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Abstract

We consider random wealth of the multiplicative form Xy, where X and y are
statistically independent random variables. We assume that X is endogenous to the
economic agent, but that y is an exogenous and uninsurable background risk. Our main
focus is on how the randomness of j affects risk-taking behavior for decisions on the
choice of X. We characterize conditions on preferences that lead to more cautious
behavior. We also develop the concept of the affiliated utility function, which we define
as the composition of the underlying utility function and the exponential function. This

allows us to adapt several results for additive background risk to the multiplicative case.
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1. Introduction

Consider a risk-averse economic agent whose preferences can be represented
within an expected-utility framework via the continuously differentiable utility function
u. The agent must decide upon choice parameters for a random variable representing
final wealth, X. For example, X might represent wealth from an individual’s portfolio of
financial assets, or X might represent random corporate profits based on management
decisions within the firm.

A fair amount of attention in recent years has examined how decisions on X
might be affected by the addition of an additive risk €, where € and X are statistically
independent. Thus, final wealth or profits can be written as ¥+&. We assume that € is
not directly insurable. For example, € might represent future wage income subject to
human-capital risks; or € might represent an exogenous pension portfolio provided by
one’s employer. Although it is interesting to examine the interdependence between X
and €, the case of independence is of special interest and provides for many interesting
observations. In order to focus on the risk effects, rather than wealth effects, it is often
assumed that E€ =0, where E denotes the expectation operator. In such a case, € is
often called a “background risk.” Since any non-zero mean for € can be added to the X
term, this assumption does not reduce the applicability of the model. Our purpose in the
present paper is to examine the effects of introducing a “multiplicative background risk”
into the individual’s final wealth distribution.

The modern literature on additive background risk stems from the papers of

Kihlstrom, et al. (1981), Ross (1981) and Nachman (1982). Doherty and Schlesinger



(1983) incorporated their analysis into models of decision making under uncertainty,
which underwent somewhat of a renaissance in the 1990’s thanks to new theoretical tools
provided by Pratt and Zeckhauser (1987), Kimball (1990) and Gollier and Pratt (1996).

One canonical hypothesis concerning additive background risk is that the
riskiness of € leads to a more cautious behavior towards decisions on X, such as in
Guiso, et al. (1996). However, this conclusion need not always be the case, unless
particular restrictions on preferences are met. Eeckhoudt and Kimball (1992) first
examined this direction of research. Rather than review the large body literature for the
case of additive background risks, we refer the reader to the excellent comprehensive
presentation of this material in Gollier (2001).

Surprisingly, very little attention has been given to the case where the background
risk is multiplicative. Our goal in this paper is to provide a theoretical foundation for
models with a multiplicative background risk. Under what conditions on preferences will
the addition of a multiplicative background risk compel the agent to behave more

cautiously in making decisions about the endogenous wealth variable X ?

To this end, let y be a random variable on a nonnegative support that is
statistically independent of x. We consider final wealth to be given by the product xy.

The random variable y is considered to be exogenous to the individual and is not directly

insurable. Numerous examples of such multiplicative risks include the following:

1. Let ¥ be the pre-tax profits of a firm and let y represent the firm’s retention net of

taxes, where tax rates are random due to tax-legislation uncertainty.

2. Let X be the random wealth in an individual’s financial portfolio in period one, and let

¥ denote a mandatory annuity account that uses proceeds from X in period two.



3. Let X denote nominal wealth or profit and let y denote an end-of-period price

deflator.

4. Let X denote profit in a foreign currency and let y denote the end-of-period exchange

rate.

5. Let X denote the random per-unit profit for a farm commodity, based on some

hedging strategy, and let y denote an exogenous random quantity of output.

In order to isolate the risk effects of y, we will assume that Ey=1. For the case
where ¥ has a mean that differs from one, we can incorporate this mean into X via a
deterministic scaling effect.' Since %j = % +X(j —1), the assumption that Ey =1, together
with the independence of X and y, guarantees that X is riskier than X alone in the sense

of Rothschild and Stiglitz (1970). We will refer to y, defined in this manner, as a

“multiplicative background risk.”

In the next section, we introduce the basic framework. We next examine
conditions on preferences that lead to more cautious behavior towards X in the presence
of a multiplicative background risk y. In section 4, we introduce the concept of the
affiliated utility function and examine some of its basic properties. Section 5 uses the
affiliated utility function to apply several extant results from the literature on additive
background risk in the case of multiplicative risks. Section 6 examines comparative risk
aversion; in particular we determine conditions that preserve the relation “more risk
averse” in the presence of a multiplicative background risk. Section 7 provides some

concluding thoughts.

! Thus, for instance, in our first example above we can let X represent post-tax profits based on the
expected tax rates and let )N/ represent a deviation from these tax rates. Or, in the second example let
X denote wealth including expected annuity returns and let J denote a multiplicative excess-return
adjustment.



2. TheBasic Modd

Consider a risk-averse economic agent with utility function u. We wish to

determine how the addition of a multiplicative background risk ) affects decision

making on X. Let F and G denote the (cumulative) distribution functions associated

with the random variables X and 7 respectively. Since X and y are independent, we

can write expected utility as an iterated integral

00 00

(1) Eu@3p) = [[ulx)dG(y)dF(x) = E[Equ(3p)].
00 D

Define the derived utility function, see Nachman (1982)?, as the interior integral given in

equation (1). That is,

@) ve(x) = [ul)dG() = Egu()

Trivially, v, (x) is increasing and concave since u is. Thus, equation (1) can be written

as Eu(xy) = E,v,(X). Decisions on X made in the presence of the multiplicative risk y

under utility u are isomorphic to decisions made on X in isolation under the risk-averse

utility v;(x). Let ['(X) denote the set of random variables y such that y is statistically

independent from X and Ej=1. Our focus here is in determining conditions on the

utility function u such that the derived utility function, v, (x), is more risk averse than u
for all yOTI (x). In other words, we wish to determine conditions on u that will

guarantee that

* Actually, Nachman considers a more general relationship between X and ¥ . We adapt his measure to

the case of multiplicative risks. The derived utility function for the additive case is described earlier by
Kihlstrom, et al. (1981).



(3) V(%) _ Eg[u ") 5] >4 (%) [ I3:I
V() Eu'Gn)i] T u'x)

To avoid excessive notation, we will dispense with the subscripts and simply
write v(x) and Eu(xy), where we assume ) is an arbitrary member of ['(X ). We will let
r(x) and r,(x) denote the measure of absolute risk aversion for v and u respectively, i.e.
the left-hand-side and right-hand-side of inequality (3) respectively.

Since we are involved with a multiplicative risk, it is often convenient to consider
the corresponding measures of relative risk aversion, R,(x) =xr,(x) and R,(x)=xr,(x). For

arbitrary x, straightforward manipulation of (3) shows that

@ R0)=ER(F) ST = [R o,

where 1, (y) __([EG[u )P

Note that n_(y) is itself a well-defined probability distribution. We define Ex to denote

the expectation operator based on the probability distribution n_(y), which is a type of

risk-adjusted probability measure. Thus, we see that relative risk aversion for v is a type

of weighted average of relative risk aversion for u, namely R (x) = E [R,(xp)].

3. Risk Aversion Properties

From equation (4), it follows trivially that v inherits constant relative aversion

(CRRA), whenever u exhibits CRRA. More explicitly, if R (x)=y [, then

* In order to keep the mathematics simple, we will take “more risk averse” to be in the weak sense of Pratt
(1964).



R, (x) =y [x as well. Since it then also follows that 7, (x) =r,(x) [x, we see that u

and v are equivalent utility representations under CRRA. This is not surprising, since any

optimal choice of an endogenous X will be optimal for Xy [y >0 under CRRA
preferences.

We next wish to examine conditions under which (3) holds [y I (X), i.e., we

want to know when v is more risk averse than u. We may consider conditions for which

this holds locally, with r (x)=r,(x), by examining the equivalent condition
R, (x)=R,(x). Our approach is to consider this last inequality for a particular value of
x, by applying n_ as in equation (4). If the value of x chosen is arbitrary, so that
R (x) 2R, (x) Lx,then we are done.

Suppose that R,(x) is (not necessarily strictly) convex. Since 1 (y) is a

probability distribution, it follows from Jensen’s inequality and equation (4) that

(5) R, (x)=ER,(xp) 2 R,(xEp),
where

©  E=[dn ) =y OB dG)

Next, note that

0°u(xy) _ 0

7
@ Oxdy Oy

[u'(xy)y] =u'(xy)[1 =R, (xp)].

The sign of (7) tells us whether increases in the level of y will increase or decrease the

marginal utility of x. The derivative in (7) will be everywhere positive [negative] if

R,(xy)<[>]1 Oy in the support of G. This implies that increases in y reduce the



marginal utility of x whenever R >1, and increases in y increase the marginal utility of x

whenever R, <1.

) U u'(xy)y O ) :
Since £ ———11]=1, we obtain the following result from (6) and (7).
DE[u'(xp)y H

Lemmal:  EjZEp =1 if RSl OB Supp(G).

We are now ready to prove the following result:

Proposition 1: Suppose that R (x) is convex and that one of the following conditions
holds U(x,y) O Supp(F)* Supp(G) :

(i) R, (xy)>1and R, is decreasing,
or (ii)) R, (xy)<I and R, is increasing.

Then v is more risk averse than u.

Proof: Since R, (x) is convex, it follows from equation (4) that R (x) =R, (xEj/) by
Jensen’s inequality. If R, >1, then Ej<l from Lemma 1. Hence, R, (xEy)=R,(x)
under the assumption of decreasing relative risk aversion (DRRA). If R <I, then it
follows from Lemma 1 that Ej/ >1. Hence, R, (xl:?j/) = R (x) under the assumption of

increasing relative risk aversion (IRRA). Thus we have R (x)=R, (x) whenever

condition (7) or (i7) holds. gy

Interestingly, if we have CRRA preferences, u# and v are equivalent regardless of
whether or not relative risk aversion exceeds 1. If relative risk aversion is increasing in
wealth, as originally postulated by Arrow (1971) and most recently empirically supported
by Guiso and Paiella (2001), then v will be more risk averse than u# whenever R, is

convex and less than 1. If R, is everywhere greater than 1 and exhibits increasing relative



risk aversion, we cannot use Proposition 1 to verify that v is more risk averse than u.

Indeed, if we have R,>1 and if R, is (not necessarily strictly) concave, it is easy to show

that v is then less risk averse than u. Indeed, the following two cases are easy to show.

Proposition 2: Suppose that R (x) is concave and that one of the following conditions
holds U(x,y) O Supp(F)* Supp(G) :

(i) R,(xy)>1and R, is increasing,
or (ii)) R, (xy)<I and R, is decreasing.

Then v is less risk averse than u.

Proof: The proof'is similar to Proposition 1 and left to the reader. gy

Of course, whether risk aversion exhibits constant-, increasing-, or decreasing
relative risk aversion, or none of these, is an empirical question. Certainly constant
relative risk aversion is very common in equilibrium asset-pricing models. But empirical
support also exists for both increasing relative risk aversion (e.g. Guiso and Paiella
(2001)) and for decreasing relative risk aversion (e.g. Kessler and Wolf (1991)).

To illustrate Proposition 1 and 2, consider the following examples:

Example 1. Let u(x) = —e ™™ Where k>0. This is the case of constant absolute risk

aversion (CARA). In this case R, '(x) =k and R, "(x)=0. Thus, R, is increasing and is

both convex and concave. If we consider X and y such that xy<l1/k U(x,y)U
Supp (F ) xSupp (G), then R (xy)<1and v is more risk averse than u by Proposition 1.
However, if xy >1/k U(x,y) 0 Supp(F)*Supp(G), then R (xy)>1 and v is less risk

averse than u by Proposition 2.



Example 2:  Let u(x)=x—-hkx* where k>0. We restrict x<5- so that marginal
utility is positive. This is the case of quadratic utility. It is straightforward to show that
R, (x) =2kx(1-2kx)”" and that R, is both strictly increasing and convex. Moreover,
R, (xy) <1 if xy<4; O(x,yd Supp(F)¥  Supp(G), so that v is more risk averse
than u by Proposition 1. On the other hand, if -<xy<4- Ox,yQ

Supp (F ) XSupp (G), then R (xy)>1, but we cannot apply Proposition 1 (since R, is

increasing) or Proposition 2 (since R, is convex).

Both uﬁity functions above belong to the so-called HARA class of utility, as does
CRRA utility.* Since we already showed that u and v are equivalent under CRRA, we

see that no general results seem to apply to the HARA class of utility.

4. Affiliated Utility Functions

In this section, we obtain additional results by considering In(xy) =Inx+Iny.

This allows us to adapt several results from the case of additive background risks. In

order to accomplish this, we define the affiliated utility function, #, such that

u(x) =u(In x), where we restrict x >0. Equivalently, we can substitute 8 =Inx to

write #(0)=u(e’) 001 R. In other words, # is the composite of u with the

exponential function. Although # is increasing, it need not be concave. Since

u(xy) =u(lnx +1n y), we will examine the additive risks InX +Iny in this section.

Let #(0) denote absolute risk aversion for u(8), i.e. 7(8)=-u"(0)/u'(0).

Straightforward calculations show that

4'(Inx) _

® R ()=1- ()

+7 (Inx).

* Utility belongs to the HARA class if [(x)]" is linear in x.



Note that R (x)<1 implies that 7 (Inx)<O0. Thus, if R (x)<1 Ox<O0, then #

exhibits risk-loving behavior and is convex. This is not surprising given the construction
of the affiliated utility function.

If u is more concave than the natural logarithm function, # will be concave.
That is, # will be everywhere risk averse if and only if u is everywhere more risk averse
than log utility. If u(x) =Inx, then # is risk neutral. Note that # does not represent
utility of wealth, however. To refer to # as “risk averse, risk loving or risk neutral” is
only a technical convenience, since in all cases, we are assuming that true preferences u
are risk averse. Still, by examining the nature of 7, we will be able to adapt several

existing results on additive background risk to the multiplicative case.

A few examples can help to illustrate the relationship between utility functions

and the corresponding affiliated utility functions:

(i) If u(x) = x, so that preferences are risk neutral, then #(8) = e®, which is risk

loving with constant absolute risk aversion.

@) If u(x)= ﬁxl_y, y>0,y#1, so that preferences exhibit constant relative

risk aversion, then 7(8) =L e"™°. Note that affiliated utility functions exhibit

1
-y

constant absolute risk aversion of degree y-1, which is risk averse only if y>1.

(iii) If u(x)=x-bx>,b>0,x< 55> so that utility is quadratic, then

1(0) = e® —be®®.

10



(iv) The above examples are all special cases of HARA utility. Let

9 -Y
Y >0. Then ﬁ(x):aﬁwe—% :
y

u(x) =g+, n+1>0,

From the definition of v(x) in (2), in a manner analogous to equation (8) we can
derive
E.iu"(Inx+Iny)

9 R (x)=1- =1 +7, (Inx).
O RMFI-g e S = )

From (8) and (9), we easily obtain the following result.

Lemma 2: (i) R (x)2R (x) ifand only if 7 (Inx) 27 (Inx),

and (ii) R (x) is decreasing if and only if 7.(In x) is decreasing, t = u,v.

Equivalent to (i) above, r,(x)2r,(x) if and only if 7 (Inx)=7 (Inx). For the case
where R, <1, so that & is risk loving, we can still interpret 7, >7, as meaning “V is
more risk averse than #,” but in the sense of being less risk loving.

Consider now the set of YOI (x), so that Ey =1. For any y[OI(x),
E(Iny) <0, with equality only holding in the degenerate case, where y =1 a.s. If we
restrict utility such that R, >1, so that # is risk averse, then we know from Gollier and
Pratt (1996) that v I1:s| more risk averse than u for an arbitrary y O (X) if and only if #(x)
is risk vulnerable.” Since risk vulnerability is not an easy trait to verify, Gollier and Pratt
offer us several useful sufficient conditions for risk vulnerability that are easy to check.

In particular, we can apply their results in equation (9) to obtain the following.

> More directly, we would use # to examine the behavior of ¥(In x) = E i(Inx +1n ) for any
nondegenerate ¥ with Elny <0, rather than with Eln y <0. However, the distinction is nil if utility is
differentiable.

11



Proposition 3: Suppose that R (x)>1 [x. Then v is more risk averse than u if either

(i) 7, is decreasing and convex,

or (i) u exhibits standard risk aversion (see Kimball, 1993, and below).

5. Properties of Affiliated Utility

In this section, we examine conditions on the utility function u(x) that must hold if
its affiliated utility function #(0) satisfies the properties given in Proposition 3(7) or 3(i7).
In particular, we first show that R (x) is decreasing and convex, whenever 7, (0) is
decreasing and convex. We then show how there is a close relationship between
standardness of the affiliated utility function # and standard relative risk aversion of u.

From equation (8), we see that

(10) R, '(x)=— #'(Inx)

o=

and

(1) R,"(x) =17 "(Inx) =7 (Inx)].
X

Consequently, since x>0, it follows from equation (10) thatR (x) is decreasing if and
only if 7 (8) is decreasing. Moreover, if 7, (0) is decreasing and convex, it follows from
equation (11) that R (x)is also convex. As a consequence, the conditions holding in
Proposition 3(i) imply those of Proposition 1(7), so that Proposition 3(i) also might be
thought of as a corollary to Proposition 1.

The property of standard risk aversion, as presented in Kimball (1993), is

analyzed at length in Gollier (2001). It is especially useful since it is easily characterized

12



by decreasing absolute risk aversion and decreasing absolute prudence, where absolute
uY"(x)

M"()C) '

prudent. If the affiliated utility function is standard risk averse, we may apply

prudence is measured as p(x)=-—

If u'"'(x)>0, preferences are said to be

Proposition 3(ii) to conclude that v is more risk averse than u.
We first obtain a preliminary result that will prove useful. Straightforward

calculations show that

") () =" (x) + 2"

12) R'(x)=
(12) R, '(x) T

=n I =F(x) +R,(x)],

= xu'""(x)

u!l

where P (x) = denotes the measure of relative prudence. Consequently, we

directly obtain the following result.

Lemma 3: R, '(x) % 0 ifandonlyif P (x) § 1+R,(x).

We already know that () is risk averse whenever R (x) >1. Lemma 4 shows a

condition on the underlying preferences that is equivalent to the prudence of (0).

Lemma 4: The affiliated utility function 1(0) exhibits prudence, u'''(0) >0 [0, if and
1
lyif P(x)>3————.
only if P, (x) R )

Proof: Recall that #(Inx) =u(x), so that we obtain the following by differentiating with

respect to Inx:
u'(Inx) = xu'(x)
2" (Inx) = xu'(x) + xu'" (x)

2" (Inx) = xu' (x) +3x%u" (x) + x°u'" (x).

13



Thus, dividing 4'"'(Inx) by —x’u''(x) >0 we obtain

i) >0 o _xu') w0 P(x)>3- 1
u"(x) xu"(x) R, (x)

u

From Lemmata 3 and 4, we can easily now show the following.

Lemma 5: If u exhibits decreasing relative risk aversion, the affiliated utility function u

exhibits prudence.

Proof: From Lemmata 3 and 4, the conclusion follows if 1+ R, (x) =3 -[R,(x)]"". Since
R, (x) is positive, this is equivalent to {[R, (x)]" —2R, (x)+1} ={R (x) -1}* =0, which

obviously holds. g

We can use the derivatives in the proof of Lemma 4 to calculate the measure of

absolute prudence for the affiliated utility function. In particular, we obtain

u"(In x) _ _xzu "(x)+2xu"(x) = P(x)-2

(13) ﬁ(ln x) =- i "(ln x) xu "(x) +y '(x) 1 _(Ru (x))_l

5

where the last step follows from dividing both the numerator and denominator in (13) by

xu''(x).
We are now ready to prove that standard relative risk aversion of u is a necessary

condition for # to be standard:

14



Proposition 4: Suppose that i exhibits standard risk aversion. Then R, (x)>1 and u

exhibits standard relative risk aversion; that is, both P (x) and R (x) are positive and

decreasing.

Proof: From equation (8), we know that # risk averse implies that R (x)>1. Since #

exhibits decreasing absolute risk aversion, it follows from Lemma 2 that u exhibits
decreasing relative risk aversion. Thus, we must show that u also exhibits positive and
decreasing relative prudence. That relative prudence is positive follows easily from
Lemma 3.

Differentiating equation (13) with respect to Inx we obtain

dp(Inx) _ x{1-(R,(x)) 1P, (x) =x[P,(x) —2](R,(x)) "R, '(x)
dlnx [1-(R,(x)"'T '

Because R, (x)>1, it follows that [R (x)]’-R,(x)>0 and, from Lemma 3, that

P (x)—2>0. Thus, it follows that w is negative if and only if
nx

F(x)-2

14 P'(x)<
I R or R

R,'(x)<0. m

From the proof of Proposition 4, we see that u exhibiting standard relative risk
aversion is necessary, but not quite sufficient to imply that the affiliated utility function

u is standard risk averse. However, we do obtain the following result.

Corollary 1: Let R (x)>1. If u exhibits standard relative risk aversion and the

inequality in (14) holds, then the affiliated utility function u is standard risk averse.

15



Proof: Since R, (x)>1, it follows from equation (8) that #(8) >0. Standard relative risk

aversion of u implies, from Lemma 2, that # exhibits decreasing absolute risk aversion.

It also follows, from Lemma 5, that #">0. Since (14) holding implies that u# also

exhibits decreasing absolute prudence, the Corollary follows. gy

Example: Let u belong to the HARA class of utility functions, u(x) =& +§)l_y and

suppose that y>1. Now R (x)=

1 Thus, it follows easily that u exhibits
n+,x

decreasing relative risk aversion if and only if 7<0. Hence, x>n+,x, so that

R,(x)>1. To see that u exhibits standard relative risk aversion, note that

P(x)= HTVRM (x). Thus, u exhibits decreasing relative prudence if and only if u exhibits

decreasing relative risk aversion. Thus, u is standard relative risk averse and R, (x)>1.

We now wish to show that # is standard risk averse.

By Corollary 1, we would be done if the inequality in (14) holds. Since both
P '(x)<0 and R, '(x) <0, inequality (14) is equivalent to

Ity Rm-2 _ (HR(M)-2
y o RMIR ()= R,M[R,(x)~1]

= RM™I[R,x)~1]>R, (x)-2(55)

-y
o R, (x)=1 >—=.
[R(0=1F >

But, this last inequality follows, since y>1. Since # is standard risk averse, it follows

from Proposition 3(i7) that the derived utility function v is more risk averse than u.

16



We can extend the example above to the following more general result.

Corollary 2: Let u belong to the HARA class of utility functions, u(x) =& +§)1_y , With
the domain of u given as [a,®), where a>(-1y). Then the following two conditions

are equivalent:

(1) u is standard relative risk averse with R, (x)>1.

(ii) u is standard risk averse.

Proof: The domain of u guarantees risk aversion if and only if ¥y >0. As in the above
example, it follows that u exhibits decreasing relative risk aversion if and only if n <0.

Moreover, R (x)>1 as x — o requires that y>1. Thus (/)0 (ii) follows from
identical arguments to those made in the preceding example, whereas (i) U (i) follows

from Proposition 4. gy

6. Comparative Risk Aversion

We start here by examining some intrapersonal characteristics of risk aversion.
We will later examine some interpersonal characteristics. From equation (4), we see
trivially that R (x) will be everywhere greater than [less than] 1 if R (x) is everywhere
greater than [less than] 1. This result is more than just a technicality. Since many results

in the literature on choice under uncertainty specify a global condition that either

R,(x)>1 or R, (x)<l, such results also will hold in the presence of a multiplicative

background risk, since R, (x) also will satisfy the appropriate property.

More generally, it follows trivially from equation (4) that

17



Proposition _5: Given any yWI (x), with distribution function G,

inf{R (xy} <R (x)<su R, (0p) OO Supp(G).

A key result in the literature on additive background risk is that the properties of
constant absolute risk aversion and decreasing absolute risk aversion for utility are
carried over to the derived utility function. On the other hand, the property of increasing
absolute risk aversion does not always carry over. We next develop analogous results for
relative risk aversion in the case of a multiplicative background risk. We have already
seen that v inherits constant relative risk aversion from u. Indeed, the level of constant
risk aversion is identical. To see that the same holds true for decreasing relative risk
aversion, we first require the following Theorem, which is due to Gollier and Kimball

(1996). A proof of this Theorem can also be found in Gollier (2001).

Lemma 6 (Diffidence Theorem, Gollier and Kimball): Let I\ denote the set of all random

variables with support contained in the interval [a,b] and let f and g be two real-valued
functions. The following two conditions are equivalent:

(i) Forany yU\ , Ef(yF 0 O Eg(®) O.

(i) ] R such that g(y)2mf(y) ULl [a,b].

We now are ready to show that v also inherits decreasing relative risk aversion

6
from u.

Proposition 6: Let v have a bounded support. If u exhibits nonincreasing relative risk

aversion, then so does the derived utility function v.

6 Although aesthetically unappealing, the limitation to bounded supports is not particularly restrictive. We
already limit ) to be positive, so set a=0. Now, for any £>0, we can always find a value for b such that

the probability that y > b is less than €.

18



Proof: It follows from Lemma 3, that we need to show that, [x,

(15) P(x)21+R(x) O P t R(x).

That is, we must show that

—Eu"(xy) )73 X —Eu"(xy) )72x

RN LAMEINY
Eu"(xp) 3’ Eu'(xp)y

(16)

Inequality (16) is equivalent to the following:

(17)  Eu"(H)7x+(A-Du'()F1=0 O  Eu"(H)i’+ Au"(xp)j’3 0.

By the Diffidence Theorem, (17) will hold if we can find a real number m, such that

(18)  u"Cp)y’x+Au"(xp)y* Zmlu"(xp)y*x +(A =Du'(xy)y] Dy

The left-hand side of (18) can be written as

19y M () wCw)y DouCy) SO, (xy)m[/\ P, (x)] .
u'(xy) x Hu'tw) u * u

Since P,(x) 21+ R, (x), it follows from (18) and (19) that

Q0)  u"()yx+Au(w)y 2 R, () ) <1 =R ()]
X

From (18) and (20), we would be done if we could find an m, such that

“R (xy)@[/\ —1=R, ()] 2m[u"(0)y*x + A ~Du' ()]

(21) !
=mu'(xy)y[A =1 =R, (xp)].
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This follows by taking m = (1—A)/x, since we then obtain (21) is equivalent to

(22) =R, ()[A-1-R,()] +A -DA -1 =R, (x)] FA 4 R, ()] 2.

Hence, (15) holds and v exhibits decreasing relative risk aversion. pgg

We next turn to examining some interpersonal characteristics of comparative risk
aversion. Kihlstrom, et al%l (1981) and Ross (1981) examined these for the case of an
additive background risk.” Their results are special cases of more general results found in
Nachman (1982). Nachman is one of the few who considers the case of multiplicative
background risks as a special case of his general results, albeit briefly. The basic

question we address is the following: If agent 1 is more risk averse than agent 2, will this

property be preserved in the presence of a multiplicative background risk? That is, if u,

is more risk averse than u,, when will it follow that v, is also more risk averse than v, ?

One result that is quite easy to obtain is the following:

Corollary 3: Let u* and u’ be risk-averse utility functions such that u® is more risk
averse than u’, i.e. R‘(x)=R’(x) [Ox. If OM R such that Ox R(x)=A=R’(x),
then v* is more risk averse than v’ .

Proof: Follows directly from Proposition 5 and equation (4). g

The proof of Corollary 3 also follows directly from the following result, which is

due to Nachman (1982). We include it here for completeness.

7 Actually, Ross considers the background risk to be mean-independent, which is not as restrictive as the
assumption of independence.
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Proposition (Nachman): Let u® and u’ be risk-averse utility functions such that u® is

more risk averse than u’, i.e. R*(x)= R’ (x) Ox. Ifthere exists a function u® such that
R(x)=R:(x)=R’(x) Ox and R’(x) is nonincreasing, then v* is more risk averse

than v" .

It follows easily from Nachman’s result that v* will be more risk averse than v’
if either of the utility functions, u* or u”, exhibits nonincreasing relative risk aversion.
This result is a direct counterpart to the result by Kihlstrom, et al. in the case of additive

background risk.

7. Concluding Remarks

The notion that markets are complete is a mathematical nicety that does not hold
true in practice. Many types of political, human-capital and social risks, as well as some
financial risks, are not represented by direct contracts. Obviously, many of these risks
can be hedged indirectly - - so-called ‘“cross hedging.” However, even when such
“background risks” are independent of other risks and cannot be “hedged” per se, they
may have an impact upon risk-taking strategies that are within the control of the
economic agent. Much has been done over the past twenty years in examining the effects
of additive background risks. But surprisingly little has been done to systematically
study economic decision making in the presence of a multiplicative background risk.

This paper is a first step towards developing a comprehensive theory of
background risk in this direction. As the few examples in our introduction show, models
with such multiplicative background risks are not hard to find within the literature. An
understanding of the basic concepts presented here hopefully might help us understand a
multitude of results for which standard theories (in the absence of any background risk)

yield predictions that seem at odds with everyday observations of reality.
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Since risk aversion captures all the essential information about preferences within
an expected-utility framework, our focus here has been on comparing risk aversion with
and without the background risk. As we learn more about these inherent properties, we

hopefully will be able to find better models to use in the realm of positive theories.
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