assumed.  

  INSERT TABLE 2 ABOUT HERE! 

 The likelihood ratio-, normality- and heteroskedasticity tests for the n-series resulting 

from the 1,000 daily density forecasts of the different models over the period from 4/20/1998 

to 2/15/2002 for the S&P 500 and 4/21/1998 to 2/18/2002 for the FTSE 30 are summarized in 

table 2. The empirical evidence again highlights the inability of the LR tests to discriminate 

between the density forecasts from the different models. For example, the LR1 and LR2 tests 

do not distinguish between the GARCH-n and the GARCH-t models.7 The tests indicate 

correct density forecasts for both models. However, the additional JB- and ARCH tests 

suggest that only the density forecasts from the GARCH-t models might be correct. The 

forecasts of the GARCH-n model are clearly rejected by the JB test. Since the ARCH tests do 

not reject for the GARCH-n model the normality assumption appears to be incorrect. In the 

case of the S&P 500 the LR1 test does also not reject the simple MA model although the JB- 

and ARCH tests clearly indicate that both, the volatility dynamics and the normal distribution 

assumption are incorrect. The empirical evidence in general suggests that the widely used 

MA- and EWMA models combined with the assumption of a normal distribution do not 

produce accurate density forecasts. 

 

                                                 
7 The parameter estimates for the GARCH models are available on request from the authors. 



 12   

Concluding Remarks 

In this paper we investigated a recently proposed likelihood ratio framework to evaluate 

density forecasts. We showed that the uncritical use of this framework may lead to incorrect 

conclusions about the quality of risk models. Standard variance/covariance approaches and 

historical simulation approaches to calculate VaR may be accepted despite the fact that they 

may provide poor VaR estimates. We further demonstrated that additional diagnostic tests 

including normality tests and tests for heteroskedasticity help to detect incorrect models. But 

these additional tests do not only help to detect incorrect models, they also provide 

information about the kind of model failure. This leads us to the conclusion that the LR 

framework of Berkowitz combined with additional diagnostic tests is a constructive and 

powerful tool to evaluate risk models. Of course, a careful risk manager would probably also 

perform some of the other tests mentioned in the introduction to asses the accuracy of his risk 

model. However, if one of the cases outlined in this paper arises, he may obtain conflicting 

results if he compares the outcome of these tests with the evidence from the LR tests. With 

the help of further graphical assessments or the additional diagnostic tests he may then be able 

to correctly interpret the results.     
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Table 1: Rejection Rates of Density Forecasts from GARCH(1,1)-t Model, 5% Significance 
Level 
 
 

Observations  LR1  LR2  JB  ARCH 
 
Case 1  4000   0.020  0.027  1.000  0.045 
  2000   0.020  0.031  1.000  0.042 
  1000   0.022  0.029  1.000  0.040 
  500   0.026  0.028  0.990  0.039 
 
Case 2  4000   0.041  0.164  1.000  0.930 
  2000   0.034  0.131  1.000  0.706 
  1000   0.032  0.107  1.000  0.440 
  500   0.030  0.083  0.993  0.257 
 
Case 3  4000   0.025  0.081  0.000  0.993 
  2000   0.027  0.084  0.000  0.873 
  1000   0.026  0.081  0.000  0.581 
  500   0.024  0.073  0.000  0.317 
 
Notes: The table reports the rejection rates of density forecast tests from 10,000 simulations of 
the model rt = √σtεt, σt

2 = 0.004 + 0.03ε2
t-1 + 0.95 σ2

t-1 where the innovations εt are drawn 
from a student t distribution with 5 degrees of freedom. LR1 and LR2 denote the likelihood 
ratio tests based on equations (4) and (5) in the text, respectively. JB denotes a Jarque-Bera 
test for a normal distribution. ARCH denotes an F test for heteroskedasticity of the restriction 
γ1 = γ2 = … = γ5 = 0 in the regression n2

t = γ0 + γ1n2
t-1 + … + n2

t-5 + ξt.  
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Table 2: P-Values from Evaluations of Density Forecasts from MA-, EWMA-, GARCH(1,1)-
n and GARCH(1,1)-t Models for Daily Returns on the FTSE 30 and the S&P 500. 
 
FTSE 30 Period:  4/21/1998 to 2/18/2002  Observations: 1000 
 

Model   LR1  LR2  JB  ARCH 
 
  MA   0.000  0.000  0.000  0.000 
  EWMA  0.000  0.003  0.000  0.618 
  GARCH-n  0.865  0.625  0.000  0.374 
  GARCH-t  0.964  0.507  0.221  0.584 
 
      
S&P 500 Period: 4/20/1998 to 2/15/2002 Observations: 1000 
 

Model   LR1  LR2  JB  ARCH 
 

MA   0.754  0.046  0.000  0.000 
  EWMA  0.063  0.060  0.000  0.402 
  GARCH-n  0.759  0.431  0.000  0.219 
  GARCH-t  0.873  0.626  0.203  0.256 
 
Notes: The table reports p-values from tests of the quality of 1000 consecutive one step ahead 
density forecasts from a moving average volatility model (MA) with a rolling window of 250 
trading days, an exponentially weighted moving average volatility model (EWMA) with 
decay factor 0.94, a GARCH(1,1) model with normally distributed errors (GARCH-n) and a 
GARCH(1,1) model with t-distributed errors (GARCH-t). LR1 and LR2 denote the likelihood 
ratio tests based on equations (4) and (5) in the text, respectively. JB denotes a Jarque-Bera 
test for a normal distribution. ARCH denotes an F test for heteroskedasticity of the restriction 
γ1 = γ2 = … = γ5 = 0 in the regression n2

t = γ0 + γ1n2
t-1 + … + n2

t-5 + ξt.  
 
 
  


