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Abstract 
 
 We consider random wealth of the multiplicative form xy!! , where x!  and y!  are 

statistically independent random variables.  We assume that x!  is endogenous to the 
economic agent, but that y!  is an exogenous and uninsurable background risk.  Our main 
focus is on how the randomness of y!  affects risk-taking behavior for decisions on the 

choice of x! .  We characterize conditions on preferences that lead to more cautious 
behavior.  We also develop the concept of the affiliated utility function, which we define 
as the composition of the underlying utility function and the exponential function.  This 
allows us to adapt several results for additive background risk to the multiplicative case.        
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1.  Introduction 

 

 Consider a risk-averse economic agent whose preferences can be represented 

within an expected-utility framework via the continuously differentiable utility function 

u.  The agent must decide upon choice parameters for a random variable representing 

final wealth, x! .  For example, x!  might represent wealth from an individual�s portfolio of 

financial assets, or x!  might represent random corporate profits based on management 

decisions within the firm. 

 A fair amount of attention in recent years has examined how decisions on x!  

might be affected by the addition of an additive risk ε~ , where ε~  and x!  are statistically 

independent.  Thus, final wealth or profits can be written as x ε+ !! .  We assume that ε~  is 

not directly insurable.  For example, ε~  might represent future wage income subject to 

human-capital risks; or ε~  might represent an exogenous pension portfolio provided by 

one�s employer.  Although it is interesting to examine the interdependence between x!  

and ε~ , the case of independence is of special interest and provides for many interesting 

observations.  In order to focus on the risk effects, rather than wealth effects, it is often 

assumed that 0~ =εE , where E denotes the expectation operator.  In such a case, ε~  is 

often called a �background risk.�  Since any non-zero mean for ε~  can be added to the x!  

term, this assumption does not reduce the applicability of the model.  Our purpose in the 

present paper is to examine the effects of introducing a �multiplicative background risk� 

into the individual�s final wealth distribution. 

 The modern literature on additive background risk stems from the papers of 

Kihlstrom, et al. (1981), Ross (1981) and Nachman (1982).  Doherty and Schlesinger 
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(1983) incorporated their analysis into models of decision making under uncertainty, 

which underwent somewhat of a renaissance in the 1990�s thanks to new theoretical tools 

provided by Pratt and Zeckhauser (1987), Kimball (1990) and Gollier and Pratt (1996).   

 One canonical hypothesis concerning additive background risk is that the 

riskiness of ε~  leads to a more cautious behavior towards decisions on x! , such as in 

Guiso, et al. (1996).  However, this conclusion need not always be the case, unless 

particular restrictions on preferences are met.  Eeckhoudt and Kimball (1992) first 

examined this direction of research.  Rather than review the large body literature for the 

case of additive background risks, we refer the reader to the excellent comprehensive 

presentation of this material in Gollier (2001). 

 Surprisingly, very little attention has been given to the case where the background 

risk is multiplicative.  Our goal in this paper is to provide a theoretical foundation for 

models with a multiplicative background risk.  Under what conditions on preferences will 

the addition of a multiplicative background risk compel the agent to behave more 

cautiously in making decisions about the endogenous wealth variable x! ?   

 To this end, let y!  be a random variable on a nonnegative support that is 

statistically independent of x! .  We consider final wealth to be given by the product xy!! .  

The random variable y!  is considered to be exogenous to the individual and is not directly 

insurable.  Numerous examples of such multiplicative risks include the following: 

 

1. Let x!  be the pre-tax profits of a firm and let y!  represent the firm�s retention net of 

taxes, where tax rates are random due to tax-legislation uncertainty.  

 

2. Let x!  be the random wealth in an individual�s financial portfolio in period one, and let 

y!  denote a mandatory annuity account that uses proceeds from x!  in period two. 
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3.  Let x!  denote nominal wealth or profit and let y!  denote an end-of-period price 

deflator.   

 

4.  Let x!  denote profit in a foreign currency and let y!  denote the end-of-period exchange 

rate. 

 

5.  Let x!  denote the random per-unit profit for a farm commodity, based on some 

hedging strategy, and let y!  denote an exogenous random quantity of output.   

 

 In order to isolate the risk effects of y! , we will assume that Ey! =1.  For the case 

where y!  has a mean that differs from one, we can incorporate this mean into x!  via a 

deterministic scaling effect.1 Since ( 1)xy x x y= + −!! ! ! ! , the assumption that Ey! =1, together 

with the independence of x! and y! , guarantees that xy!!  is riskier than x!  alone in the sense 

of Rothschild and Stiglitz (1970).  We will refer to y! , defined in this manner, as a 

�multiplicative background risk.�  

 In the next section, we introduce the basic framework.  We next examine 

conditions on preferences that lead to more cautious behavior towards x!  in the presence 

of a multiplicative background risk y! .  In section 4, we introduce the concept of the 

affiliated utility function and examine some of its basic properties.  Section 5 uses the 

affiliated utility function to apply several extant results from the literature on additive 

background risk in the case of multiplicative risks.  Section 6 examines comparative risk 

aversion; in particular we determine conditions that preserve the relation �more risk 

averse� in the presence of a multiplicative background risk.  Section 7 provides some 

concluding thoughts.  
                                                 
1 Thus, for instance, in our first example above we can let x~ represent post-tax profits based on the 
expected tax rates and let y~ represent a deviation from these tax rates.  Or, in the second example let 
x~ denote wealth including expected annuity returns and let y~ denote a multiplicative excess-return 
adjustment.   
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2.  The Basic Model 

 

 Consider a risk-averse economic agent with utility function u.  We wish to 

determine how the addition of a multiplicative background risk y~  affects decision 

making on x~ .  Let F and G denote the (cumulative) distribution functions associated 

with the random variables x~  and y~  respectively.  Since x~  and y~  are independent, we 

can write expected utility as an iterated integral  

 

(1) 
0 0

( ) ( ) ( ) ( ) [ ( )]F GEu xy u xy dG y dF x E E u xy
∞ ∞

= ≡∫ ∫!! !! . 

Define the derived utility function, see Nachman (1982)2, as the interior integral given in 

equation (1).  That is, 

 

(2) 
0

( ) ( ) ( ) ( )G Gv x u xy dG y E u xy
∞

≡ =∫ !  

 

Trivially, )(xvG  is increasing and concave since u is.  Thus, equation (1) can be written 

as ( ) ( )F GEu xy E v x=!! ! .  Decisions on x~  made in the presence of the multiplicative risk y~  

under utility u are isomorphic to decisions made on x~  in isolation under the risk-averse 

utility )(xvG .   Let Γ( x! ) denote the set of random variables y~  such that y~  is statistically 

independent from x~  and Ey! =1.  Our focus here is in determining conditions on the 

utility function u such that the derived utility function, )(xvG , is more risk averse than u 

for all y~ ∈ Γ ( x! ).  In other words, we wish to determine conditions on u that will 

guarantee that 

 

                                                 
2 Actually, Nachman considers a more general relationship between x~  and y~ .  We adapt his measure to 
the case of multiplicative risks.  The derived utility function for the additive case is described earlier by 
Kihlstrom, et al. (1981).  
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(3)  
2" ( ) [ "( ) ] "( )

' ( ) [ '( ) ] '( )
G G

G G

v x E u xy y u x
v x E u xy y u x

− − −≡ ≥
! !
! !

     x∀ .3  

 

To avoid excessive notation, we will dispense with the subscripts and simply 

write v(x) and ( )Eu xy! , where we assume y~  is an arbitrary member of Γ( x~ ).  We will let 

rv(x) and ru(x) denote the measure of absolute risk aversion for v and u respectively, i.e. 

the left-hand-side and right-hand-side of inequality (3) respectively.   

Since we are involved with a multiplicative risk, it is often convenient to consider 

the corresponding measures of relative risk aversion, Rv(x) ≡xrv(x) and Ru(x) ≡xru(x).  For 

arbitrary x, straightforward manipulation of (3) shows that 

 

(4)  
0

'( )( ) [ ( ) ]
[ '( ) ]v G u u x

G

u xy yR x E R xy R (xy)dη (y)
E u xy y

∞

= ≡ ∫
! !!
! !

 

 

where 
y

x
0

(y)
[ '( ) ]G

u'(xt)tdG(t)
E u xy y

η ≡ ∫ ! !
. 

 

Note that )(yxη  is itself a well-defined probability distribution.  We define xE�  to denote 

the expectation operator based on the probability distribution )(yxη , which is a type of 

risk-adjusted probability measure.  Thus, we see that relative risk aversion for v is a type 

of weighted average of relative risk aversion for u, namely �( ) [ ( )]v uR x E R xy= ! . 

 

3.  Risk Aversion Properties 

 

 From equation (4), it follows trivially that v inherits constant relative aversion 

(CRRA), whenever u exhibits CRRA.  More explicitly, if ( )uR x xγ= ∀ , then 

                                                 
3 In order to keep the mathematics simple, we will take �more risk averse� to be in the weak sense of Pratt 
(1964).  
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xxRv ∀γ=)(  as well.  Since it then also follows that xxrxr vu ∀= )()( , we see that u 

and v are equivalent utility representations under CRRA.  This is not surprising, since any 

optimal choice of an endogenous x~  will be optimal for yx~  0>∀ y  under CRRA 

preferences. 

 We next wish to examine conditions under which (3) holds )~(~ xy Γ∈∀ , i.e., we 

want to know when v is more risk averse than u.  We may consider conditions for which 

this holds locally, with )()( xrxr uv ≥ , by examining the equivalent condition 

)()( xRxR uv ≥ .  Our approach is to consider this last inequality for a particular value of 

x, by applying xη  as in equation (4).  If the value of x chosen is arbitrary, so that 

xxRxR uv ∀≥ )()( , then we are done.   

 Suppose that Ru(x) is (not necessarily strictly) convex.  Since )(yxη  is a 

probability distribution, it follows from Jensen�s inequality and equation (4) that 

 

(5)  � �( ) ( ) ( ),v u uR x ER xy R xEy≡ ≥! !   

 

where 

 

(6)  
0 0

'( )� ( ) ( ).
[ '( ) ]x
u xy yEy yd y y dG y

E u xy y
η

∞ ∞

= =∫ ∫!
! !

 

 

Next, note that 

 

(7)  
2 ( ) [ '( ) ] '( )[1 ( )].u
u xy u xy y u xy R xy
x y y

∂ ∂= = −
∂ ∂ ∂

 

 

The sign of (7) tells us whether increases in the level of y will increase or decrease the 

marginal utility of x.  The derivative in (7) will be everywhere positive [negative] if 

yxyRu ∀>< 1][)(  in the support of G.  This implies that increases in y reduce the 
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marginal utility of x whenever 1uR > , and increases in y increase the marginal utility of x 

whenever 1uR < .   

 

 Since '( ) 1,
[ '( ) ]
u xy yE

E u xy y
 

= 
 

! !
! !

 we obtain the following result from (6) and (7). 

 
Lemma 1: � 1 if ( ) 1 ( )uEy Ey R xy y Supp G= ∀ ∈! !! " . 

We are now ready to prove the following result: 

 

Proposition 1:  Suppose that )(xRu  is convex and that one of the following conditions 

holds )()(),( GSuppFSuppyx ×∈∀ : 

 (i)  )(xyRu >1 and uR  is decreasing, 

or (ii) )(xyRu <1 and uR  is increasing. 

Then v is more risk averse than u. 

 

Proof: Since )(xRu  is convex, it follows from equation (4) that �( ) ( )v uR x R xEy≥ !  by 

Jensen�s inequality.  If 1uR > , then �Ey! <1 from Lemma 1.  Hence, �( ) ( )u uR xEy R x≥!  

under the assumption of decreasing relative risk aversion (DRRA).  If 1uR < , then it 

follows from Lemma 1 that �Ey! >1.  Hence, �( ) ( )u uR xEy R x≥!  under the assumption of 

increasing relative risk aversion (IRRA).  Thus we have )()( xRxR uv ≥  whenever 

condition (i) or (ii) holds. ▄ 

 

Interestingly, if we have CRRA preferences, u and v are equivalent regardless of 

whether or not relative risk aversion exceeds 1.  If relative risk aversion is increasing in 

wealth, as originally postulated by Arrow (1971) and most recently empirically supported 

by Guiso and Paiella (2001), then v will be more risk averse than u whenever Ru is 

convex and less than 1.  If Ru is everywhere greater than 1 and exhibits increasing relative 
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risk aversion, we cannot use Proposition 1 to verify that v is more risk averse than u.  

Indeed, if we have Ru>1 and if Ru is (not necessarily strictly) concave, it is easy to show 

that v is then less risk averse than u.  Indeed, the following two cases are easy to show.  

 

Proposition 2:  Suppose that )(xRu  is concave and that one of the following conditions 

holds )()(),( GSuppFSuppyx ×∈∀ : 

 (i)  )(xyRu >1 and uR  is increasing, 

or (ii) )(xyRu <1 and uR  is decreasing. 

Then v is less risk averse than u. 

 

Proof: The proof is similar to Proposition 1 and left to the reader. ▄ 

 

 Of course, whether risk aversion exhibits constant-, increasing-, or decreasing 

relative risk aversion, or none of these, is an empirical question.  Certainly constant 

relative risk aversion is very common in equilibrium asset-pricing models.  But empirical 

support also exists for both increasing relative risk aversion (e.g. Guiso and Paiella 

(2001)) and for decreasing relative risk aversion (e.g. Kessler and Wolf (1991)).   

 To illustrate Proposition 1 and 2, consider the following examples: 

 

Example 1: Let kxexu −−=)(  where 0>k .  This is the case of constant absolute risk 

aversion (CARA).  In this case '( )uR x k=  and ''( ) 0uR x = .  Thus, uR  is increasing and is 

both convex and concave.  If we consider x~  and y~  such that kxy /1<  ∈∀ ),( yx  

( ) ( )GF SuppSupp × , then vxyRu and1)( <  is more risk averse than u by Proposition 1.  

However, if )(Supp)(Supp),(/1 GFyxkxy ×∈∀> , then ( ) 1 anduR xy v>  is less risk 

averse than u by Proposition 2. 
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Example 2: Let 2)( kxxxu −=  where 0>k .  We restrict 1
2kx <  so that marginal 

utility is positive.  This is the case of quadratic utility.  It is straightforward to show that 
1)21(2)( −−= kxkxxRu  and that uR  is both strictly increasing and convex.  Moreover, 

1)( <xyRu  if 1
4 ( , ) Supp( ) Supp( )kxy x y F G< ∀ ∈ × , so that v  is more risk averse 

than u  by Proposition 1.  On the other hand, if 1 1
4 2 ( , )k kxy x y< < ∀ ∈  

( ) ( )GF SuppSupp × , then ( ) 1uR xy > , but we cannot apply Proposition 1 (since uR  is 

increasing) or Proposition 2 (since uR  is convex). 

 Both utility functions above belong to the so-called HARA class of utility, as does 

CRRA utility.4  Since we already showed that u  and v  are equivalent under CRRA, we 

see that no general results seem to apply to the HARA class of utility. 

 

4.  Affiliated Utility Functions 

 

 In this section, we obtain additional results by considering yxxy lnln)ln( += .  

This allows us to adapt several results from the case of additive background risks.  In 

order to accomplish this, we define the affiliated utility function, u� , such that 

),(ln�)( xuxu = where we restrict 0>x .  Equivalently, we can substitute ln xθ =  to 

write �( ) ( )u u eθθ θ≡ ∀ ∈ " .  In other words, u�  is the composite of u with the 

exponential function.  Although u�  is increasing, it need not be concave.  Since 

)ln(ln�)( yxuxyu += , we will examine the additive risks yx ~ln~ln +  in this section. 

 Let )(� θr  denote absolute risk aversion for ),(� θu  i.e. )(�/)(�)(� θ′θ′′−=θ uur .  

Straightforward calculations show that 

 

(8) 
� (ln ) �( ) 1 1 (ln )
� (ln )u u
u xR x r x
u x
′′

= − = +
′

. 

                                                 
4  Utility belongs to the HARA class if [r(x)]-1 is linear in x. 
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Note that 1)( <xRu  implies that 0)(ln� <xru .  Thus, if 01)( <∀< xxRu , then u�  

exhibits risk-loving behavior and is convex.  This is not surprising given the construction 

of the affiliated utility function. 

 If u  is more concave than the natural logarithm function, u�  will be concave.  

That is, u�  will be everywhere risk averse if and only if u  is everywhere more risk averse 

than log utility.  If xxu ln)( = , then u�  is risk neutral.  Note that u�  does not represent 

utility of wealth, however.  To refer to u�  as �risk averse, risk loving or risk neutral� is 

only a technical convenience, since in all cases, we are assuming that true preferences u  

are risk averse.  Still, by examining the nature of r� , we will be able to adapt several 

existing results on additive background risk to the multiplicative case. 

 

 A few examples can help to illustrate the relationship between utility functions 

and the corresponding affiliated utility functions: 

 

  (i)  If u(x) = x, so that preferences are risk neutral, then θ=θ eu )(� , which is risk 

loving with constant absolute risk aversion. 

 

 (ii)  If 1,0,)( 1
1

1 ≠γ>γ= γ−
γ− xxu , so that preferences exhibit constant relative 

risk aversion, then θγ−
γ−=θ )1(

1
1)(� eu .  Note that affiliated utility functions exhibit 

constant absolute risk aversion of degree γ-1, which is risk averse only if γ>1. 

 

(iii)  If bxbbxxxu 2
12 ,0,)( <>−= , so that utility is quadratic, then 

θθ −=θ 2)(� beeu . 
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 (iv)  The above examples are all special cases of HARA utility.  Let 

0,0,)()( )1(1 >>+η+ηξ= γ
γ−ξ

γ
γ−

γ
xxxu .  Then .)(�

1 γ−θ







γ

+ηξ= exu  

 

 From the definition of v(x) in (2), in a manner analogous to equation (8) we can 

derive 

 

(9) 
� ''(ln ln )

�( ) 1 1 (ln )
� '(ln ln )

G
v v

G

E u x y
R x r x

E u x y
+

= − ≡ +
+
!
!

. 

 

From (8) and (9), we easily obtain the following result. 

 

Lemma 2:  (i) ( ) ( )v uR x R x≥  if and only if � �(ln ) (ln )v ur x r x≥ , 

and      (ii) ( )tR x  is decreasing if and only if � (ln )tr x  is decreasing ,  t = u,v. 

 

Equivalent to (i) above, )()( xrxr uv ≥  if and only if )(ln�)(ln� xrxr uv ≥ .  For the case 

where 1<uR , so that u�  is risk loving, we can still interpret uv rr �� >  as meaning � v�  is 

more risk averse than u� ,� but in the sense of being less risk loving. 

 Consider now the set of )~(~ xy Γ∈ , so that 1~ =yE .  For any )~(~ xy Γ∈ , 

0)~(ln ≤yE , with equality only holding in the degenerate case, where a.s.1~ =y   If we 

restrict utility such that 1>uR , so that u�  is risk averse, then we know from Gollier and 

Pratt (1996) that v is more risk averse than u for an arbitrary )~(~ xy Γ∈  if and only if )(� xu  

is risk vulnerable.5  Since risk vulnerability is not an easy trait to verify, Gollier and Pratt 

offer us several useful sufficient conditions for risk vulnerability that are easy to check.  

In particular, we can apply their results in equation (9) to obtain the following. 

                                                 
5 More directly, we would use u�  to examine the behavior of )~ln(ln�)(ln� yxuExv G +≡  for any 
nondegenerate y~  with 0~ln ≤yE , rather than with 0~ln <yE .  However, the distinction is nil if utility is 
differentiable. 
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Proposition 3: Suppose that xxRu ∀>1)( .  Then v is more risk averse than u if either 

 (i) ur�  is decreasing and convex, 

or (ii)  u�  exhibits standard risk aversion (see Kimball, 1993, and below). 

 

5.  Properties of Affiliated Utility 

 

 In this section, we examine conditions on the utility function u(x) that must hold if 

its affiliated utility function )(� θu  satisfies the properties given in Proposition 3(i) or 3(ii).  

In particular, we first show that )(xRu  is decreasing and convex, whenever )(� θur  is 

decreasing and convex.  We then show how there is a close relationship between 

standardness of the affiliated utility function �u  and standard relative risk aversion of u.  

 From equation (8), we see that  

 

(10) 1 �'( ) '(ln )u uR x r x
x

=  

and 

(11) 2

1 � �"( ) [ "(ln ) '(ln )]u u uR x r x r x
x

= − . 

 

Consequently, since x>0, it follows from equation (10) that )(xRu  is decreasing if and 

only if )(� θur  is decreasing.  Moreover, if )(� θur  is decreasing and convex, it follows from 

equation (11) that )(xRu is also convex.  As a consequence, the conditions holding in 

Proposition 3(i) imply those of Proposition 1(i), so that Proposition 3(i) also might be 

thought of as a corollary to Proposition 1. 

 The property of standard risk aversion, as presented in Kimball (1993), is 

analyzed at length in Gollier (2001).  It is especially useful since it is easily characterized 
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by decreasing absolute risk aversion and decreasing absolute prudence, where absolute 

prudence is measured as '''( )( )
''( )

u xp x
u x

= − .  If 0)(''' >xu , preferences are said to be 

prudent.  If the affiliated utility function is standard risk averse, we may apply 

Proposition 3(ii) to conclude that v is more risk averse than u.   

 We first obtain a preliminary result that will prove useful.  Straightforward 

calculations show that  

 

(12) 
2

2

''( ) '( ) '''( ) '( ) [ ''( )]'( ) ( )[1 ( ) ( )]
[ '( )]u u u u

u x u x xu x u x x u xR x r x P x R x
u x

− − += = − + , 

 

where 
)(''

)(''')(
xu

xxuxPu
−≡  denotes the measure of relative prudence.  Consequently, we 

directly obtain the following result. 

 
Lemma 3:  '( ) 0uR x !   if and only if  ( ) 1 ( )u uP x R x+" . 

 

 We already know that )(� θu  is risk averse whenever 1)( >xRu .  Lemma 4 shows a 

condition on the underlying preferences that is equivalent to the prudence of )(� θu .   

 

Lemma 4:  The affiliated utility function )(� θu  exhibits prudence, θ∀>θ 0)('''�u , if and 

only if 
)(

13)(
xR

xP
u

u −> . 

 

Proof:  Recall that )()(ln� xuxu = , so that we obtain the following by differentiating with 

respect to xln : 

 )(')(ln'� xxuxu =  

 )('')(')(ln''� 2 xuxxxuxu +=  

 )(''')(''3)(')(ln'''� 32 xuxxuxxxuxu ++= . 
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Thus, dividing )(ln'''� xu  by 0)(''2 >− xux  we obtain 

 

 '''( ) '( )� '''(ln ) 0 3 0
''( ) ''( )

xu x u xu x
u x xu x

> ⇔ − − − >    1( ) 3
( )u

u

P x
R x

⇔ > − .   

                    ▄ 

 

 From Lemmata 3 and 4, we can easily now show the following. 

 

Lemma 5:  If u exhibits decreasing relative risk aversion, the affiliated utility function �u  

exhibits prudence. 

 

Proof:  From Lemmata 3 and 4, the conclusion follows if 1)]([3)(1 −−≥+ xRxR uu .  Since 

)(xRu  is positive, this is equivalent to 2 2{[ ( )] 2 ( ) 1} { ( ) 1} 0u u uR x R x R x− + = − ≥ , which 

obviously holds.  ▄ 

 

 We can use the derivatives in the proof of Lemma 4 to calculate the measure of 

absolute prudence for the affiliated utility function.  In particular, we obtain 

 

(13) 
2

1

� ( ) 2'''(ln ) '''( ) 2 ''( )� (ln ) 1 1
� ''(ln ) ''( ) '( ) 1 ( ( ))

u

u

P xu x x u x xu xp x
u x xu x u x R x −

−+≡ − = − − = −
+ −

, 

where the last step follows from dividing both the numerator and denominator in (13) by 

).('' xxu  

 We are now ready to prove that standard relative risk aversion of u is a necessary 

condition for �u  to be standard: 



 15 

 

Proposition 4:  Suppose that �u  exhibits standard risk aversion. Then 1)( >xRu  and u 

exhibits standard relative risk aversion; that is, both )(xPu  and )(xRu  are positive and 

decreasing.  

 

Proof:  From equation (8), we know that �u  risk averse implies that 1)( >xRu .  Since �u  

exhibits decreasing absolute risk aversion, it follows from Lemma 2 that u exhibits 

decreasing relative risk aversion.  Thus, we must show that u also exhibits positive and 

decreasing relative prudence.  That relative prudence is positive follows easily from 

Lemma 3.   

 Differentiating equation (13) with respect to xln  we obtain 

 

 
1 2

1 2

� [1 ( ( )) ] '( ) [ ( ) 2]( ( )) '( )(ln )
ln [1 ( ( )) ]

u u u u u

u

x R x P x x P x R x R xdp x
d x R x

− −

−

− − −=
−

. 

 

Because 1)( >xRu , it follows that 2[ ( )] ( ) 0u uR x R x− >  and, from Lemma 3, that 

02)( >−xPu .  Thus, it follows that 
� (ln )

ln
dp x
d x

 is negative if and only if 

 

(14) 2

( ) 2'( ) '( ) 0
[ ( )] ( )

u
u u

u u

P xP x R x
R x R x

−< <
−

.  ▄ 

 

 From the proof of Proposition 4, we see that u exhibiting standard relative risk 

aversion is necessary, but not quite sufficient to imply that the affiliated utility function 

�u  is standard risk averse.  However, we do obtain the following result. 

 

Corollary 1:  Let 1)( >xRu .  If u exhibits standard relative risk aversion and the 

inequality in (14) holds, then the affiliated utility function �u  is standard risk averse.   
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Proof:  Since 1)( >xRu , it follows from equation (8) that �( ) 0r θ > .  Standard relative risk 

aversion of u implies, from Lemma 2, that �u  exhibits decreasing absolute risk aversion.  

It also follows, from Lemma 5, that � ''' 0u > .  Since (14) holding implies that �u  also 

exhibits decreasing absolute prudence, the Corollary follows.  ▄ 

 

 

Example:  Let u belong to the HARA class of utility functions, 1( ) ( )xu x γ
γξ η −= +  and 

suppose that 1γ > .  Now 
1

( )u
xR x

xγη
=

+
.  Thus, it follows easily that u exhibits 

decreasing relative risk aversion if and only if 0η < .  Hence, 1x xγη> + , so that 

1)( >xRu .  To see that u exhibits standard relative risk aversion, note that 
1( ) ( )u uP x R xγ

γ
+= .  Thus, u exhibits decreasing relative prudence if and only if u exhibits 

decreasing relative risk aversion.  Thus, u is standard relative risk averse and 1)( >xRu .  

We now wish to show that �u  is standard risk averse. 

 By Corollary 1, we would be done if the inequality in (14) holds.  Since both 

'( ) 0uP x <  and '( ) 0uR x < , inequality (14) is equivalent to  

 

  
1( ) ( ) 2( ) 21

( )[ ( ) 1] ( )[ ( ) 1]
uu

u u u u

R xP x
R x R x R x R x

γ
γγ

γ

+ −−+ > =
− −

 

 

 ⇔    1( )[ ( ) 1] ( ) 2( )u u uR x R x R x γ
γ+− > −  

 

 ⇔    2 1[ ( ) 1]
1uR x γ

γ
−− >
+

. 

But, this last inequality follows, since γ>1.  Since �u  is standard risk averse, it follows 

from Proposition 3(ii) that the derived utility function v is more risk averse than u. 
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 We can extend the example above to the following more general result.   

 

Corollary 2:  Let u belong to the HARA class of utility functions, 1( ) ( )xu x γ
γξ η −= + , with 

the domain of u given as [ , )a ∞ , where ( )a ηγ> − .  Then the following two conditions 

are equivalent: 

  (i)  u is standard relative risk averse with 1)( >xRu .  

 (ii)  �u  is standard risk averse. 

 

Proof:  The domain of u guarantees risk aversion if and only if 0γ > .  As in the above 

example, it follows that u exhibits decreasing relative risk aversion if and only if 0η < .  

Moreover, 1)( >xRu  as x → ∞  requires that 1γ > .  Thus ( ) ( )i ii⇒  follows from 

identical arguments to those made in the preceding example, whereas ( ) ( )ii i⇒  follows 

from Proposition 4.  ▄ 

 

 

6.  Comparative Risk Aversion 

 

 We start here by examining some intrapersonal characteristics of risk aversion.  

We will later examine some interpersonal characteristics.  From equation (4), we see 

trivially that )(xRv  will be everywhere greater than [less than] 1 if )(xRu  is everywhere 

greater than [less than] 1.  This result is more than just a technicality.  Since many results 

in the literature on choice under uncertainty specify a global condition that either 

)(xRu >1 or )(xRu <1, such results also will hold in the presence of a multiplicative 

background risk, since )(xRv  also will satisfy the appropriate property. 

 More generally, it follows trivially from equation (4) that 
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Proposition 5:  Given any ( )y x∈Γ! , with distribution function G, 

{ } { }inf ( ) ( ) sup ( ) ( )u v uR xy R x R xy y Supp G≤ ≤ ∀ ∈ . 

 

 A key result in the literature on additive background risk is that the properties of 

constant absolute risk aversion and decreasing absolute risk aversion for utility are 

carried over to the derived utility function.  On the other hand, the property of increasing 

absolute risk aversion does not always carry over.  We next develop analogous results for 

relative risk aversion in the case of a multiplicative background risk.  We have already 

seen that v inherits constant relative risk aversion from u.  Indeed, the level of constant 

risk aversion is identical.  To see that the same holds true for decreasing relative risk 

aversion, we first require the following Theorem, which is due to Gollier and Kimball 

(1996).  A proof of this Theorem can also be found in Gollier (2001). 

 

Lemma 6 (Diffidence Theorem, Gollier and Kimball):  Let Λ denote the set of all random 

variables with support contained in the interval [a,b]  and let f and g be two real-valued 

functions.  The following two conditions are equivalent:  

  (i)  For any , ( ) 0 ( ) 0.y Ef y Eg y∈ Λ = ⇒ ≥! ! !  

 (ii)  m∃ ∈ "  such that ( ) ( ) [ , ].g y mf y y a b≥ ∀ ∈    

 

 We now are ready to show that v also inherits decreasing relative risk aversion 

from u.6   

 

Proposition 6:  Let y~  have a bounded support.  If u exhibits nonincreasing relative risk 

aversion, then so does the derived utility function v.  

                                                 
6  Although aesthetically unappealing, the limitation to bounded supports is not particularly restrictive.  We 
already limit y!  to be positive, so set a=0.  Now, for any ε>0, we can always find a value for b such that 
the probability that y b>!  is less than ε.   
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Proof:  It follows from Lemma 3, that we need to show that, x∀ , 

 

(15) ( ) 1 ( ) ( ) 1 ( )u u v vP x R x P x R x≥ + ⇒ ≥ + . 

That is, we must show that  

 

(16) 
3 2

2

'''( ) ''( ) 1
''( ) '( )

Eu xy y x Eu xy y x
Eu xy y Eu xy y

− −≥ +
! ! ! !
! ! ! !

. 

Inequality (16) is equivalent to the following: 

 

(17) 2 3 2[ ''( ) ( 1) '( ) ] 0 [ '''( ) ''( ) ] 0E u xy y x u xy y E u xy y x u xy yλ λ+ − = ⇒ + ≥! ! ! ! ! ! ! ! . 

By the Diffidence Theorem, (17) will hold if we can find a real number m, such that 

 

(18) 3 2 2'''( ) ''( ) [ ''( ) ( 1) '( ) ]u xy y x u xy y m u xy y x u xy y yλ λ+ ≥ + − ∀ . 

The left-hand side of (18) can be written as 

 

(19) [ ]''( ) '( ) '''( ) '( )( ) ( )
'( ) ''( ) u u

xyu xy u xy y xyu xy u xy yR xy P xy
u xy x u xy x

λ λ 
+ = − − 

 
. 

 

Since )(1)( xRxP uu +≥ , it follows from (18) and (19) that 

 

(20) [ ]3 2 '( )'''( ) ''( ) ( ) 1 ( )u u
u xy yu xy y x u xy y R xy R xy

x
λ λ+ ≥ − − − . 

From (18) and (20), we would be done if we could find an m, such that 

 

(21) [ ] 2'( )( ) 1 ( ) [ ''( ) ( 1) '( ) ]

'( ) [ 1 ( )].

u u

u

u xy yR xy R xy m u xy y x u xy y
x

mu xy y R xy

λ λ

λ

− − − ≥ + −

= − −
 

 



 20 

This follows by taking xm /)1( λ−= , since we then obtain (21) is equivalent to 

 

(22) [ ] 2( ) 1 ( ) ( 1)[ 1 ( )] [ 1 ( )] 0u u u uR xy R xy R xy R xyλ λ λ λ− − − + − − − = − − ≥ . 

 

Hence, (15) holds and v exhibits decreasing relative risk aversion.  ▄ 

 

 We next turn to examining some interpersonal characteristics of comparative risk 

aversion.  Kihlstrom, et al. (1981) and Ross (1981) examined these for the case of an 

additive background risk.7  Their results are special cases of more general results found in 

Nachman (1982). Nachman is one of the few who considers the case of multiplicative 

background risks as a special case of his general results, albeit briefly.  The basic 

question we address is the following:  If agent 1 is more risk averse than agent 2, will this 

property be preserved in the presence of a multiplicative background risk?  That is, if 1u  

is more risk averse than 2u , when will it follow that 1v  is also more risk averse than 2v ?  

One result that is quite easy to obtain is the following: 

 

Corollary 3:  Let au  and bu  be risk-averse utility functions such that au  is more risk 

averse than bu , i.e. ( ) ( )a b
u uR x R x x≥ ∀ .  If λ∃ ∈ "  such that x∀ )()( xRxR b

u
a
u ≥λ≥ , 

then av  is more risk averse than bv .  

 

Proof:  Follows directly from Proposition 5 and equation (4).  ▄ 

 

 The proof of Corollary 3 also follows directly from the following result, which is 

due to Nachman (1982).  We include it here for completeness. 

 

                                                 
7  Actually, Ross considers the background risk to be mean-independent, which is not as restrictive as the 
assumption of independence.   
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Proposition (Nachman):  Let au  and bu  be risk-averse utility functions such that au  is 

more risk averse than bu , i.e. xxRxR b
u

a
u ∀≥ )()( .  If there exists a function cu  such that 

xxRxRxR b
u

c
u

a
u ∀≥≥ )()()(  and )(xRc

u  is nonincreasing, then av  is more risk averse 

than bv . 

 

 It follows easily from Nachman�s result that av  will be more risk averse than bv  

if either of the utility functions, au  or bu , exhibits nonincreasing relative risk aversion.  

This result is a direct counterpart to the result by Kihlstrom, et al. in the case of additive 

background risk.   

 

7.  Concluding Remarks 

 

 The notion that markets are complete is a mathematical nicety that does not hold 

true in practice.  Many types of political, human-capital and social risks, as well as some 

financial risks, are not represented by direct contracts.  Obviously, many of these risks 

can be hedged indirectly - - so-called �cross hedging.�  However, even when such 

�background risks� are independent of other risks and cannot be �hedged� per se, they 

may have an impact upon risk-taking strategies that are within the control of the 

economic agent.  Much has been done over the past twenty years in examining the effects 

of additive background risks.  But surprisingly little has been done to systematically 

study economic decision making in the presence of a multiplicative background risk.   

 This paper is a first step towards developing a comprehensive theory of 

background risk in this direction.  As the few examples in our introduction show, models 

with such multiplicative background risks are not hard to find within the literature.  An 

understanding of the basic concepts presented here hopefully might help us understand a 

multitude of results for which standard theories (in the absence of any background risk) 

yield predictions that seem at odds with everyday observations of reality.   
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 Since risk aversion captures all the essential information about preferences within 

an expected-utility framework, our focus here has been on comparing risk aversion with 

and without the background risk.  As we learn more about these inherent properties, we 

hopefully will be able to find better models to use in the realm of positive theories. 
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