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Abstract:

An equity linked life and pension insurance consists of an non-linear combination of a life and
pension insurance with an investment strategy. In addition to the guaranteed payments the
insured receives a bonus depending on the value of an investment strategy. The additional
payment is similar to an Asian typ option. Since the insurance contract combines mortality
and financial risks in a non-linear way, the value or premium of the contract must reflect
these uncertainties. The paper shows the existence of a fair periodic premium defined so
that the expected discounted premium is equal to the expected discounted payments. For
two different pension policies an approximation of the fair periodic premium is derived, which

imlies the approximation of long term Asian typ options.
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Introduction

A capital life insurance contract is equal to a linear combination of a term insurance with
duration T" and a pure endowment insurance. Due to the term insurance the insurer guaran-
tees, in case of death of the insured, his or her heirs a fixed amount. The pure endowment
insurance consists of a minimum guaranteed payment if the insured survives the maturity or
duration T of the contract. By choosing the duration 7' equal to the intended retirement of
the insured, the capital life insurance may be used to insure the retirement pension, at least
partly.

The reason for the following discussion is neither to discuss different arguments in favour of or
against the capital life insurance. Nor is it the intention to analyse the differences of and the
problems associated with the pay-as-you-go and the capital funded pension system. Instead,
the analysis will concentrate on a situation where the insurance of the pension payment
is founded by a combination of both risk diversification principles. On the one hand, the
arbitrage pricing principle, i.e. risk diversification by duplication, and on the other hand, the
equivalence premium principle, i.e. risk diversification by large populations. The insurance
contract is designed to combine financial market risk with pure insurance risk. Combining a
life insurance contract with an investment strategy may imply a reduction of the total risk
exposure for the insurer. Obviously, this reduction is based on a non-linear combination of
the pure life insurance part and of the financial portfolio strategy.

A closely related example is the equity—linked life insurance contract. This contract combines
a life insurance with a minimum guarantee on the outcome of an investment strategy. Ekern
and Persson (1996) give an overview of different contract specifications. A first analysis within
the context of the arbitrage pricing theory is given by Brennan and Schwartz (1976). They
consider the situation of an equity-linked life insurance contract with one front premium
and use a deterministic model for the term structure of interest rates. Bacinello and Ortu
(1994), as well as Nielsen and Sandmann (1995, 1996) , extend the analysis to include the

case of a stochastic interest rate development and periodic premium payments by the insured.



1 EQUITY-LINKED LIFE AND PENSION INSURANCE 3

Instead of a pension plan the equity—linked life insurance contract results in a final payoff to
the insured if he or she survives the duration 7' of the contract.

The discussion is organized as follows: The contract will be defined in Section 1. Section
2 introduces the underlying model of a financial market, which includes stochastic interest
rates as well as a stochastic model of the mutual fund. The analysis of the contract refers
to the fair premium principle, which is a combination of the equivalence premium principle
usually applied in life insurance and the no-arbitrage pricing principle. The existence, the
uniqueness and the properties of the fair premium are discussed in Section 3. Although the
properties of the contract can be derived in a fairly general setup, no closed—form solution
for the fair premium exists. Section 4 focuses on the numeric technique and includes an
analytical approximation to the fair premium. To summarize the analysis, we report in

Section 5 on some numerical results. Proofs are summarized in the appendix.

1 Equity-linked life and pension insurance

The basic principle of the contract is similar to a usual life insurance contract. The insured
pays a periodic premium to the insurer until his or her death or the maturity or the duration
T whichever comes first. The premium is assumed either to be constant or a deterministic
function of time. In both cases the periodic premium is fixed at the beginning of the contract.
As in the case of a pure term insurance, the heirs, receive a minimum guaranteed amount if
the insured dies before the duration of the term insurance. Instead, if the insured survives
the maturity date, T', he or she receives a periodic pension until his or her death. Unlike the
usual capital life insurance contract, at each payment date a fraction of the periodic premium
will be invested into a mutual fund. Furthermore, the payment of the insurer to the insured
will depend on the portfolio value.

More precisely, let ty = T be the duration of the term insurance and suppose that, at each
time t; € T := {0 = tg < t; < --- < ty_1}, with ty_; < ty = T, the insurer receives a

premium K (t;) if the insured is alive at time ¢;. Let S(¢) be the market value of the mutual
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fund at time ¢ and suppose that a fraction a € [0,1] of the premium at each time ¢; € T is
invested into the mutual fund. a will be called the investment share. If the insured is alive

at time t €]tg, tn] the value of his or her portfolio is equal to

min{n*(¢t),N—1}

S(t)
P(t,a,K) := a-K(t;) - (1.1)
; S(t:)
with n*(t) := max{j € No|t; <t}.

If the insured survives the duration T of the term insurance, the value of the portfolio is

equal to
N-1
S(t)
P K) = -K(t;) - >T.

The premium function K : T — Ry¢ is assumed to be constant or deterministic, and a,
the investment share of the premium is assumed to be constant. If the insured dies at
time ¢ €]tg, T'], his or her heirs receive the guaranteed amount g;(t) plus a bonus, which is
proportional to the positive difference between the value of the portfolio at that time and

the guaranteed amount. The total payment Gy (t) in this situation is therefore given by

Gr(t) :=g1(t) +m - [P(t, 0, K) — g1 (t)]" Vvt €]to, T, (1.2)

where we define [z]* := max{z,0}. For @ = 0, the payment coincides with a pure term
insurance. The value n; € [0,1] defines the repayment level of the portfolio value in case
of death of the insured before the duration 7. For 7, = 1, this payment is equal to the
maximum between the guaranteed amount and the value of the portfolio. For 7, = 0, the
insured receives only the guaranteed amount. Obviously, the value of the insurance contract
will increase in ;.

If the insured survives the duration T of the pure term insurance, he or she receives a
periodic minimum guaranteed pension until his or her death. In addition to this minimum
guaranteed pension, the insured receives a non-negative payment which is related to the
value of the mutual fund. Among the different possibilities to define this additional pension

payment, we will consider two specific pension policies.
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In pension policy A the insured will, during his remaining lifetime, receive at any time
t; >T,j = N,N+1,---, a guaranteed periodic pension plus a bonus depending on the
portfolio value at time T'. At time T the insurer sells the total portfolio at the market value
and divides the value by the number of pension periods L, which on average, seen from time
to, have to be financed by the pension system. If, in a considered period, this fraction of the
portfolio value is larger than the guaranteed pension, the insured will receive a bonus, if not,
he or she will only receive the guaranteed amount. Therefore the bonus is only affected by
the value of the portfolio at time 7. The bonus is proportional to the excess of the fraction
w over the guaranteed payment at date t; rolled over by the interest rate market from
time T until ¢;.

Defining by {r(t)}: the stochastic process of the instantaneous spot rate, the return of a

roll-over strategy from time 7" to time ¢; > T is equal to:

tj
Br,; = exp {/T r(u)du} )

Denote by ¢(t;) the time T present value of the guaranteed pension at time ¢;. At each time

+
) , 19

where L € IN is given at ty and equals the expected number of pension payments for a life

tj,j > N the total periodic pension Q(t;) is defined by

Q(t]) = ﬂT,tj . (q(tj) + n2 - |:% . P(T,Q,K) - q(tJ)

aged z at to, if he or she survives the duration T of the contract.

The constant 72 € [0,1] can be interpreted as the participation rate of the pension. The
guaranteed pension ¢(t) serves as a floor for the total periodic pension.

In addition to the periodic pension, we have to define the possible payment Gp(-), when the
insured dies at some time ¢ > 7. Under the regime of the pension policy A, we assume that

the insurer pays an amount which is proportional to the positive difference of a fixed amount

11t should be noted that in case of survival, at time ¢ > ¢ ~N+1 the insured still benefits from a non-negative

bonus on the guaranteed pension.
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gp(t) reduced by a sum related to the already payed guaranteed pension:

+

n* ()
Gp(t):=ms- |gp(t) = > qlt;) Vi > T = ty. (1.4)
j=N

The value 13 € [0, 1] defines the repayment level after the duration T'. As for the repayment
level 71 the value of the contract increases with n3. The value 773 = 0 corresponds to the case
of no repayment if the insured dies after the duration of the term insurance, whereas n3 = 1
indicates the full repayment level. Furthermore, the standard case of a capital life insurance
with deterministic guaranteed amount gr(t) and deterministic guaranteed pension scheme
q(t) is given by a = 0. Summing up, the pension policy A is defined by the periodic pension
(1.3) and the repayment (1.4). The contract defined by the payoff functions (1.1) - (1.4) will
be called an equity—linked life and pension insurance with pension policy A, investment share
a, repayment levels 7; and 13 and participation rate 72. Figure 1.1 gives a summary of the
different payments under pension policy A.

In the situation of the pension policy B, the value of the mutual fund during the pension
period is reflected in the different payments. At time T' the number of shares in the portfolio

is determined by

Without any insurance, the holder of the portfolio could, to finance his pension, e.g. sell at
L consecutive points in time, tnx,tN41, ..., EN+L—1, the fraction % of the number of shares in
the portfolio at time T. With insurance, a floor on the periodic pension is introduced. The
periodic pension to the insured under pension policy B is defined by

1 +
Qt;) = qlt;)+mn2- ZP(tj,a,K) —q(ty) Vt; =tn, .. tNyL-1, (1.5)

Qt;) = qlt;)  Vt; > tnyr, (1.6)
where L is a given constant as under policy A. Unlike policy A, the periodic pension is now

related to the fund dynamics beyond the duration T'. Furthermore, if the insured dies within

the pension period the payoff Gp(-) is defined by the value of the remaining shares in the
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survival +
UE [gP (tnv+1) — Xy (J(tj)]
death
— + .
oot Q) = Brasss (attxen) 4 [3 25 K@) - attwan)] ) = pension
survival [ (tx) EN ( )] +
N3 |gp(tn) — ).y a(tj
death =N
+
tv T Q(tn) = q(tn) +n2 [% Y K ()5, - CI(tN)] = pension
survival _ +
G(t) = g1(t) +m [a SN K () 2 - 91(8)]
death
1-a) K(tn-1)
tnN—1+ > ‘ K(tn—1) = premium ‘
a-K(tn-1)
fonds
survival +
G(t) = g1(t) +m [ 1o K(t:) S5 — 91(8)]
death
(1—-a)-K(t)
i 4 > ‘K(tl) = premium‘
a-K(t)
survival () )+ [ K (to) S(8) (t)]+
= gr m |aK(to —gr
death Stko)
(1—a)- K(to)
to + > ‘K(to) = premium‘
Q- K(to)
fonds

Figure 1.1: Contract specification of an equity linked life and pension insurance with pension

policy A

portfolio, i.e

L+N-1-n*®]"

Gp(t) :==n3 - P(t,a, K) - 7

vt>T. (1.7

The contract defined by the payments (1.2),(1.5) to (1.7) is called an equity-linked life and
pension insurance with pension policy B, investment share o and repayment levels 1; and 73
and participation rate 7.

Although it seems to be natural to assume that the guaranteed insurance amounts gj(-)
and gp(-), and the guaranteed pension g(-) are deterministic functions, this is not neces-

sary. Besides the obvious constant specification of these functions, one other example for a
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deterministic specification is:

n’ ()

g1(t) == D exp{-(t—ti)} - Bi-a-K  Vt€]0,T]
=0
qt) = exp{d2-t}-fr-a-K Vi>T, (1.8)
N+L
gp(t) = Y qt:) Vt>T
i=N

where K > 0 is equal to the constant periodic premium, 51 and (2 are non-negative constants
and é; > 0 and 62 > 0 are internal guaranteed interest rates. Such a contract with pension
policy A is actually offered by the Postbank in Germany. In this case, the parameters are
chosen tobe 61 =d2 =0, =n3 = 1,72 = 0 and L = 180 months.

A constant or deterministic specification of the guaranteed payments has the disadvantage
that, in terms of present value, the guaranteed insurance amounts do not really cover the
needs of the insured. One solution is to relate the size of the guaranteed payments to the

interest rate dynamics. An example of an interest rate related specification is as follows:

t
gr1(t) = exp {/ r(u)du} g1 = Bo,t - g1 vt €]0, T
0
t
o0 = ew{ [ rwiufa=poig T (19)
0
t
gp(t) = exp {/ r(u)du} ~gp = Pos gp Vt>T,
0

where g7, gp and ¢ are positive constants defining the present value of the guaranteed pay-
ments and gp(.) applies only to the case of the pension policy A.

The analysis of the contract will mainly refer to the case with deterministic guarantees.
One example of such a situation is given by equation (1.8). Nevertheless, the interest rate

dependent situation can be analysed by basically the same arguments.

2 Insurance and Financial Risk

The analysis of an equity-linked life and pension insurance, as defined in Section 1, should
include at least three different sources of uncertainty.
First, the payment of the contract is defined with respect to the survival or death of the

insured. Denote by 7, (t) the density function of the death distribution for a life aged z at
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time to. The death resp. survival distributions are defined by:

/tt e (u)du
1- /t e (u)du

to

prob| a life aged z(at time ¢¢) dies within the period Jto, #]]

prob| a life aged z(at time tg) survives time ¢].

We assume that, at time tg, the probability density functions of the death distribution for
a life aged x are known Vz. With this notation the expected number of periods L for a life

aged x at to under the condition that he or she survives the duration 7T is determined by:

+00 /% +oo plit1 . _ 7 (w)du
1. dr (n*(u) —T(N — 1))z (u)du _ iy, T T (N —1))7, (u)d 21)
1= [, 7o (u)du 1— [, maz(u)du

S (1= J e (wydu)
1- ftf 7z (u)du -

Second, the equity-linked life and pension insurance contract is influenced by two types of
financial risk. Since the benefit to the insured is a function of the value of the investment
portfolio, the dynamics of the underlying mutual fund are involved. In addition, the contract
is of long term and therefore the interest rate risk must be considered. These financial aspects
are included in the analysis by a complete and arbitrage—free model of the financial market.
Let P* be the unique equivalent martingale measure, such that, with respect to a filtered
probability space (2, F, P*, {IF;}), the discounted price processes of the mutual fund {S(¢)}+
and the discounted price processes of all the zero coupon bonds {D(t, ) }+¢[4,,r] With maturity

T € R>¢ are martingales:

S(t) = Ep- [g;gS(i)‘]Ft] Vi > ¢,
D(t,7) = Ep- [ﬁtjt_lp(f,T)‘]Ft] Vi€ [t,7],¥r > t, (2.2)
D(r,7) = 1 P*a.s.

Furthermore, we assume enough regularity, so that for each 7 € R there exists a unique

T-forward risk adjusted measure P” defined by

P\ _ BiouD(t,7)
dP |, Ep. [8;,'D(t,7)|Fy,]

(2.3)
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Applying this change of measure implies that the forward prices of the financial assets are

martingales under the appropriate forward risk adjusted measure, i.e.

St) = D(t1)Ep- [ Ds;(:;) Ft] Vr >t > to, (2.4)
D(t,T) = D(t,7)Ep- [% Ft] VT >7>t>t

This is the usual and standard setup of a complete and arbitrage—free financial market model
including interest rate risk. At this point in the discussion we do not need to specify the
volatility structure. The general results, with respect to the premium of the equity-linked
life and pension insurance, are not depending on any more specific assumptions about the
volatility structure. Nevertheless, for the numerical analysis to be performed, we will assume
a special framework with deterministic volatilities. For further details concerning the financial
market model we refer to Geman, El Karoui and Rochet (1995).

The following Proposition summarizes some useful results with respect to the expected value

of the mutual fund and the death distribution.

Proposition 2.1 Consider a financial market model satisfying the relationships (2.2) to
(2.4) and a deterministic premium function K(t;),i=0,..,N—1. Fort; >ty =T >t > g
and M := min{n*(u), N — 1}

n” (t) n*(t)

_ D(to,t;)

S Ft" ~ & D(t,t)’

— S(T) = D(to, t:)

ﬂT,tj . Z S(tz)‘Fto‘| i D(to,tj)7

i=0

=0
T [n*(u) N-1 T
/ Dito,t:) | mo(wdu  + ( K(t:)D(to, t )) (1—/ M(u)du>
to : to

/to (ZK D(to,t; ) 7o (u)du

Proof: See the Appendizx.
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3 The Fair Premium Principle

The equity-linked life and pension insurance is related to three sources of uncertainty. With
respect to the insurance risk we assume that the equivalence principle prevails. That is, we
assume that the insurance risk can be diversified by the insurer within the population of the
insured. Obviously, the financial risk cannot be diversified by this risk management technique.
The assumption of a complete market implies that any payoff at a given time ¢ can be perfectly
hedged by a self-financing portfolio strategy on the financial market. Furthermore, the initial
value of this portfolio strategy is equal to the expected discounted payoff under the unique
martingale measure. Since the equity-linked life and insurance contract does not allow the
separation of the payoff into a pure financial and a pure insurance contract, we cannot apply
these two principles separately. Therefore the premium principle needed has to combine both
risk management strategies. As Brennan and Schwartz (1976), Bacinello and Ortu (1994)
as well as Nielsen and Sandmann (1995, 1996), we assume that the insurance risk and the
financial risks are independent.

A premium is called a fair premium if the expected discounted payments are equal to the

expected discounted payoffs. More precisely we define:

Definition 1 Consider an equity-linked life and pension insurance as defined in Section 1.
A non-negative periodic premium K*(t;),i = 0,...., N — 1 is called a fair premium, if K*(t;)

18 a solution to

K*(t:) - D(to, t:) - (1 _ / "’ wz(u)du> (3.1)

to

- /t Di(to,u) - Epu [G1(w)| Fo] - me(u) du

£ Dltart) - Epes [Q(t)) o] (- ra(u)da)

j=N to

+ TOO D(to,u) - Epu [Gp(u)|Fo) - 75 (u) du.

To derive the existence of a fair premium, two extreme cases have to be considered. Propo-
sition 3.1 covers the situation without any guaranteed payments by the insurer. The second

situation is given for the choice @ = 0. This latter case corresponds to a life and pension
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insurance without any portfolio strategy. For simplicity’s sake, suppose that the guarantees
by the insurer are constant, i.e. gr(t;) = gr, q(t;) = q and gp(t;) = gpVi. Furthermore,
suppose that the periodic premium is constant, i.e. K(¢;) = K V i. The fair premium of a

life and pension insurance under pension policy A with investment share o = 0 is given by:

T +00 &
£ = o [ Dtowmicta Y Do) (1- [ nawi)

to j=N to
+oo
ms: | D(to,u) [gp — (n*(u) — (N = 1))g* Wz(U)dU] (3.2)

- lNé D(to, £:) (1 _ /tlt wz(u)du)] _

The unique solution in the case of policy B with investment share o = 0 is equal to:
- T +oo t;
K = |gr-| D(to,wm(u)du+q- Y D(to,t;) (1 - / Wx(U)dU)

to j=N to

N—-1 t; -
1S Dt 1) (1 - / ™ (u)du) . (3.3)
i=0 to
The premium determined by equation (3.2) and (3.3) respectively can be used as a benchmark
for the situation with investment, i.e. a > 0.

Even though the investment share a has been defined as a constant € [0,1], we will in the

following proposition allow that o € R*.

Proposition 3.1 Consider an equity-linked life and pension insurance with no guaranteed
payments by the insurer, i.e. gr = gp = q = 0. Assume that L is equal to the expected number
of pension periods for a life aged x at ty if he or she survives the duration T of the contract,

i.e. L is given by equation (2.1).

a) Suppose that both repayment levels and the participation rate are equal to one, i.e.
m = n2 = n3 = 1. Under this assumption a mon-negative premium policy {K(ti)}ﬁgl

is a fair premium sequence for both pension systems if and only if the investment share

is equal to one, i.e. a =1.

b) Suppose that the repayment levels and the participation rate are positive and less than

one, then there exists for both pension systems an investment share a > 1 uniquely
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determined by the periodic premium K(t;), so that this premium is a fair premium of

the equity—linked life and pension insurance.

Proof: See the Appendiz.

Without any financial guarantees, both pension systems are only affected by the insurance
rigk, i.e. the death probability of the insured. In this situation, the fair premium principle
coincides with the equivalence principle. Therefore Proposition 3.1 is based on the ability of
the insurer to diversify the insurance risk within the population of the insured. The same
situation arises if we consider an investment share o equal to zero. Although the insurer
now guarantees a deterministic amount in the case of the death of the insured and otherwise
a periodic pension after the duration 7', these payments do not represent a guarantee with
respect to the return of a financial strategy. Therefore the fair premium principle again
coincides with the equivalence principle. As a consequence, the periodic premium can be

understood as pure insurance premium.

3.1 The Fair Premium and the Share Function

So far the premium policy has not been restricted to any specific functional form. In the
remaining part of the analysis we will, however, assume that the periodic premium is deter-

mined by
K(t;)) =K - F(t;) Vi=0,...,N—1, (3.4)

where the function F': {tg,t1,...,Tn-1} = R covers the case of a deterministic change in
the premium payment. With this assumption, the existence of the fair premium is simplified

to the existence of a premium K which satisfies Definition 1.

Theorem 3.2 Consider an equity—linked life and pension insurance with investment share
a €]0,1[, repayment levels n; € [0,1], and a periodic premium policy satisfying Assumption
3.4. Assume that for any t the value of the investment fund, S(t), is continuously distributed.

Furthermore, suppose that Vt; the guaranteed amounts under policy A or B divided by the
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premium value K are strictly decreasing and continuous in K with

g1t ogr(t)
Am T =0, lim e = oo
. gp(t:) _ . gp(ti) _
AW T =0, fm e = oo

. oq(t) gt
dm T =0, lim T =0

Then there exists a unique and positive fair premium K*.

Proof: See the Appendiz.

In particular, the assumptions are satisfied for constant guarantees. In addition, the result
applies indirectly to the situation with guarantees homogeneous of degree one in K. Suppose
that K* is the unique solution greater than zero with constant guarantees gr,gp, and q.
For any v > 0 the value - K* is the unique fair premium for the contract with guarantees
Y -91,7 - gp, and v - g. In the case of homogeneous guarantees, Theorem 3.2 implies the
existence and uniqueness of the fair shapes (the coefficients to K) of the guarantees. A
homogeneous specification of the guarantees was discussed in Section 1. In a more abstract

setting, the different guarantee functions can be formulated as

gr(t) = K-a-b-Fi(t) VO<t<T,
gp(t) = K-a-b-0p-Fp(t) Vi>T, (3.5)
qt) = K-a-b-0,-Fy(t) Vt>T,

where Fr(-),Fp(-) and Fy(-) are non-negative and bounded deterministic functions and 6p
and 6, are non-negative contract parameters. In a simple case, the functions Fy(-), Fp(-)
and F,(-) are equal to one. In this situation, §p is equal to the ratio between the guarantee,
gp(t), (Policy A) and the guaranteed life insurance amount, gr(t). 6, is equal to the ratio
between the guaranteed periodic pension, ¢(t), and the guaranteed life insurance amount,
g1(t). Setting e.g. gr(t) to 200.000, gp(t) to 100.000 and ¢(t) to 5.000 would imply 8p = 0.5
and 6, = 0.025. In general, non-negative and time dependent functions F;(-), Fp(-) and F,(-)
arise if we consider contract specifications with a time dependent change in the periodic

premium and/or the contractual conditions.
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The main advantage of the guarantee specification (3.5) is a simplification of the fair premium
problem. Inserting (3.5) into Definition 1, the equation can be solved with respect to a. This
implies that

SN F(t) - Dito,t) - (1— f1 o (w)du)
a(b) =: 70 ; (3.6)

where R(-) is determined by the pension policy. Furthermore, the function a(b) characterizes
the fair premium completely. Considering an equity—linked life and pension insurance with an
investment share a and supposing that b is given with a = a(b), then K is the fair premium

for the contract with guarantees equal to:

gr(t) = K-a-b-Fr(t) YO<t<T,
gp(t) = K-a-b-0p-Fp(t) Vt>T,
qt) = K-a-b-6,-Fy(t) vt>T.

Furthermore, a(b) - b is the shape of the guaranteed amount during the life insurance period,
a(b) - b- 8p during the pension period and a(b) - b - 8, of the pension payment. Vice versa,
for an investment share @ = a(b) and constant guarantees gr, gp and g (i.e setting Fr(t) =
Fp(t) = F,(t) = 1) with p = % and §, = g% the unique fair premium equals

oo 91 gr q

a®)-b  a)-b-0p ab)-b-0,
For this reason a(b) will be called the fair share of the life and pension insurance contract.

The remaining problem is therefore the computation of the function R(-). The precise form
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is depending on the pension policy. For pension policy A we have

Ra(b) (3.7)
T
= b- t D(to,u)Fr(u)my (u)du
oo n* (u) "
+n3-b- D(to,u) IHPFP — 0, Z Fy( ] e (u)du
T
+b- ZDtO, 6, Fy(t;) - (1—/tj7rz(u)du)
T LI "
+m - D(ty,u)Epu Z F(t;) St b- Fr(u) e (u)du
to i=0 ¢
+ -JioD(t E lNZ_lF(t-)S(T)—b-H CE(t) ' (1—/%& (u)du)
2 P 0, PT I 2 S q " Lql\lj o z -

Similarly, in case of the pension policy B the functional form of the function R(b) is equal to

Rp(b) = b- TD(to,u)FI(u)ﬂw(u)du (3.8)
tN+LN 1 1 +
+n3'/ > Dlto,t: [L+N _— 7o (u)du
=0
+oo
+b- > D(to,t 1- w)d
3 Dtot) oo £t (1= [T utora)
T n® (u) *
- D(to,u)Epu[ A g((f; —b- Fy(u) :|7rz(u)du
to i=0 !
N+L-1 N-1 +
Z D(to,t;)Ept; l F(t L (t5) }
i=0

- (1 - /tlt ﬂw(u)du) .

At first glance the function R(-) is complicated. But as a function of the parameter b
R:R" > R

is increasing and convex (see proof of Theorem 3.3). Assuming continuous distribution func-
tions for the fund and the interest market, R(-) is strictly increasing and convex. This
implies that the fair share defined by equation (3.6) is decreasing in b. Furthermore, the

limit behaviour of the function «(b) is intuitive because:
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e In the case of §; = 1,4 = 1,2,3, we have a(0) = 1, which implies that the shape of
all guaranteed payments is equal to «(0) -0 = 0. In this case any premium is a fair

premium of the contract.

e In the case of n; < 1,i = 1,2,3, we have a(0) > 1, which again implies that the
insurance policy offers no guaranteed payment. In contrast to the first situation, the
payment of the life insurance is larger than the portfolio value, and the pension will
be smaller than the fraction of the portfolio (if 7y - @(0) > 1 and 72 - @(0) < 1) or vice

versa.

e Since limy o, a(b) = 0, this coincides with the situation of no investment. In this
case the fair premium is given by equation (3.2), which implies that the shape of the

guarantees is determined by

fmn a(t) - b= Eil! F(t) - Ditosts) - (1 - fy ma(u)du)

b—oo 1imb—>oo ﬂbﬂ

Theorem 3.3 Consider a continuously distributed mutual fund and suppose that the guar-
antees of an equity—linked life and pension insurance are given by (3.5), then the fair periodic

premium K* as a function of the investment share « is strictly increasing and conver.

Proof: See the Appendix.
As an immediate consequence of the theorem, the fair premium for an equity-linked life
and pension insurance is larger than the one for an identical insurance without investment

component, i.e. the premium determined by equation (3.2) and (3.3) are lower bounds.

4 Pricing the Embedded Options

All the options in the expressions R4(b) and Rp(b) are closely related to Asian options.
To evaluate these options, we will determine their upper and lower bounds applying the
technique developed in Nielsen and Sandmann (2002). With this in mind we need to be

specific in our choice of the stochastic processes for the underlying stock and term structure
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of interest rates. The volatilities are all assumed to be deterministic. Written under the

T-forward risk adjusted measure, the stochastic differentials are

d(Dng,t)T)) - DiET)T) ([1(8) ot N)]1dW] (1) + oa2(t) W5 (1),
1(365) = B Lot = ot awy )

where o(t,t) = 0. The stochastic processes W7 (t) and W7 (t) are defined by
(AW, dW3) = ((dWy'(t) — o(t, 7))dt, dW; (1)),

where (W(t)) and W5 (t)) are independent Wiener processes under the equivalent martingale
measure P*. The measure change to the forward risk adjusted measure is determined by the
Radon-Nikodym derivative

¢ ¢
1
=ex o(u, )dW; (u) — = [ o®(u,7)du p .
t ep{/<u) w-3 [ <u)u}

to tO

dP™
dP*

The arbitrage—free price at time tg of an Asian type option is defined through

MO8 ’
ZF(t’) S(t:) - Kj]

=0

C(to,tm,tj, K;) = D(to,t;) - Ept; , (4.1)

where t; >ty with M := min{N —1,j — 1}. Under the above assumptions, the solution of

the stochastic process (ggjg ) is equal to

= H(to,ti,tj) . exp{Z(tO,ti,tj)},

where H (to,t;,t;) is a deterministic function defined by

H(to,ti,tj)

=Bt e {—% [ttt = owt)2du= 5 [ (0100) = 0(u, 1)) + o2(u)) du}

to t;

and Z(to,t;,t;) is a normally distributed random variable with expectation equal to zero

under P7. Z(ty,ti,t;) is determined by

Z(to,ti,t]’)
t; t; t;
= / (o (u, t) — o (u, ;) dWy (u) + / (o1 (1) — o(u, t;))dWY (u) + / oo (u)dWy (u).

to t; t;
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As the sum of the random variables, Z(to,;,t;) is normally distributed, for any j = 1,2, ...

a standardized normal distributed variable Zys,; is defined by

— i Z(to, ti, 1), (4.2)

1
Zy o=
M,j QM,] prd

where Qs ; is determined so that Varp:; [Za,;] =1 and M := min{N —1,j — 1}.

The lower bound of the Asian type option (4.1) is then established through

S (%)
D(to,t;) - Ept; | Ept; ZF(tz’) S(t) — By 7M.
=0 v
[ MM
S(t;
> D(to,t;) - Ept; |Epy; ZF(tl)SEt]; - Kj| Zmj
L i=0 ¢
=: Cl(to,tM,tj,Kj).
The inner expectation can be evaluated as
M
S(t;)
EPiJ' ZF(tz)S(tJ) —Kj ZM,j =z
i=0 ¢
d 1
= Z F(t;)H (to, t;, tj) exp{mM,j (t;) -z + 51}12\4,1- (titi)} — K;,
i=0
where
mum,;(ti) = Ept; [Zm,j- Z(to, i, t5)] (4.3)
UJQ\/[,j(tiatk) = COUPtj [Z(to,t,',tj), Z(to,tk,tj)l ZM,j] . (44)

As each of the above terms

1
_U]2\/I,j (tia tZ)}

f,(z) = F(ti)H(to, ti, tj) exp{mM,j(t,-) 2+ 2
= Pl By explmar (6) -2 = i (6}

is a convex function, the equation Zf\io fi(2) — K; = 0 has infinitely many, zero, one or two

solutions.
Definition 2

o If Efio fi(2) — K; >0 Vz, define z* = 2** := 0,

o if Zf\io fi(z2)—K; <0 Vz, which could only be the case if mar j(t;) =0 Vi, we define

2" = —00 and 2** := 0,
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o if Ziﬂio fi(z) — K; = 0 has one solution and mar,;(t;) £ 0 Vi, we define z* := —o0

and denote the solution by z**

o if Zz o fi(2) = K;j = 0 has one solution and my; ;(t;) # 0 Vi, we denote the solution

by z* and define 2** := oo,
. zfzz o fi(z)—K; = 0 has two solutions, we denote these by z* and z** and let 2* < z*

Returning to the expression of the lower bound, the implication of Definition 2 is that

Cl(to,tM,tj,Kj) = to, lZEPt 1{z<z*}] KjEPtj [1{252*}] (45)

=

©
Il
S

+ EPzJ- [(fi(z)l{zzzu}] —KjEPtj [1{222**}]]

INE M=

©
Il
o

D(to,t;) - ®(2* — mar,j(t;)) — D(to,t;) - K; - &(2%)

k2

+ D Dlto,ti) - ®(=2"" + ma;(t:)) — Kj - D(to, t;) - @(—Z**)l,

where ®(-) denotes the cumulative standard normal distribution. The proof of a statement
equivalent to the one in Equation 4.5 can be found in Nielsen and Sandmann (2002).

Applying this closed form solution for the options, the lower bound for the function R4(b)

equals
T
RLY(®) := b- [ D(to,u)Fr(u)my(u)du
to
oo n* (u) +
+n3-b- D(to,u) [8pFp(u) — b, Z Fy(tj)| me(u)du
T i~

+b- ZDto, 6, Fy(t;) - (1—/t:j7rm(u)du>

T
+n - D(to,u) -Cl(to,tn*(u),u, b- Fr(u)) - g (u)du
to
LB LN i
f to, to,tN 1,tN,b L - (9 F( )) (1—/ Wz(u)du)
to

j=N
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Similarly in case of the pension policy B, the functional form of the lower bound is equal to

T

RL() = b- t D(to,u)Fr(u)my (u)du
0
tner U0 L+N—1-n*@)]*
—H73/ ZDto, { i T n(u)] 7o (u)du
T 1=0
(e} t;
+b- ZDto, -0, - Fy(t;) - (1—/ Ww(u)du)
Jj= to
T
+n - D(thu) : Cl(thtn*(u)auab' FI(U/)) : Wz(u)du
to
N+L—-1

Z D(to,t;) - Cl(to, tn—1,tn,b- L-8, - Fy(t;)) - (1—/: wz(u)du).

Denote by &(to,tar,t;) the error made applying the conditioning method, then an upper

bound consists of
Cu(to,tM,tj,Kj) = Cl(to,tM,tj,Kj) + E(to,tM,tj).

Conditioning by Zar; is equivalent to the conditioning by the geometric average, i.e. for

M :=min{N - 1,5 — 1}

Zu, = 'MOOLI) = B InGOL)] )

(Vp; [In(G(M, 5))])

1

M M+1
G(M,j) := ( ZE’;@) .
i=0 v

By using that the arithmetic average is no smaller than the geometric average, we obtain,

applying the notation

K;
(M + 1)([Ty F(t:)H (to, ti, ;) 750

(Var pt; [In(G (M, ))])? Qg

L, (5#5) ~ Eps @O ary1 |

y

the error term by conditioning on the subset {Zy;; < d}. Denoting by ¢(-) the standard
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normal density function for Zjs ; a bound can therefore be expressed as

M
0 < Epy |Epy |D_ F(t)H(to, tists) - exp{Z(to, tis t;)} — K;]T| Za
=0
M +
- [Eptj > F(t:)H(to, tist;) - exp{ Z(to, ti t;)} — K;| Za 5
d M
= / (Epfj [> " F(ti)H(to, ti, ;) - exp{Z(to, ts» t;)} — K;1*| Zur 5
- =0
M +
—Epe; | Y F(t:)H(to, ti, t;) - exp{Z(to, ti, t;)} — K| Zm,; )¢(Z)dz
=0
1 [ M :
< 5/ Varp | Y F(ti)H(to, i, t;) - exp{Z(to, ti,t;)}| Zar;| | (2)dz
=0 A
M 2
= (Varpt ZF to,t,,t) exp{Z(to,ti,tj)} ZMyj 1{ZM,j<d}>
i=

N[

Zm,;

1{zM,j<d}]>

INA
N | =
/\

M

ZF H(to, ti t;) - exp{Z(to, ti, t;)}
-

2

(EPtJ‘ [1{ZM,j<d}]) ;

where Holder’s inequality has been applied in the last inequality.

The bound on the pricing error of the conditional approach is therefore given by
1 1
e(to,tm,tj) = 3 - ®(d)>

<ZZD to, t; to,tk) em, (ti)-ma (te) (e'U%/I,j(ti,tk) _ 1) . ‘I’(dMJ(Z',k))) ,

i=0 k=0

Nf=

where dM’j(i,k) =d— (mM,j(t,-) + mM,j(tk)).
To compute the approximation to the solution of the fair premium problem the coefficients
mar,;(t:), I/MJ(tz,tk) and QM] fori,k=0,...,j—1,j=1,... ,N+ L and M := min{N —

1,7 — 1} have to be calculated. For 0 < i < k < M the computation of these coefficients is
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closely related to the following expectation

ti
EPiJ' [Z(tO;tiatj)a Z(thtk;tj)] = /t (U(uati) - U(uatj)) . (U(uatk) - a(u,tj))du

(01(u) — o (u,t5)) - (o(u, tr) — o(u, t;))du

+
T

+/ttk(01(u) — o(u, ;) du + /tj o2 (u)du

J th

- / (o) — o1(w)) (01 () — 0 (u, 1)) du
_ /t o) — o0 () (0 () — o (u, )

This expression can be simplified to

tj
Ep; [Z(to,ti,tj)Z(to,tk,tj] = Q4 —Qik t+ Ok,j — Gjj +/ ag(u)du V0<i<j<M,
ti

where the a; ;’s are defined by

aik = / i(a(u,ti) —o1(w)(o1(u) — o(u, tx))du.

to

As an intermediate value define 17 ;(t;) by

M
() = Y Epy [Z(to tisty) - Z(to, ti,t5)]
k=0
M t
= (M +1)(ai; —aj;) + Z Qk,j = Gmin{k,i},max{k,i} +/ o3 (u)du | .
k=0 max{t;,tr }

With this notation the computation of the coefficients mar; (i), vy ; (i, tx) and Q3 Vi, k =

0,...,Mand Vj=1,...,N + L is reduced to

M
Q%\/I,j = ZmM,j(ti)a
=0
Pag (b
ma;(ti) = ﬁ(‘ﬂa
5]
tj
Vig;(tiste) = @ij = @5 + Qkj — Gmin(k,i},max{h,i} +/ o2 (u)du
max{t;,tr}

_mMij (tl) ’ va](tk)'
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5 Numerical Results

The numerical results are derived for a Vasicek (1977) model of the term structure of interest
rates, i.e.

o(u,t) = % (1—exp{-alt—w)}) VO<u<t,

with speed factor a = 0,25 and volatility o = 15%. The initial term structure is assumed to
be flat with an interest rate equal to 4%. The volatilities of the mutual fund are set equal
to o1 = 0 and o2 = 25%, i.e. the instantaneous correlation between the interest rate market
and the fund is set to zero.

For the death distribution, we assume a mortality table adjusted with the Makeham formula

l, = b-s®-g% with
s = 0.99949255, g :=0.99959845,
¢ := 1.10291509, b:=1000401.71,

which leads to

lw-‘,—r,- - lav-i—‘rH—AT

e (Ti) = ]

= the probability that a life-aged-x will survive 7; years and die within

the following A7 years.

All payments connected with an insurance event in the time period J¢;,t;44],5 = 0,1,2, ...
are assumed to take place at the end of the period, i.e. at time ¢;;,. It means e.g. that a

term like

b- TD(to,u)FI(u)m(u)du

to
in R(-) is replaced by
N
b- Z D(t(), tj)FI(tj)ﬂ'z(Tj—l)
Jj=1

with A7 = L year.

In the numerical analysis we fix © = 35 years and T' = 30 years. The functions Fy(-) and
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Figure 5.1: Upper and lower guaranteed insurance amount gy for an equity-linked life and
pension insurance with monthly premium, 6; = 1,8, = 0.05,2 = 35,7 = 30, and pension

policy A.

F,(-) are chosen to be constant and equal to one. The parameters 8p and 6, we fix as p =1

and 6, = 0.05. Finally, we set gr(t) = 20,000, ¢(t) = 1,000 and gp(t) = 20, 000.

The results of the numerical analysis are illustrated in several tables and figures. The assumed
homogeneity of gr(-) leads to a linear relationship between the guaranteed amount, gy, and
the periodic premium. This is shown in Figure 5.1 and 5.2, for a—values equal to 0.25,0.45
and 0.65, for pension policy A and B, respectively. The upper as well as the lower bound
are shown for these a—values. Explicitly, the fair monthly premium intervals can be seen for
the contract with a guarantee of the size 20,000. For a = 0.25 the lower bound on the fair
monthly premium is e.g. for pension policy A found to be K = 230.47. For the same value
of gy it is observed that the monthly premium is smaller for pension policy B than for the
policy A.

The lower and upper bounds of the fair premium of an equity-linked life and pension insurance
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Figure 5.2: Upper and lower guaranteed insurance amount gy for an equity-linked life and
pension insurance with monthly premium, 8; = 1,8, = 0.05,2 = 35,7 = 30, and pension

policy B.

are determined by applying the arbitrage free bounds for the embedded Asian type options.
For z € {A, B} and p € {l,u} the lower and upper bound respectively of the fair premium
under pension policy A and B are denoted by K:*. Assume that the periodic premium, the
guaranteed payments in the case of death, and the guaranteed pension all are constant over
time, i.e.

K(t;) = K, g1 = 9i(t;), gp = gr(t;) and ¢ = q(t;) Vi.

Applying Definition 1 the upper and lower bound under pension policy A are the unique

solution to:
K =hy + b3 + b3 + W (K) + Bg 4 (K) (5.1)

where the factors h; are associated with the different components of the insurance contract.

In particular, h; denotes the monthly premium for the term insurance, i.e. the guaranteed
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payment in case of death before T :

g1 r
h1 = = D(to, u)my(u)du ,
ho

ho = Jg-D(tO,ti)- (1—/: ww(u)du> .

In the case of pension policy A the remaining factors are defined by:

+o0
hy = Z_Z - D(to,u)[gp — q- (n*(u) + 1 = N)]" my(u)du
. < INt14i
= B4 (g—P—i) / D(to, w)ms(u)du |
ho io \ 4 EN+i
-D(to,T) <X ti -D(to,T)- L T
hg = MZ(I—/ Wm(u)du)=% 1—/ mgp(u)du |
h() _]:N tO h(] tO
ca- K T
hi(K) = an <‘/t Cp (to,tM,u, agIK)ﬂ'z( )d ) 5
0
a- K 1= S(T) i t
P,A K — 27 T _ _
hOMNK) e JZND to,T)Ep L2 5 K] (1 /to ()du)

m-a-K ( L-q) /T
= 2R o (totn1, T, —L) . (1= | mp(u)du] .
- oot T, L R0

With this notation h4' is equal to the monthly fair premium to be payed until time ¢y _; for
the guaranteed pension received after the duration 7. Under policy A the insurer guarantees,
in case of death within the pension period, that the aggregated pension payments are no
less than the guaranteed amount gp. The monthly premium for this insurance guarantee is
equal to h4. These premium parts are independent of the embedded options. The payment
in case of death before the pension period is equal to the guaranteed amount gp plus an
option on the portfolio value. The monthly premium for this option equals hf(K). Finally,
hg’A(K ) equals the premium on a monthly basis for the bonus in addition to the guaranteed
periodic pension, gq. Under policy A the premium parts hi,h4 and hg‘ are independent of
the investment share, which obviously is not the case for the parts containing the options.
Therefore these premiums are depending on the upper and lower approximation of the option
values. Adding hf(K) and hg’A(K ) to one premium part, Table 5.1 shows some results for
the decomposition of the fair premium.

The decomposition in case of pension policy B is similar to the one under policy A, i.e. the
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Table 5.1: Decomposition of the monthly fair premium for an equity-linked life and pension

insurance contract with 7' = 30 years, constant guarantees gr = gp = 20,000, ¢ = 1,000 for

pension policy A and B for a life aged 35.

Pension policy A with 1 = 0.5,72 = 0.5,173 = 0.5

fair premium term aggregated single portfolio guarantee

a low up | insurance pension pension low up
Kyl Ky ha h3 he | R RS R +REA()
0.8 273.79 279.98 9.72 0.25 201.49 62.33 68.52
0.7 260.14 265.84 9.72 0.25 201.49 48.68 54.38
0.6 248.52 253.88 9.72 0.25 201.49 37.06 42.42
0.5 238.63 243.74 9.72 0.25 201.49 27.17 32.28
0.4 230.24 235.14 9.72 0.25 201.49 18.78 23.68
0.3 223.21 227.92 9.72 0.25 201.49 11.75 16.46
0.2 217.37 221.86 9.72 0.25 201.49 5.91 10.40
0 211.46 211.46 9.72 0.25 201.49 0 0

Pension policy B with 1 = 0.5,72 = 0.5,73 = 0.5

fair premium term aggregated pension single portfolio guarantee
a low up insurance low up pension low up
Kp'  Kp" h1 hE () hg | RO +hgB() RE() +REE()
0.8 216.97 221.76 9.72 16.28 16.64 144.81 46.16 50.59
0.7 204.01 208.31 9.72 13.39 13.67 144.81 36.09 40.11
0.6 192.98 196.84 9.72 10.86 11.07 144.81 27.59 31.23
0.5 183.48 187.02 9.72 8.60 8.77 144.81 20.35 23.72
0.4 175.31 178.60 9.72 6.58 6.70 144.81 14.20 17.37
0.3 168.25 171.25 9.72 4.73 4.82 144.81 8.99 11.90
0.2 162.17 164.88 9.72 3.04 3.09 144.81 4.60 7.26
0 154.53 154.53 9.72 0 0 144.81 0 0

lower and upper bounds K;’l and Kz" of the fair premium are given by the solution of

K =hy + h(K) + b + p4(K) + 2P (K) ,

where the new coefficients h¥, hB (K) and h2?(K) are defined as follows:

L IN+j
> [ mwad) |
j=17tN

h3 (K)

p,B
hs

ns o K

q

ho

n oK

N—1
ho

+oo

Z D(t07tj)

j=N
N+L

he-L =

>

(1_

> Dto,t:)
i=0

/ )
to

(to,tNl,tj,

Wgc(u)du) < B,

L-q
a-K

)L

Ty (u)du> ,

(5.2)



5 NUMERICAL RESULTS 29

with L := max{i € IN|i < L} and L equal to the expected number of pension periods defined
by equation (2.1). The same interpretation as under policy A applies. Since both policies
coincide with respect to the premium frequency and the payment in case of death before the
pension period, hg, h1 and h4(K) are not different to those under policy A. The payment of
the insurer under pension system B in case of death during the pension period now depends
on the remaining value of the investment portfolio. Therefore the premium part hZ does
depend on the investment share, a, and on the monthly premium, K. Another important
difference between the pension policies deals with the size of the guaranteed pension and the
bonus connected to the pension. The guaranteed pension payoff under policy A is equal to
the guaranteed pension ¢ multiplied by the roll-over return. In difference, under policy B
the insured receives only the guaranteed pension ¢, which implies that k4 is larger than h¥.
Furthermore, the additional pension payment due to the portfolio value is different under the
two policies. Considering policy A, this payment is determined at time 7' and then increased
through time by the roll-over return. In particular, the insured receives the bonus even if
he or she survives the expected number of pension periods L. Under policy B, the periodic
pension will not exceed the guaranteed payment ¢ after I periods. The size of the pension
payment at t;,j < N + L is affected by the portfolio value at exactly that point in time.
With respect to the differences in the pension period, policy A is more expensive than policy
B.

Although the decomposition of the fair premium, given by equation (5.1) and equation (5.2),
separates the different premium parts, this does not allow to distinguish between the premium
for the financial and the pure insurance risk. Moreover, the derived decomposition seems to
suggest that the different parts of the contract are related in a linear way. Yet, this view
does not consider the non-linear relationship between the portfolio insurance and the life and
pension insurance.

In case of policy B with equal repayment and participation rates, i.e. 7; = 1, Vi the insured
receives no less than 7 multiplied by the value of the investment portfolio. From the viewpoint

of the insured the decomposition of the fair premium into an investment equivalent 1 -« - K
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Table 5.2: Monthly fair premium for an equity-linked life and pension insurance contract

with T' = 30 years, constant guarantees gr = gp = 20,000,q = 1,000 and pension policy B

for a life aged 35.

lower premium

m=1n=1n3=1

upper premium

investment risk premium

K a-K 1-a) K
464.10 371.28 92.82
346.04 242.23 103.81
281.87 169.12 112.75
241.23 120.61 120.61
213.15 85.26 127.89
192.66 57.80 134.86
177.29 35.46 141.83
154.53 0 154.53

investment risk premium

a K a K 1-a) K
0.8 | 435.10 348.08 87.02
0.7 | 328.25 229.77 98.47
0.6 | 269.16 161.50 107.67
0.5 | 231.33 115.67 115.67
0.4 | 205.01 82.00 123.01
0.3 | 185.79 55.74 130.05
0.2 | 171.50 34.30 137.20
0 | 154.53 0 154.53

lower premium

investment risk premium

o K 0.5a-K (1-0.5a) K
0.8 | 216.97 86.79 130.18
0.7 204.01 71.40 132.61
0.6 | 192.98 57.89 135.08
0.5 | 183.48 45.87 137.61
0.4 175.31 35.06 140.25
0.3 168.25 25.24 143.01
0.2 162.17 16.22 145.95
0 | 154.53 0 154.53

m = 0.5,172 = 0.5, n3 = 0.5

upper premium

investment risk premium

K 05a-K (1-0.5a) K
221.76 88.71 133.06
208.31 72.91 135.40
196.84 59.05 137.79
187.02 46.75 140.26
178.60 35.72 142.88
171.25 25.69 145.56
164.88 16.49 148.39
154.53 0 154.53

and an insurance equivalent (1 — 7 - ) - K is therefore natural. Furthermore, the insurer

benefits from the portfolio value. If the insured dies before the pension period the payoff

from the insurer in excess to n multiplied by the value of the portfolio is equal to (1 —17) - gr

added to n multiplied by the positive difference between the guaranteed amount g; and the

portfolio value, i.e.

Gi(t)—n-Pt,a,K)=(1—n)-gr+n-[gr — P(t,a, K)|T Vt < T .

The payment in excess of the portfolio value is equal to a short position in a fixed amount

and an Asian type put option. A high investment share reduces the excess payoff in case of

death before the pension period of the insurer. Obviously the payoff reduction for the insurer
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Figure 5.3: Monthly insurance premium (1 — 7 - «) - K for an equity-linked life and pension
insurance with monthly premium, gr = gp = 20,000,q = 1,000,z = 35,7 = 30, and pension

policy B.

is increasing in . For n = 1 the position of the insurer is equal to a short position in the
put option. The same argument applies during the pension period, i.e. the excess payment

of the insurer is equal to a short position in a fixed amount and a put option, i.e.

1
—P(ti,o, K)|" VYi=N,--- ,N+1L.

Q(t;) — 7

-P(ti,a, K) = (1-=mn)-q+n-[g91 —

In both cases the monetary obligation of the insurer is decreasing in the value of the in-
vestment portfolio. In addition, the payment, in case of death during the time period
t € [T,tn+L], is equal to the remaining value of the portfolio. Therefore the interpreta-
tion of (1 —n-a) - K as the insurance premium equivalent under pension policy B is valid.
Table 5.2 and Figure 5.3 show the relationship between the insurance premium equivalent
and the investment share.

Basically, the same arguments can be applied under pension policy A. Since the payments
for both policies coincide for ¢ € [0, T, it is sufficient to consider the pension period. If the

insured survives the average number of pension periods the aggregated pension is not less
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Table 5.3: Monthly fair premium for an equity-linked life and pension insurance contract
with 7' = 30 years, constant guarantees gr = gp = 20,000,¢ = 1,000 and pension policy A

for a life aged 35.

lower premium upper premium
m=1Ln=1n=1

investment risk premium investment risk premium

a K a- K 1-a) K K a-K 1-a) K
0.8 | 447.17 357.73 89.43 476.36 381.09 95.27
0.7 | 363.68 254.57 109.10 383.36 268.35 115.01
0.6 | 313.37 188.02 125.35 328.59 197.16 131.44
0.5 | 279.52 139.76 139.76 292.35 146.17 146.17
0.4 | 255.34 102.14 153.20 266.73 106.69 160.04
0.3 | 237.58 71.27 166.30 247.96 74.39 173.57
0.2 | 224.40 44.88 179.52 234.06 46.81 187.25
0 | 211.71 0 211.71 211.71 0 211.71

lower premium upper premium
m =0.5,72 =0.5,73 = 0.5

investment risk premium investment risk premium

a K 05a-K (1-0.5a) K K 05a¢-K (1-0.5a) K
0.8 | 273.79 109.52 164.27 279.98 111.99 167.99
0.7 | 260.14 91.05 169.09 265.84 93.04 172.79
0.6 | 248.52 74.56 173.97 253.88 76.17 177.72
0.5 | 238.63 59.66 178.97 243.74 60.94 182.81
0.4 | 230.24 46.05 184.19 235.14 47.03 188.11
0.3 | 223.21 33.48 189.73 227.92 34.19 193.73
0.2 | 217.37 21.74 195.63 221.86 22.19 199.67
0 | 211.46 0 211.46 211.46 0 211.46

than the portfolio value at time T. This implies that the payment in excess of the portfolio

fraction is equal to a short position in a fixed amount and a put option, i.e.

Q(t’l) _ﬂT,ti . % 'P(tiaaaK) Z/BT,ti . ((1 _77) q+n- [gI— %P(tiaaaK)]—i_) Vi> N .

In contradiction to to pension policy B, the payment of the insurer can exceed the guaranteed
pension g even at ¢t > ty4r. In this situation the portfolio value is less than the aggregated
pension, which again suggests to define the investment equivalent of the monthly premium
as n-a- K. A problem with this interpretation arises if instead the insured survives less than

the average number of pension period L. Under pension policy A the aggregated pension
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Figure 5.4: Monthly insurance premium (1 — 7 - «) - K for an equity-linked life and pension
insurance with monthly premium, gr = gp = 20,000,q = 1,000,z = 35,7 = 30, and pension

policy A.

can now be less than the portfolio value at the beginning of the pension period. This is the
only situation under pension policy A where the insured may receive less than the value of
the portfolio. The monthly premium hy for the aggregated pension insurance in Table 5.1
under pension policy A is independent of the total fair premium for the contract and due to
the low guarantee gp = 20,000 very low. Under pension policy B the monthly premiums
for this insurance parts are substantially higher. In other words, the value of the insurance
with respect to the aggregated pension under policy B exceeds the one under policy A. This
implies that a long position in 7 times the portfolio is on average sufficient to finance the
payment of the insurer in the case the insured survives less than the average number of
pension periods. A high portfolio value has a positive effect on the payment obligation of
the insurer. Although the distinction between the investment and the insurance fraction
of the fair premium is not as clear as under pension policy B, the derived relationship can

be used as an approximation to this effect. At least from the viewpoint of the insurer the
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Figure 5.5: Expected monthly pension for an equity-linked life and pension insurance with

monthly premium, gr = gp = 20,000,¢ = 1,000,z = 35,T = 30, and pension policy A.

monthly premium fraction - @ - K as an investment policy has the same effect under both
policies. With this interpretation Table 5.3 and Figure 5.4 show the insurance equivalent
under pension policy A as a function of the repayment and participation level 7.

Finally we present in Figure 5.5 the expected monthly pension as a function of the investment
share, a, for pension policy A. In case of pension policy A the present value at time T' of the
expected monthly pension is determined by the guaranteed pension plus the forward value

of the bonus, i.e.

N-1 +
-— . (5.3)

Since the periodic premium is increasing and convex as a function of the investment share «

the expected monthly pension shares the same property.
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Appendix

Proposition 2.1

Proof: The first expectation under the forward measure P? is Vi with ¢; < ¢ given by:

S(t) _ 1 [ St ]
EPt [S(tz) ]FtO:| — D(to,t) EP* _6t07t S(t_z) ]Fto
1 [ 1 ~
= mEP* _5to,1t,- : WEP* [ﬁt,-,lt -S(t)| Fy, ]|y,
1 [ -1 S(t:) D(to, t;)
= . N * " — — > . >
D(tg,t)EP _/Bto,t,- S Iy, D(to. ) Vit > t; > to

The proof of the second equation follows the same line of argumentation. For eacht; > T > t;

the expectation can be rewritten as follows:

S(T)
S(t:)

_ 1 1 S(T)
Fu| = By [k o 53
_ 1 -1 S(T)
- D(to,t]-)EP* [ﬁt"’T " S(t) ]Ft"]
5@ | g ] _ D(to,T) D(to,t:)
S(t:)|” ] ~ D(to,t;) D(to,T)

EPtj |:ﬂT7tJ' :

Fo

D(t(); T)

= Epr
D(toat]) P |:

The third equality is justified by the following calculation:

T [n(u)
/ (Z K(ti)D(tmti)) 7p (u)du
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Applying this result we can now derive the last equation.

/ (ZK D(to,t; >7r$(u)du
to
T [ (u) +oo
( > K (t;)D(to,t )) u)du + (ZK D(to, t; ) /T g (w)du

Il
=~

Proposition 3.1

Proof: In the case of pension system A with 71,72 €]0,1] the fair premium is a solution of

the following problem:

Z K(t;)D(to, t; (1 - /t: wz(u)du>

T n*(u)
= t D(to,u)Eps | - - z % Fy, ] 7z (u)du
2@ = ., 5T g
+ Z D t(), EPt l I -ﬂT,tj ; K(tz)m ]Fto (1 — /to Wz(u)du)

T ()

= Mm-a- ‘/tro (g K(tz)D(to,tl)> Wz(u)du

400 t;

(ZK D(to,t; ) J;V (1—/t0 Wz(u)du)
T [n"(v)

= n .a./to (; K(ti)D(tO,ti)> 7z (u)du

T
+n2 -« (Z K (t;)D(to, t; ) (1—/t ww(u)du> ,

where we have applied Proposition 2.1 and the definition of L in (2.1). For a given premium
sequence K (t;), the above equation implies the existence of a unique value of « such that
this premium sequence is a solution of the fair premium problem. Moreover, for n; =n2 =

Proposition 2.1 yields that a = % is a necessary and sufficient condition for the premium to
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be fair. For n = 1, this implies that, if K (¢;) is a fair premium, then a must be equal to one
and vice versa. In addition if 9;,72 €]0, 1], then « is larger than one.

The fair premium under pension policy B is defined as a solution of the following problem:

JgK(t YD (to, £:) (1 _ /t t wm(u)du>

T () S(u)
= D(tg,u)Epu | - z K(t) = |Fyi, | 72 (u)du

to i=0 S(tz)
N+L—-1 t t;

+ > Dlto.t; Z K(t t’ F,, (1—/ Ww(u)du>
j=N =0 i) to

oo = S(u) L+N-1-n*w)]"

+ D(tg,u)Epu -a- K(t;)=——=|F [ ] 7z (u)du

. (to,u)Ep [773 ; ( )S(ti) to T ()

(u)
- / (Z K(t:)D(to, t )) o () du

+% <ZK Dto, t; )-L%_l (1—/t:j m(u)du)

j=N

a 13 N-1 L+N T ot
+T<ZK to,> /t (L+ N — j)my(u)du

n”(u)

- 771'0"/:<Z

V)

K(t,’)D(to, tz)) Ty (u)du

=0
TS <2 K(t) Do, ) 5 (1—/” M(U)dU)
j=N fo
Lo <Z K(t;)D(to, t; ) .Lgl [/: wz(u)du—/t:N M(u)du] ,

where 11,172,713 €]0,1]. As before, for a given premium sequence K (¢;) the above equation
implies the existence and uniqueness of a so that this premium sequence solves the fair
premium problem. In the special case 7, = 12 = 13 = 1 the investment share must be equal

to one. O
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Theorem 3.2

Proof: Define for both policies

N-1

JE) = Y K-F()- Dl 1) (1- [ mewy (5.4)
> otd- (1= ] meo)
T
- D(to,u) - Epu [Gr(u)|Fo] - 7z (u) du

- ;i D(to,t) - Ept; [Q(t;)|Fo] - (1 - /tj Ty (u)du)

to

_ /T " Dito, u) - Epu [Gp(w)[Fo] - ma () dus.

A fair premium is a solution K* to f(K*) = 0. For any a €]0, 1], Proposition 3.1 implies

that for n; € [0,1]

. f(K)
A, g >0
Furthermore, for K — 0, we have
. f(K)
lim —= = —
KH—>n0 K o

Since the ratio of the guarantees and the premium are strictly decreasing functions of the

premium, the expected values

B [E0 0] 5 [958, i [0

are strictly decreasing functions of the premium K. This implies that % is strictly increas-

ing and continuous in K, and by the mean value theorem, there exists a unique premium K*

with L& — . O
Theorem 3.3

Proof: Denote by w(y) and v(y) the density functions for

[u

Vo) = X R g

~—

1=
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respectively. Differentiating with respect to b yields in the case of policy A

T
RLy() = t D(to,u)Fr(u)my(u)du

oo n* (u) *

+ns- | D(to,u) |0pFp(u) =0, Y Fy(t;)| mo(u)du
T =N

+ZDt0, -0, - Fy(t;) - (1—/tj7rw(u)du>:|
T [e%s)

—m [ Dlto,w)Fi(u) / w(y)dyry (w)du
to bFr(u)

ZDto, )0, - Fy(t )/HF(” (y)dy-(l—/t:jm(u)du>.

Differentiating once again leads to

T

RY(b) = m- t D(to,u)Fr(u)?w(bFr(u))my (u)du

00 tj
+772-J;v (to, T)0 - Fy(t )v(b-eq'Fq(tj))'(l_/to Wm(u)du) ’

Similarly for pension policy B we obtain

T

Rg(b) = D(to,u)Fy(u)my (u)du

to

T oo
- [ Dlto,u)Fr(w) / w(y)dyms (u)du
to bFy (u)
N+L—-1

Z D(to,t;)8, - Fy(t )/be F(tj)v(y)dy- (1—/: Ww(u)du)

T

RE®) = m- | Dito,w)Fi(w)w(bFy (w))ms (u)du
Niot

tj
S Dltarty)h -ty ?u(v-6, Fy(t) - (1= [ mw)au
j=N to
Since 7; € [0,1] the first and second derivative under both pension policies are positive and

the function R(-) is convex.

To analyse the fair premium as a function of a we should analyse (b) 3

1 1 “R(b)

o) SN VRt Dito,t) - (1= J) me(w)du) P
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We want to show, that this function is decreasing and convex. For this purpose we can and

will disregard from the coefficient SRRFITAN? (to’tli). (T mwdn)’ Denoting by H(b) the

fraction of R(b) to b, the derivatives

b-R'(b) — R(b)
b2 ’

R"(b) - b2 — 2R'(b) - b+ 2R (D)
b3

H'(D) =

HII (b) —

are, by inserting the developed expressions for R'(-) and R"(-), immediately seen to satisfy
H'(b) < 0 and H"(b) > 0. That is, the fair premium as a function of « is strictly increasing

and convex. O

References

BACINELLO, A. R. and ORTU, F. [1993]: “Pricing Equity—Linked Life Insurance with

Endogenous Minimum Garantees,” Insurance: Mathematics & Economics 12, 245-257.

BACINELLO, A. R. and ORTU, F. [1994]: “Single and Periodic Premiums for Guaranteed
Equity—Linked Life Insurance under Interest—-Rate Risk: The “Lognormal + Vasicek” Case,”

in L. PECCATI and M. VIREN (eds), Financial Modelling, Physica—Verlag, pp. 1-55.

BRENNAN, M. J. and SCHWARTZ, E. S. [1976]: “The Pricing of Equity-linked Life
Insurance Policies with an Asset Value Guarantee,” Journal of Financial Economics 3, 195—

213.

BRENNAN, M. J. and SCHWARTZ, E. S. [1979]: “Pricing and Investment Strategies for
Equity-linked Life Insurance,” in L. PECCATI and M. VIREN (eds), Huebner Foundation

Monograph, 7, Wharton School, University of Pennsylvania, Philadelphia.

CURRAN, M. [1994]: “Valuing Asian and Portfolio Options by Conditioning on the Geo-

metric Mean Price,” Management Science 40(12), 1705-1711.

EKERN, S. and PERSSON, S.-A. [1996]: “Exotic Unit-Linked Life Insurance Contracts,”

The Geneva Papers on Risk and Insurance Theory 21, 35—64.



REFERENCES 41

GEMAN, H., El Karoui, N. and ROCHET, J.-C. [1995]: “Changes of Numeraire, Changes

of Probability Measure and Option Pricing,” Journal of Applied Probability 32, 443—458.

NIELSEN, J. A. and SANDMANN, K. [1995]: “Equity-linked Life Insurance: A Model

with Stochastic Interest Rates,” Insurance, Mathematics & Economics 16, 225-253.

NIELSEN, J. A. and SANDMANN, K. [1996]: “Uniqueness of the Fair Premium for Equity-
Linked Life Insurance Contracts,” The Geneva Papers on Risk and Insurance Theory 21,65—

102.

NIELSEN, J. A. and SANDMANN, K. [2002]: “Asian Exchange Rate Options under
Stochastic Interest Rates: Pricing as a Sum of Delayed Options,” to appear in Finance and

Stochastics.

ROGERS, L. and SHI, Z. [1995]: “The Value of an Asian Option,” Journal of Applied

Probability 32, 1077-1088.

VASICEK, O. [1977]: “An Equilibrium Characterization of the Term Structure,” Journal

of Financial Economics 5, 177-188.

VORST, T. C. [1996]: “Averaging Options,” in I. NELKEN (ed.), The Handbook of Ezotic

Options, IRWIN Professional Publishing, Chicago, pp. 175-199.



