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1 Introduction

In an incomplete market, the determination of a unique price and of a replicating hedging
strategy by means of no-arbitrage arguments is no longer possible even if the market
model is arbitrage-free. A criterion for determining a ”good” hedging strategy and a ”fair”
price is the mean-variance hedging approach which was first proposed by Föllmer and
Sondermann (1986). It focuses on the minimization of the expected quadratic tracking
error between a given contingent claim and the value process of a self-financing strategy
at the terminal date.

Gouriéroux, Laurent and Pham (1998) (and independently Rheinländer and Schweizer
(1997)) solve the general mean-variance hedging problem when the risky assets price
process is a continuous semimartingale. Their key tool is the so-called hedging numéraire,
which is used both as a deflator and to extend the primitive assets family. This idea
enables them to transform the original problem into an equivalent and simpler one, which
can easily be solved by means of the Galtchouk-Kunita-Watanabe theorem.

But this general mean variance hedging approach does not take into account additional
information on market prices. In this paper we assume the existence of such additional
market information, which is represented by a prescribed, finite set of observed prices of
different contingent claims. These specific contingent claims have to be non-attainable or
non-replicable by dynamic portfolio strategies in order to deliver new, relevant information
on the underlying price system of the market. Due to no-arbitrage arguments, the set of
all possible linear price systems or equivalent martingale measures shrinks and we have
to consider a modified mean-variance hedging problem, which allows for buying or selling
these specific contingent claims at the observed prices. Solving this by means of the
techniques developed by Gouriéroux et al. (1998), we obtain an explicit description of the
optimal hedging strategy and a constrained variance-optimal signed martingale measure,
which generates both the approximation price and the observed option prices.

The paper is organized as follows. Section 2 introduces the model and derives the
techniques to find a price and a hedging strategy for an attainable contingent claim.
Two approaches of the option pricing theory are considered: the hedging approach and
the martingale approach. It is shown that this option pricing theory is insufficient in
the incomplete case when there are non-attainable contingent claims. In section 3, we
assume the existence of additional information represented by a given, finite set of observed
contingent claim prices. In order to satisfy the no-arbitrage condition of our financial
market under this modified framework, we discuss the impact of this new information and
trading possibilities on the traditional techniques of section 2. Section 4 describes in detail
our modified mean-variance hedging approach, which has to be modified with respect to
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the assumption of the additional information and new trading possibilities of section 3.
We present a solution following the idea of Gouriéroux et al. (1998). In Section 5, we
discuss some examples to illustrate the relevance of the additional market information.
The final section 6 is devoted to a convergence analysis.

2 Option Pricing Theory

We consider a financial market operating in continuous time and described by a probability
space (Ω, IF, P ), a time horizon T and a filtration IF = {Ft, 0 ≤ t ≤ T} satisfying the
usual conditions, where Ft represents the information available at time t. A continuous
semimartingale S = (St)0≤t≤T describes the price evolution of a risky asset in the financial
market containing also some riskless asset B = (Bt)0≤t≤T , with Bt ≡ 1∀ t ∈ [0, T ].

A central problem in finance in such a framework is the pricing and hedging of a
T -contingent claim H, which is a FT -measurable, square-integrable random variable H
describing the net payoff at time T of some financial instrument, i.e. H ∈ L2(Ω, FT , P ).
A famous example of a T -contingent claim is the European call option on the risky asset
S with expiration date T and strike price K. The net payoff of such a European call
option at time T is given by H(ω) = max(ST (ω)−K, 0).

2.1 Hedging Approach

The hedging approach tries to solve the problem of pricing and hedging a given T -
contingent claim H by dynamically replicating H with a dynamic portfolio strategy of
the form (θ, η) = (θt, ηt)0≤t≤T where θ is a predictable process and η is adapted. In such
a strategy, θt describes the number of units of the risky asset at time t and ηt describes
the amount invested in the riskless asset at time t.

At any time t, the value of the portfolio (θt, ηt) is then given by:

Vt = θtSt + ηt .

A strategy is called self-financing if its value process V = (Vt)t∈[0,T ] can be written as
the sum of a constant and a stochastic integral with respect to S:

Vt = x+

t∫
0

θs dSs ,(1)

where x = V0 denotes the initial cost to start the strategy.
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>From this definition we see that a self-financing strategy (θ, η) is completely deter-
mined by the initial cost x and θ and can be identified with the pair (x, θ). A more
mathematical formulation will be given in the next section.

The right-hand side in equation (1) represents the total earnings or capital gains which
you realize on your holdings up to time t. All changes in the value of the portfolio are
due to capital gains; withdrawal or infusion of cash are not allowed. After time 0, such a
strategy is self-supporting: any fluctuations in S can be neutralized by rebalancing θ and
η in such a way, that no further gains or losses are incurred.

A T -contingent claim H is said to be attainable iff there exists a self-financing strategy
(xH , θH) whose terminal value V xH ,θH

T equals H almost surely:

H = xH +GT

(
θH

)
P - a.s.,(2)

with GT (θ) :=
∫ >
0 θs dSs. H can be perfectly replicated.

If the financial market is arbitrage-free, i.e. it does not allow for arbitrage opportu-
nities, the price of H at time 0 must be equal to xH and (xH , θH) is a hedging strategy,
which replicates the contingent claim H. We speak of a complete market if all contingent
claims are attainable.

This approach is the basic idea of the seminal paper of Black and Scholes (1973). Their
well-known Black-Scholes model is a complete model. In such a framework the pricing
and hedging of contingent claims can be done in a preference-independent fashion. But
this completeness property is destroyed by modifying the original underlying stochastic
source of the model and the model becomes incomplete, which means that there are
non-attainable contingent claims.

For a non-attainable T -contingent claim H, it is by definition impossible to find a
self-financing strategy with terminal value VT = H and representation (2).

This shows that the problem of pricing and hedging a non-attainable T -contingent
claim H cannot be solved by means of the hedging approach. The next approach, the
martingale approach, delivers linear price systems in form of equivalent martingale mea-
sures, which are consistent with the hedging approach in case of attainable contingent
claims and compute ”fair” prices in case of non-attainable contingent claims.

2.2 Martingale Approach

A second, more mathematical approach has been introduced by Harrison and Kreps (1979)
and Harrison and Pliska (1981). Their basic idea is to use so-called equivalent martingale
measures and the techniques of the martingale theory for a solution of the pricing and
hedging problem:
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Definition 1 (equivalent martingale measure):
The probability measure Q on (Ω,FT ) is an equivalent martingale measure of P if Q ∼ P ,
dQ
dP ∈ L2(Ω,FT , P ) and if the (discounted) price process S is a Q-martingale.

Let M(P )e := {Q ∼ P : dQ
dP ∈ L2(P ), S is a Q-martingale } denote the set of all

equivalent martingale measures of P .

The following assumption makes use of the result of the well-known ”first fundamental
theorem” and implies that the market is arbitrage-free:

Assumption 1:
There exists at least one equivalent martingale measure:

M(P )e 6= ∅ .

We need to give a more rigorous mathematical formulation of a self-financing portfolio
strategy:

Definition 2:
A strategy (x, θ) is self-financing if its value process allows a representation of the form (1)
and if x ∈ IR and θ ∈ Θ, where

Θ :=
{
θ is a predictable process such that GT (θ) ∈ L2(Ω,FT , P )

and for each Q ∈M(P )e the process (Gt(θ))t∈[0,T ] is a Q-martingale.
}

GT (Θ) :=
{
GT (θ) : θ ∈ Θ

}
denotes the set of investment opportunities with initial

cost 0 and GT (x,Θ) :=
{
x + GT (θ) : x ∈ IR, θ ∈ Θ

}
denotes the set of all attainable

T -contingent claims.

Remark 1:
By construction it is obvious that GT (Θ) j L2(Ω,FT , P ). The integrability conditions of
the definition of a self-financing strategy ensure that GT (x,Θ) is closed in L2(Ω,FT , P ).
(see Delbaen and Schachermayer (1996a))

The well-known Galtchouk-Kunita-Watanabe projection theorem (see Ansel and Stricker
(1993)) delivers a characterization of an arbitrary contingent claim H with respect to a
given equivalent martingale measure Q:
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Theorem 1 (Martingale Representation Theorem):
If Q ∈M(P )e, a T -contingent claim H can be uniquely written as

H = EQ
[
H

]
+GT (ψQ,H) + LQ,H

T a.s.,(3)

where

(i) (LQ,H
t )0≤t≤T is a square-integrable, strongly orthogonal martingale, i.e.

EQ
[
LQ,H

t · St

]
= 0 for all t ∈ [0, T ] and EQ

[
LQ,H

T

]
= 0.

(ii)
(
EQ[H], ψQ,H

)
is a self-financing strategy.

Firstly, this result shows the consistency between the martingale approach and the
hedging approach: If H is attainable, there exists a self-financing strategy and LQ,H

T ≡ 0
must hold in representation (3) for all equivalent martingale measures Q ∈ M(P )e. Due
to no-arbitrage arguments,

(
EQ[H], ψQ,H

)
must be the unique hedging strategy of H and

does not depend on the choice of Q ∈M(P )e.
If our model is complete and all contingent claims are attainable, the equivalence of the

martingale approach and the hedging approach is the statement of the next well-known
theorem:

Theorem 2 (Second Fundamental Theorem):
The equivalent martingale measure is unique if and only if the market model is complete.

Secondly, in case of a non-attainable T -contingent claim H we obtain Q
[
LQ,H

T 6= 0
]
>

0. Thus the strategy
(
EQ[H], ψQ,H

)
cannot replicate H. But the martingale approach

can be interpreted as an extension of the hedging approach by defining EQ[H] to be the
”fair” price of the contingent claim H. Hence the expectation operator of an equivalent
martingale measure can be seen as a pricing function or linear price system [see Harrison
and Pliska (1981), proposition 2.6]. But it should be pointed out that this ”fair” price
of a non-attainable contingent claim depends on the specific choice of the equivalent
martingale measure Q ∈ M(P )e. Furthermore, all prices of contingent claims should
be computed with the same selected equivalent martingale measure in order to avoid
arbitrage opportunities.

So in case of an incomplete market there exists the selection problem to find an ”opti-
mal”equivalent martingale measure and we have to introduce an useful criterion according
to which this ”optimal” equivalent martingale measure (or price system) has to be chosen.

One such criterion is the mean-variance hedging approach, which was first proposed
by Föllmer and Sondermann (1986) and was extended by Bouleau and Lamberton (1989),
Schweizer (1994) and Schweizer (1996) (see Schweizer (2001) for an overview).
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original mean-variance hedging problem

(4)

Suppose H is a T -contingent claim. Minimize

E
[(
H − x−GT (θ)

)2
]

over all self-financing strategies (x, θ).

The idea of the mean-variance hedging approach is to insist on the usage of self-financing
strategies and to minimize the ”risk”

H −
(
x+GT (θ)

)
(5)

between a non-attainable T -contingent claim H and the payoff of a self-financing strategy
(x, θ) at the terminal date T . Here, ”risk” is measured by the expected (with respect to
the subjective probability measure) quadratic distance (5) at the terminal date T .

Therefore, this definition of risk does not depend on the price evolution of the self-
financing strategies between time 0 and T . The quadratic terminal risk is simply the
expected quadratic cost of revising the terminal portfolio in order to replicate H. But it
does depend on the underlying subjective probability measure P . The question how to
start with an ”optimal” subjective probability measure P is still an open problem.

This original mean-variance hedging problem has been solved by Gouriéroux et al.
(1998) and independently by Rheinländer and Schweizer (1997) when price processes are
continuous semimartingales. The key tool of Gouriéroux et al. (1998) is the so-called
hedging numeraire

V ∗T := 1−GT (θ∗) ,(6)

which is defined to minimize E
[
(1−GT (θ))2

]
over all θ ∈ Θ:

E
[
(1−GT (θ))2

]
≥ E

[
(V ∗T )2

]
.

Gouriéroux et al. (1998) then show that V ∗T has the following properties

V ∗T > 0 , E[V ∗T ·GT (Θ)] = 0 , E[(V ∗T )2] = E[V ∗T ] .(7)

Furthermore, they introduce a new probability measure P̃ defined by

dP̃

dP
:=

V ∗T
E[V ∗T ]

,(8)

which is the variance-optimal martingale measure, i.e. P̃ ∈ M(P )e and P̃ minimizes
Var[dQ

dP ] over all Q ∈ Ms. (see also Delbaen and Schachermayer (1996b) and Schweizer
(1996).)
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Finally, the optimal initial price xP,H of the optimal self-financing strategy (xP,H , θP,H)
can be characterized as an expected value of the T-contingent claim H under the newly
introduced measure P̃ : xP,H = EP̃

[
H

]
. (See Gouriéroux et al. (1998) or Rheinländer and

Schweizer (1997) for an explicit description of θP,H .)
Since this optimization is done in a Hilbert space, this solution delivers a unique

orthogonal decomposition for the T -contingent claim H under P :

H = EP̃ [H] +GT (θP,H) + LP,H
T(9)

with E[LP,H
T ] = 0 and GT (Θ)⊥LP,H

T , i.e E[GT (Θ) · LP,H
T ] = 0.

3 Option Pricing Theory under additional

Market Information

We consider the financial market of the previous section, but under the assumption of
additional market information, which is represented by a given, finite set of at time 0
observed T -contingent claim prices.

Assumption 2:
Given a fixed set of T -contingent claims

{
C1

T , . . . , C
n
T

}
the price of the T -contingent claim

Ci
T ∈ L2(P ) at time 0 is Ci

0 ∈ IR for all i ∈ 1 . . . n.
The following conditions are satisfied:

(a) The T -contingent claims CT :=
(
C1

T , . . . , C
n
T

)> are non-attainable.

(b) Let LP,C
T :=

(
LP,C1

T , . . . , LP,Cn

T

)
be derived by the orthogonal decomposition of the

T - contingent claims CT under P like in (9) such that LP,Ci

T ⊥G(x,Θ). Then

E
[
LP,C

T (LP,C
T )>

]−1 exists.

(c) The observed T -contingent claim prices
{
Ci

0, i = 1 . . . n
}

are ”admissible”, i.e. there
exists at least one equivalent martingale measure Q ∈M(P )e such that

EQ
[
CT

]
= C0(10)

with C0 := (C1
0 , . . . , C

n
0 )>.

Assumption 2 says that for each i = 1, . . . , n we exogenously observe the price Ci
0 of

the T -contingent claim Ci
T on the financial market. In particular, we are allowed to trade

these T -contingent claims at these prices at time 0.
Item (a) implies that these observed contingent claim prices deliver new, relevant

information on the underlying pricing function or price system of the market. If the CT
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were attainable we would not gain any new relevant information, because their prices
would uniquely determined by no-arbitrage arguments.

Point (b) is a more mathematical assumption. The orthogonal decomposition can be
derived by applying the original mean variance hedging approach. (An explanation of
these notions will be given later on.) It ensures that every contingent claim Ci

T of the
observed set is not redundant, but increases the information about the price system of
our financial market.

The third condition (c) ensures that the observed contingent claim prices are reasonable
and can be replicated by an equivalent martingale measure. Since our model has to be
arbitrage-free, our computed model prices must coincide with these observed prices: Only
those equivalent martingale measures are useful as pricing functions, which generate the
observed contingent claim prices C0. As a consequence, the set of equivalent martingale
measures to be considered in the selection problem of the previous section shrinks to the
set of admissible equivalent martingale measures:

Definition 3:
An equivalent martingale measure Q ∈M(P )e with property (10) is called admissible.
The set of all admissible equivalent martingale measures is denoted by

M̃(P )n
e :=

{
Q ∈M(P )e : EQ

[
Ci

T

]
= Ci

0 ∀ i = 1 . . . n
}

���������

additional market−−−−−−−−−−→
information

���������

	�
��������

Figure 1: Observing the prices {C1
0 , . . . , C

n
0 } restricts the set of possible

equivalent martingale measures.

The definition of the admissible equivalent martingale measure and assumption 2 imply
that

M̃(P )n
e 6= ∅ and M̃(P )n

e  M(P )e .

An admissible equivalent martingale measure is consistent with the observed contin-
gent claim prices, hence it does not violate the no arbitrage condition and can be used as
a pricing operator.
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Assuming this kind of additional market information implies new investment oppor-
tunities: There is in addition to the self-financing strategy the possibility to buy (or to
sell) δi units of the contingent claim Ci

T for the price δiCi
0 at time 0. Hence one has to

take into account this additional trading possibilities in the construction of the possible
portfolio strategies. Therefore we introduce mixed portfolio strategies:

Definition 4:
If (x, θ) is a self-financing strategy and δ := (δ1, . . . , δn)> ∈ IRn then the value of the
mixed portfolio strategy (x, θ, δ) at time T is given by

V x,θ,δ
T := x+GT (θ) + δ>(CT − C0 ·BT ) = x+GT (θ) + δ>(CT − C0)

A mixed portfolio strategy can be interpreted as a composition of a dynamic strategy
and a static strategy. Strategies, which trade the T -contingent claims CT dynamically,
cannot be allowed, since the price evolution of the T -contingent claims CT between time
0 and T is unknown. Any specification of these price processes between time 0 and T

would restrict the set of admissible martingale measures in a subjective way and cannot
be justified by observations on our financial market.

The set of attainable T contingent claims must therefore be augmented:

Definition 5:
The set of T - contingent claims, which are attainable by using mixed portfolio strategies,
is given by

AT :=
{
x+ g + δ>(CT − C0) : for all x ∈ IR, g ∈ GT (Θ), δ ∈ IRn

}
.

Remark 1 implies that AT j L2(P ) and that AT is closed in L2(P ).

AT (0) :=
{
g + δ>(CT − C0) : for all g ∈ GT (Θ), δ ∈ IRn

}
denotes the set of T -

contingent claims, which are attainable by using mixed portfolio strategies with initial
cost 0.

The following theorem generalizes theorem 1. It presents an orthogonal decomposition
of a T -contingent claim H with respect to an admissible equivalent martingale measure
into a part, that can be replicated by mixed portfolio strategies and belongs to AT , and
into a non-replicable, orthogonal part.

Theorem 3 (modified martingale representation theorem):
Suppose Q ∈ M̃(P )n

e . Let LQ,C
T :=

(
LQ,C1

T , . . . , LQ,Cn

T

)
where LQ,Ci

T is derived by ap-
plying the martingale representation (3) to Ci

T , for all i = 1, . . . , n, and assume that
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EQ
[
LQ,C

T (LQ,C
T )>

]−1 exists. A T -contingent claim H can be uniquely written as

H = EQ
[
H

]
+GT (ψ̃Q,H) + δQ,H>(

CT − C0

)
+NQ,H Q a.s.,(11)

where

(i) NQ,H ∈ L2(Ω,FT , Q), EQ
[
NQ,H

]
= 0 and EQ

[
NQ,H · a

]
= 0 for all a ∈ AT , i.e.

NQ,H ∈ AT
⊥.

(ii)
(
EQ

[
H

]
, ψ̃Q,H , δQ,H

)
is a mixed portfolio strategy, i.e. EQ

[
H

]
+ GT (ψ̃Q,H) +

δQ,H>(
CT − C0

)
∈ AT .

Proof. According to theorem 1 (martingale representation theorem) the T -contingent
claim H can be written as

H = EQ
[
H

]
+GT (ψQ,H) + LQ,H

T ,

with EQ[LQ,H
T ] = 0 and EQ[GT (Θ)LQ,H

T ] = 0.
In the same way the T -contingent claims CT admit the representation

Ci
T = EQ[Ci

T ] +GT (θQ,Ci
) + LQ,Ci

T for all i = 1, . . . , n ,(∗)

with EQ[LQ,Ci

T ] = 0 and EQ[GT (Θ)LQ,Ci

T ] = 0 for all i = 1, . . . , n.
Therefore for δ ∈ IRn

H = H − δ>(CT − C0) + δ>(CT − C0)

=EQ
[
H

]
− δ>(EQ[CT ]− C0) +GT (ψQ,H − δ>θQ,C) + (LQ,H

T − δ>LQ,C
T )

+ δ>(CT − C0)
(12)

Since Q ∈ M̃(P )n
e is an admissible equivalent martingale measure the expression

δ>(EQ[CT ]− C0) is equal to 0, and

=EQ
[
H

]
+GT (ψQ,H − δ>θQ,C) + δ>(CT − C0) + (LQ,H

T − δ>LQ,C
T ) ,(13)

where
(
EQ

[
H

]
, ψQ,H − δ>θQ,C

)
is a self-financing strategy because of the linearity of

stochastic integrals.
Now the parameter δ has to be chosen such that the following expression is satisfied

for all
(
x+ g + λ>(CT − C0)

)
∈ AT :

0 != EQ
[(
x+ g + λ>(CT − C0)

)
·
(
LQ,H

T − δ>LQ,C
T

)]
It follows from equation (∗) and from the definition of LQ,H

T and LQ,C
T that

= λ> EQ
[
LQ,C

T ·
(
LQ,H

T − δ>LQ,C
T

)]
10



This expression is equal to 0 if δ is chosen such that

δQ,H := EQ
[
LQ,C

T (LQ,C
T )>

]−1 EQ
[
LQ,H

T LQ,C
T

]
(14)

= CovQ
[
LQ,C

T , LQ,C
T

]−1 CovQ
[
LQ,H

T , LQ,C
T

]
Setting

ψ̃Q,H := ψQ,H − δQ,H>θQ,C and NQ,H := LQ,H
T − δQ,H>LQ,C

T

yields that
(
EQ

[
H

]
, ψ̃Q,H , δQ,H

)
is a mixed portfolio strategy and that

NQ,H ∈ L2(FT , Q) with EQ
[
NQ,H

]
= 0 and NQ,H ∈ AT

⊥.

This theorem shows (similar to the general approach) the consistency between the
martingale approach and the hedging approach in our modified framework: If H ∈ AT we
obtain NQ,H ≡ 0 and a unique replicating mixed portfolio strategy for all Q ∈ M̃(P )n

e .
So again, the expectation operator of an admissible equivalent martingale measure can be
interpreted as a pricing function.

Since the variance can be interpreted as a measure of risk, we obtain from the mod-
ified martingale representation that the risk of an arbitrary contingent claim H can be
decomposed into a hedgeable part and an intrinsic, non-hedgeable part. The intrinsic risk
is the specific risk of a non-attainable T -contingent claim, which cannot be eliminated
using mixed portfolio strategies. Let Q ∈ M̃(P )n

e , then

VarQ
[
H

]
= VarQ

[
EQ

[
H

]
+GT (ψ̃Q,H) + δQ,H(CT − C0) +NQ,H

]
= VarQ

[
EQ

[
H

]
+GT (ψ̃Q,H) + δQ,H>(CT − C0)

]
+VarQ

[
NQ,H

]
+ CovQ

[
(EQ

[
H

]
+GT (ψ̃Q,H) + δQ,H>(CT − C0)), NQ,H

]
.

The last term is equal to zero because of NQ,H ∈ AT
⊥ and

(
EQ

[
H

]
+ GT (ψ̃Q,H) +

δQ,H>(CT − C0)
)
∈ AT . Hence

= VarQ[EQ
[
H

]
+GT (ψ̃Q,H) + δQ,H>(CT − C0)]︸ ︷︷ ︸

hedgeable risk

+VarQ[NQ,H ]︸ ︷︷ ︸
intrinsic risk

.

Note that the intrinsic risk of an arbitrary contingent claim H in our modified frame-
work is smaller than in the general case without the assumption of additional observed
contingent claim prices:

VarQ
[
NQ,H

]
≤ VarQ

[
LQ,H

T

]
.

If Q is an equivalent martingale measure but not admissible, similar results as in
theorem 3 can be formulated
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Remark 2:
In case ofQ ∈M(P )e\M̃(P )n

e , the equivalent martingale measureQ is not admissible , i.e.
it does not satisfy the condition EQ[CT ] = C0. But by setting ψ̃Q,H := ψQ,H−δQ,H>θQ,C ,
δQ,H := EQ

[
LQ,C

T (LQ,C
T )>

]−1 EQ
[
LQ,H

T LQ,C
T

]
and NQ,H := LQ,H

T − δQ,H>LQ,C
T it follows

from equation (12) and its following conclusions that a T -contingent claim H can be
written as

H = EQ
[
H

]
− δQ,H>(

EQ[CT ]− C0

)
+GT (ψ̃Q,H) + δQ,H>(

CT − C0

)
+NQ,H ,(15)

where NQ,H ∈ L2(Ω,FT , Q), EQ[NQ,H ] = 0 and NQ,H ∈ A⊥T .

This observation leads us to the idea of constructing a new, appropriate measure that
admits a representation like in theorem 3. The following notion has to be defined for that
reason

Definition 6 (signed admissible martingale measure):
A signed admissible martingale measure of P is a signed measure Q on (Ω,FT ) with
Q[Ω] = 1, Q� P , dQ

dP ∈ L2(Ω,FT , P ) and

EQ
[
a
]

= E
[dQ
dP

a
]

= 0 for all a ∈ AT (0).(16)

M̃(P )n
s denotes the convex set of all signed admissible martingale measures of P .

Note that condition (16) already implies

EQ
[
Ci

T − Ci
0

]
= E

[dQ
dP

(
Ci

T − Ci
0

)]
= 0 ∀ i = 1, . . . , n

for a signed admissible martingale measure Q ∈ M̃(P )n
s .

Lemma 1:
If Q ∈M(P )e\M̃(P )n

e and if EQ[LC
TL

C
T ]−1 exists, a signed admissible martingale measure

W can be constructed by

(17)
dW

dQ
= 1− EQ[CT − C0]> EQ[LQ,C

T LQ,C
T

>
]−1LQ,C

T ,

which satisfies

EW
[
H

]
= EQ

[
H

]
− δQ,H>(

EQ[CT ]− C0

)
for all T -contingent claims H.

12



Proof. Since Q ∈ M(P )e\M̃(P )n
e is an equivalent martingale measure we can make use

of the martingale representation theorem 1 with respect to CT . Defining the measure W
by

dW

dQ
= 1− EQ[CT − C0]> EQ[LQ,C

T LQ,C
T

>
]−1LQ,C

T ,

it follows that W is a signed measure on (Ω,FT ) and dW
dQ ∈ L2(Ω,FT , Q).

If H is a T -contingent claim the definition of W gives us

EW
[
H

]
= EQ

[
H

(
1− EQ[CT − C0]> EQ[LQ,C

T LQ,C
T

>
]−1LQ,C

T

)]
= EQ[H]− EQ[CT − C0]> EQ[LQ,C

T LQ,C
T

>
]−1 EQ[LQ,C

T LQ,H
T ] .

Setting H = Ci
T yields that EW [Ci

T ] = Ci
0 for all i = 1, . . . , n.

In case of H = g ∈ GT (Θ) we have

EW [g] = EQ[g]− EQ[CT − C0]> EQ
[
LQ,C

T LQ,C
T

>]−1 EQ
[
LQ,C

T LQ,g
T

]
.

The martingale property of Q and LQ,g
T ≡ 0 yields

= 0 .

Hence the constructed signed measure W is admissible and possesses the martingale prop-
erty.

4 Mean-Variance Hedging under additional

Market Information

But the general mean-variance hedging approach does not consider the kind of additional
market information introduced in the last section. It concentrates only on the approximate
replication of a contingent claim by means of self-financing strategies. Additional trading
and hedge possibilities like observed, non-attainable contingent claims are neglected.

Therefore we assume just as in assumption 2 of the last section the existence of addi-
tional market information, which is represented by a given, finite set of observed contingent
claim prices.

According to the results of the last section, we are looking for a mixed portfolio strat-
egy (x, θ, δ) which minimizes the expected quadratic error of replication between the
T -contingent claim H and the value process of the mixed portfolio strategy (x, θ, δ) at the
terminal date T . So we obtain the following

13



modified mean-variance hedging problem

(18)

Suppose H is a T -contingent claim. Minimize

E
[(
H − x−GT (θ)− δ>(CT − C0)

)2
]

over all mixed portfolio strategies (x, θ, δ).

This approach proposes to price options by L2-approximation: we want to determine
an initial capital x, a dynamic trading strategy θ and a static hedging strategy δ such that
the achieved terminal wealth x + GT (θ) + δ>(CT − C0) approximates the T -contingent
claim H with respect to the distance in L2(P ).

Another interesting interpretation for the modified version of the mean-variance hedg-
ing problem (18) is that for each i = 1, . . . , n the T -contingent claim (Ci

T − Ci
0) can be

considered as a risk-swap between the risky T -contingent claim Ci
T and the riskless T -

contingent claim Ci
0 · BT . The price of this swap at time 0 is 0. Therefore this swap can

be used in our modified mean-variance hedging approach to reduce the remaining risk of
the general mean-variance hedging approach.

Remark 3:
We can rewrite problem (18) with regard to the notation introduced in the last section:

(19)

Minimize

E
[(
H − a

)2
]

over all a ∈ AT .

The existence of a solution of this optimization problem is ensured by the L2(P )-closedness
of AT .

An optimal strategy of the modified mean-variance hedging problem (18) is called modified
minimal variance hedging strategy of the T -contingent claim H under P . The following
property supports this name:

If (x∗, θ∗, δ∗) is a solution of the problem (18), then (θ∗, δ∗) also solves the optimization
problem:

Minimize

Var
[
H −GT (θ)− δ>(CT − C0)

]
over all (θ, δ) .

14



Proof. For all θ ∈ Θ, δ ∈ IRn we have:

Var
[
H −GT (θ)− δ>(CT − C0)

]
def= E

[(
H − E

[
H −GT (θ)− δ>(CT − C0)

]
︸ ︷︷ ︸

=:x∈ IR

−GT (θ)− δ>(CT − C0)
)2

]

Since (x∗, θ∗, δ∗) is a solution of the optimization problem (18), it minimizes the last
expression.

≥E
[(
H − x∗ −GT (θ∗)− δ∗>(CT − C0)

)2
]

≥Var
[
H − x∗ −GT (θ∗)− δ∗>(CT − C0)

]
=Var

[
H −GT (θ∗)− δ∗>(CT − C0)

]
,

by definition of the variance.

4.1 Solution of the Modified Mean-Variance Hedging Prob-

lem

In order to solve the modified mean-variance hedging problem (18) it turns out to be
didactically reasonable to distinguish between three cases:

• The subjective probability measure P is already an admissible equivalent martingale
measure, i.e. P ∈ M̃(P )n

e .

• P is an equivalent martingale measure, but it is not admissible,
i.e. P ∈M(P )e\M̃(P )n

e .

• P is not an equivalent martingale measure, i.e. P 6∈ M(P )e.

4.1.1 Case 1: P ∈ M̃(P )n
e

Recall from the modified martingale representation (11) that the T -contingent claim H

can be written as
H = aP,H +NP,H P a.s.

with aP,H = EP
[
H

]
+GT (ψ̃P,H) + δP,H>(CT − C0) ∈ AT and NP,H ∈ AT

⊥.
For each a ∈ AT we have

E
[
(H − a)2

]
= E

[
(aP,H +NP,H

T − a)2
]

= E
[
(aP,H − a)2

]
+ E

[
(NP,H)2

]
+ 2 E

[
(aP,H − a)NP,H

]
15



Because of (aP,H − a) ∈ AT and NP,H ∈ AT
⊥ the last term is equal to 0:

= E
[
(aP,H − a)2

]
+ E

[
(NP,H)2

]
Choosing a = aP,H minimizes this expression and delivers

= E
[
(NP,H)2

]
.

Therefore, we have shown that the optimal strategy (EP
[
H

]
, ψ̃P,H , δP,H) of the modi-

fied mean-variance hedging problem can be derived by means of the modified martingale
representation (11) when the subjective probability measure P is already an admissible
equivalent martingale measure.

Note that the price of the optimal strategy at time 0 is given by the P -expected value
EP

[
H

]
.

4.1.2 Case 2: P ∈M(P )e\M̃(P )n
e

If P ∈ M(P )e\M̃(P )n
e we cannot use the modified martingale representation theorem,

but we can use the results of remark 2, especially equation (15):
For each a ∈ AT we obtain

E[(H − a)2]
(15)
= E

[(
E[H]− δP,H>(E[CT ]− C0) +GT (ψ̃P,H) + δP,H>(CT − C0)︸ ︷︷ ︸

=:ã

+NP,H − a
)2

]
= E

[(
ã− a

)2
]

+ E
[(
NP,H

)2
]

This expression is minimized by setting a = aP,H = ã.

= E
[(
NP,H

)2
]

Hence the optimal strategy is given by(
E[H]− δP,H>(E[CT ]− C0), ψ̃P,H , δP,H

)
.

But now, the price of the strategy is the P - expected value of H minus a correction term

E
[
H

]
− δP,H>(

E[CT ]− C0

)
(6= E[H]) .

Since P is an equivalent martingale measure (albeit not admissible), P is already the
variance optimal martingale measure (of the original approach). Assumption 2 (b) implies
that the conditions of lemma 1 are fulfilled. Applying this result, formula (17) defines a
new signed measure W , which is admissible and satisfies

EW
[
H

]
= E

[
H

]
− δP,H>(

E[CT ]− C0

)
.

It will be shown later on that this newly constructed measure is the so-called constrained
variance-optimal martingale measure.
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4.1.3 Case 3: P 6∈ M(P )e

We now turn to the general situation where S is a continuous semimartingale under P .
We have seen that the solution of the original approach (4) delivers the unique orthogonal
decomposition for the T -contingent claim H under P

H = EP̃ [H] +GT (θP,H) + LP,H
T(20)

with E[LP,H
T ] = 0 and GT (Θ)⊥LP,H

T , i.e E[GT (Θ) · LP,H
T ] = 0.

The original approach can also be applied to the T -contingent claims CT and delivers
the orthogonal decomposition

CT = EP̃ [CT ] +GT (θP,C) + LP,C
T(21)

with GT (Θ)⊥LP,C
T and E[LP,C

T ] = 0.

The modified mean-variance hedging problem can be solved using these orthogonal rep-
resentations. Its solution can be characterized by means of the hedging numeraire
V ∗T = 1 − GT (θ∗) (see definition (6)) and the variance-optimal martingale measure P̃

(see definitions (8)):

Lemma 2:
The solution of the modified mean-variance hedging problem (18) is given by the optimal
mixed portfolio strategy (x̃, θ̃, δ̃) with

x̃ =EP̃
[
H

]
− E

[
LP,H

T LP,C
T

]> E
[
LP,C

T (LP,C
T )>

]−1 EP̃
[
CT − C0

]
=EW [H]

δ̃ =E[LP,C
T (LP,C

T )>]−1 E
[
LP,H

T LP,C
T

]
θ̃ =θP,H − δ̃

>
θP,C

where

dW

dP
:=

dP̃

dP
− EP̃

[
CT − C0

]> E
[
LP,C

T (LP,C
T )>

]−1
LP,C

T(22)

defines an admissible signed martingale measure on (Ω,FT ), i.e. W ∈ M̃(P )n
s .

Proof. Firstly, it follows similarly as in the proof of Lemma 1 that the signed measure W
is indeed an admissible signed martingale measure.

Secondly, for all x ∈ IR, θ ∈ Θ and δ ∈ IRn we have

E
[(
H − x−GT (θ)− δ>(CT − C0)

)2]
17



Using the above-mentioned orthogonal representations (20) and (21) for H and C, this
expression is equal to

= E
[(

EP̃ [H]− δ> EP̃ [CT − C0]− x+GT

(
θP,H − δ>θP,C − θ

)
+ LP,H

T − δ>LP,C
T

)2]
The orthogonality of GT (Θ)⊥LP,H

T and GT (Θ)⊥LP,C
T yields

= E
[(

EP̃ [H]− δ> EP̃ [CT − C0]− x+GT

(
θP,H − δ>θP,C − θ

))2]
+ E

[(
LP,H

T − δ>LP,C
T

)2]
Setting x = x̃ := EP̃ [H]−δ> EP̃ [CT−C0] and θ = θ̃ := θP,H−δ>θP,C for fixed δ minimises
this expression for all x, θ.

≥ E
[(
LP,H

T − δ>LP,C
T

)2]
Finally, the minimum is attained if we choose δ = δ̃ = E[LP,C

T (LP,C
T )>]−1 E

[
LP,H

T LP,C
T

]
:

≥ E
[
(LP,H

T )2
]
− E

[
LP,H

T LP,C
T

]> E
[
LP,C

T (LP,C
T )>

]−1 E
[
LP,H

T LP,C
T

]
.

This shows that the optimal price x̃ for H can be described by an expected value
under the measure W . This newly constructed measure admits another characterization.
In order to derive this we introduce the modified hedging numeraire

V B
T := 1−GT (θb)− δb>(CT − C0)(23)

with

δb := E[V ∗T ]M−1 EP̃ [CT − C0]

M := E
[(
V ∗T EP̃ [CT − C0] + LP,C

T

)(
V ∗T EP̃ [CT − C0] + LP,C

T

)>]
and

θb := θ∗ − δ>θC − θ∗δ> EP̃ [CT − C0] ,

which minimizes E
[(

1−GT (θ)− δ>(CT − C0)
)2]

for all δ ∈ IRn, θ ∈ Θ, i.e.

E
[(

1−GT (θ)− δ>(CT − C0)
)2]

≥ E
[(
V B

T

)2
]

∀ δ ∈ IRn, θ ∈ Θ .

Proof. For all θ ∈ Θ and δ ∈ IRn we have

E
[(

1−GT (θ)− δ>(CT − C0)
)2]

18



Since the T -contingent claims CT admit the unique orthogonal decomposition (21) under
P , we can write

= E
[(

1−GT (θ)− δ>
(
EP̃ [CT − C0] +GT (θC) + LP,C

T

))2]
Because of V ∗T = 1−GT (θ∗) it follows

=E
[(

1−GT

(
θ + δ>θC + θ∗δ> EP̃ [CT − C0]︸ ︷︷ ︸

=: φ(θ)

)
− δ>

(
V ∗T EP̃ [CT − C0] + LP,C

T

))2]

=E
[(

1−GT (φ(θ))
)2

]
+ δ> E

[(
V ∗T EP̃ [CT − C0] + LP,C

T

)(
V ∗T EP̃ [CT − C0] + LP,C

T

)>]
δ

− 2δ> E
[(

1−GT (φ(θ))
)(
V ∗T EP̃ [CT − C0] + LP,C

T

)]
Due to E

[
V ∗T ·GT (Θ)

]
= 0 and E

[
LP,C

T ·GT (Θ)
]

= 0 it follows

=E
[(

1−GT (φ(θ))
)2] + δ> E

[(
V ∗T EP̃ [CT − C0] + LP,C

T

)(
V ∗T EP̃ [CT − C0] + LP,C

T

)>]
δ>

− 2 E[V ∗T ] δ> EP̃ [CT − C0]

Since only the first term depends on θ, setting θ = φ−1(θ∗) = θ∗−δ>θC−θ∗δ> EP̃ [CT−C0]
minimises this expression for all θ and fixed δ according to the definition of V ∗T .

≥E
[(
V ∗T )2

]
+ δ> E

[(
V ∗T EP̃ [CT − C0] + LP,C

T

)(
V ∗T EP̃ [CT − C0] + LP,C

T

)>]
δ>

− 2 E[V ∗T ] δ> EP̃ [CT − C0]

Choosing δ = δ∗ := E[V ∗T ] E
[(
V ∗T EP̃ [CT−C0]+L

P,C
T

)(
V ∗T EP̃ [CT−C0]+L

P,C
T

)>]−1
EP̃ [CT−

C0] = E[V ∗T ]M−1 EP̃ [CT − C0] minimises this expression for all δ. Using the method of
modification for matrix inversion (see Stewart (1973, p. 414)) it can be shown that the
existence of E[LT (LT )>]−1 implies the existence of M−1.

≥E
[(
V ∗T )2

]
+ δ∗> E

[(
V ∗T EP̃ [CT − C0] + LP,C

T

)(
V ∗T EP̃ [CT − C0] + LP,C

T

)>]
δ∗

− 2 E[V ∗T ] δ∗> EP̃ [CT − C0]

=E
[(
V ∗T

)2]− E[V ∗T ]2 EP̃ [CT − C0]>M−1 EP̃ [CT − C0] = E[(V B
T )2]

Additionally, this proof shows that the modified hedging numeraire can be written as

V B
T = V ∗T − E[V ∗T ] EP̃

[
CT − C0

]>
M−1

(
V ∗T EP̃

[
CT − C0

]
+ LT

)
,(24)
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and that due to E
[(
V ∗T

)2] = E
[
V ∗T

]
in the last equation of the proof

E
[(
V B

T

)2] = E
[
V B

T

]
.(25)

Consequently, this implies

E
[
V B

T

]
= E[V ∗T ]

(
1− EP̃

[
CT − C0

]>
M−1 EP̃

[
CT − C0

])
> 0.(26)

After this preliminary remarks we are able to derive the aforementioned alternative
characterization for the newly constructed measure W :

Lemma 3:
The density of the signed measure W as defined by (22) can be written as

dW

dP
=

V B
T

E
[
V B

T

] .(27)

Proof. Starting with the formula (27), we have

V B
T

E
[
V B

T

] (24)
=

V ∗T − E[V ∗T ] EP̃
[
CT − C0

]>
M−1

(
V ∗T EP̃

[
CT − C0

]
+ LT

)
(
1− E[V ∗T ] EP̃ [CT − C0]>M−1 EP̃ [CT − C0]

)
E[V ∗T ]

=
V ∗T

E[V ∗T ]
− EP̃ [CT − C0]>M−1LT

1− E[V ∗T ] EP̃ [CT − C0]>M−1 EP̃ [CT − C0]

Because of M = E[V ∗T ] EP̃
[
CT −C0

]
EP̃

[
CT −C0

]>+EP
[
LT (LT )>

]
the following equation

holds: Id =
(
M−E[V ∗T ] EP̃ [CT−C0] EP̃ [CT−C0]>

)
EP [LT (LT )>]−1. Therefore, it follows

=
dP̃

dP
−

EP̃ [CT − C0]>M−1
(
M − E[V ∗T ] EP̃ [CT − C0] EP̃ [CT − C0]>

)
EP [LT (LT )>]−1LT

1− E[V ∗T ] EP̃ [CT − C0]>M−1 EP̃ [CT − C0]

=
dP̃

dP
−

(
1− E[V ∗T ] EP̃ [CT − C0]>M−1 EP̃ [CT − C0]

)
EP̃ [CT − C0]> EP [LT (LT )>]−1LT

1− E[V ∗T ] EP̃ [CT − C0]>M−1 EP̃ [CT − C0]

=
dP̃

dP
− EP̃

[
CT − C0

]> E
[
LT (LT )>

]−1
LT

But this equal to the definition of W :

=
dW

dP

This proofs the assertion.
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Now we are prepared to derive an interesting interpretation of the admissible, signed
martingale measure W by means of lemma 3. W turns out to be the solution of the next
optimization problem:

Minimize

Var
[
dQ

dP

]
= E

[(dQ
dP

)2
]
− 1

over all admissible signed martingale measures Q ∈ M̃(P )n
s .

A solution Q∗ of this dual quadratic problem is called constrained (admissible)
variance-optimal martingale measure

Lemma 4:
The admissible signed martingale measure W as defined by (22) is the constrained
variance-optimal martingale measure.

Proof. For any a = g+δ>(CT−C0) with g ∈ GT (Θ) and δ ∈ IRn and for each Q ∈ M̃(P )n
s

we have

1 = EQ
[
1− a

]
= E

[dQ
dP

(
1− a

)]
≤ E

[(dQ
dP

)2]
E

[
(1− a)2

]
by the Cauchy-Schwarz inequality and therefore

1

inf
Q∈M̃(P )n

s
E[(dQ

dP )2]
= sup

Q∈M̃(P )n
s

1

E[(dQ
dP )2]

≤ inf
a∈{g+δ>(CT−C0) :g∈GT (Θ),δ∈IRn}

E
[
(1− a)2

]
= E[(V B

T )2] =
E[(V B

T )2] E[V B
T ]2

E[V B
T ]2

Due to E[V B
T ] = E[(V B

T )2] it follows

=
E[(V B

T )2] E[V B
T ]2

E[(V B
T )2]2

=
E[V B

T ]2

E[(V B
T )2]

(27)
=

1
E[(dW

dP )2]
.

Because of W ∈ M̃(P )n
s , the measure W is the the constrained variance-optimal martin-

gale measure.

This indicates that finding the constrained variance-optimal admissible signed mar-
tingale measure is the dual problem to solving the modified hedging numeraire problem.
The duality is reflected in the fact that the modified approximation price is obtained as
an expectation under W .
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5 Examples

In this section we analyze two examples to illustrate the impact of the assumption of
additional information on different market situations.

5.1 Example 1

As first example we consider a financial market (S1, S2, B) defined on a probability space
(Ω,FT , P ), where S1 and S2 are two risky assets and B the riskless asset. Suppose that
their dynamics with respect to P are

dS1
t = S1

t

(
µdt+ σ1 dW 1

t

)
dS2

t = S2
t

(
σ2 dW 2

t

)
under P

Bt ≡ 1

where W 1 and W 2 are two independent P Brownian motions.
This market

(
S1, S2, B

)
is complete and the dynamics under the unique martingale

measure P̃ ∈M(P )e are:

dS1
t = S1

t

(
σ1 dW̃ 1

t

)
dS2

t = S2
t

(
σ2 dW̃ 2

t

)
under P̃

Bt ≡ 1

where W̃ 1 and W̃ 2 are two independent P̃ Brownian motions thanks to the Girsanov -
theorem.

But now we assume that our information is limited and the asset S1 is not observable.
Thus our dynamic investment opportunities are restricted to the basic assets (S2, B). This
restricted market is therefore incomplete, but we assume that the ”true” price system is
still P̃ .

Starting with our subjective measure P the variance-optimal martingale measure of
the original mean-variance hedging approach is P itself (not the ”true” measure P̃ ).

Consider a T -contingent claim CT = CT (S1
T ) that depends on S1

T and is non-attainable
with respect to the restricted market (S2, B). Suppose the price C0 of this contract at
time 0 can be observed and is given by C0 := EP̃ [CT ].

The original mean-variance hedging approach ignores this additional information and
delivers EP [CT ](6= C0) as a price of CT . Arbitrage opportunities are possible therefore.

But our modified mean-variance hedging approach incorporates this additional infor-
mation and we obtain a constrained admissible variance-optimal measure P ∗ 6= P , which
is in this sense closer to the ”true” martingale measure P̃ than P and preserves the no-
arbitrage requirement.
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5.2 Example 2

The second example is a simple stochastic volatility model and is based on an example
introduced by Harrison and Pliska (1981) and analyzed in detail by Müller (1985) and
Föllmer and Schweizer (1991).

We consider a financial market (S, B) defined on a probability space (Ω,FT , P ) with
a random variable η ∈ {+, −}, where S is a risky asset and B the riskless asset. Suppose
that their dynamics are given by

dSt = Stσ(+) dWt on {η = +}

dSt = Stσ(−) dWt on {η = −}

Bt ≡ 1 ,

where (Wt)t∈[0,T ] denotes a Brownian motion, σ(−) 6= σ(+) and σ(−), σ(+) ∈ IR+.
If the realization of η is known at time 0, the market is complete and it follows from

Black-Scholes that a T -contingent claim H (e.g. a European call option) can be written
as

H = H+
0 1{η=+} +H−

0 1{η=−} +

>∫
0

(ψ+
t 1{η=+} + ψ−t 1{η=−}) dSt ,

where H±
0 and ψ± denote the usual Black-Scholes values and strategies with respect to

the variance σ(±) (see Föllmer and Schweizer (1991)).
Suppose now, that the realization of η is unknown at time 0, but becomes observable

directly after time 0. The market is incomplete, and with p := P [{η = +}] (assume
0 < p < 1) Föllmer and Schweizer (1991) show that in this case H admits the following
representation corresponding to theorem 1

H = (pH+
0 + (1− p)H−

0 ) +GT (1{η=+} ψ
+ + (1− 1{η=+})ψ

−)

+ (H+
0 −H−

0 )(1{η=+} − p)︸ ︷︷ ︸
=LP,H

T

(28)

Since P is already an equivalent martingale measure, the variance optimal martingale
measure of the general approach is P .

Assume now that the price C0 of the (non-attainable) European call option CT at
time 0 can be observed and is given by C0 = q C+

0 + (1 − q)C−0 , with 0 < q < 1 and
q 6= p. Note that the Black-Scholes formula implies C+

0 6= C−0 . The original mean
variance approach does not incorporate this additional information and uses the variance-
optimal measure P for pricing, although it is obvious that P is not admissible and cannot
be the ”true” martingale measure because under P the price of CT would be EP [CT ] =
pC+

0 + (1− p)C−0 (6= C0).
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But our modified approach delivers the admissible, variance-optimal martingale mea-
sure W :

dW

dP
= 1− E

[
CT − C0

] LP,C
T

E
[
(LP,C

T )2
]

(28)
= 1− E

[
CT − q C+

0 − (1− q)C−0
] (C+

0 − C−0 )(1B − p)
E

[
((C+

0 − C−0 )(1B − p))2
]

= 1 + (q − p)(C+
0 − C−0 )

(C+
0 − C−0 )(1B − p)

(C+
0 − C−0 )2p(1− p)

=
1− q

1− p
· (1− 1B) +

q

p
· 1B

The measure W is an equivalent martingale measure due to positivity of its density.
Furthermore, W is admissible and EW [CT ] = q C+

0 + (1− q)C−0 because of W [B] = q. In
fact, W must be the ”true” pricing measure of the market.

6 Convergence

The idea behind this section is the intuition, that the more prices of non-attainable con-
tingent claims are observed in the market, the more information about the ”true” pricing
function or the ”true” equivalent martingale measure P ∗ is revealed.
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Figure 2: convergence for n→∞

In order to check this guess we consider a financial market consisting of a riskless
asset B ≡ 1 and a risky asset Π. Its price process (Πt)t∈[0,T ] is defined on the probability
space (Ω, FT , P ) = (C, C, P ) of continuous functions on the time interval [0, T ], and let
Πt(ω) := ω(t) ∈ IR for all ω ∈ Ω and t ∈ [0, T ]. This market is complete and let P ∗ 6= P

be the unique equivalent martingale measure.

Suppose now the risky asset Π cannot be observed. Similar as in example 1, our finan-
cial market is restricted to the degenerated market (B) and set of investment opportunities
shrinks to

GT (Θ) = ∅ .
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The market is now incomplete, but we assume that the underlying ”true” martingale
measure or price system is still given by P ∗.

The σ-algebra σ(Π−1
T ) is generated by the sequence (Π−1(Ai))i∈IN where the Ai are

half-open intervals of IR. Set Gn := {σ((Π−1
T (Ai))i=1,...,n)} for a fixed n. Thanks to the

chosen structure of the {Ai, i = 1, . . . , n} there exists a partition of Ω into a finite number
of measurable sets Bn,1, . . . , Bn,mn such that every element of Gn is the union of some of
these sets.

Suppose we observe at time 0 the prices {C1
0 , . . . , C

n
o } of the T -contingent claims{

1{ΠT∈A1}, . . . , 1{ΠT∈An}
}
. These are given by C0 = (P ∗Π−1

T [Ai])i=1,...,n.
The constrained variance-optimal martingale measure is then defined by

dWn

dP
= 1− E[CT − C0] E[LC

T (LC
T )>]−1LC

T

Due to LCi

T = 1{ΠT∈Ai}−PΠ−1
T [Ai] this density is Gn- measurable. Since the new measure

Wn is by construction uniquely defined for each Ai, i = 1, . . . , n and because {Ai, i =
1, . . . , n} generates Gn, this last expression can be simplified thanks to the theory of
probability measures and has to be given by

=
n∑

i=1

1{ΠT∈Ai}
µΠ−1

T [Ai]
PΠ−1

T [Ai]
(> 0)

(Note that Wn is indeed an equivalent probability measure because of the positivity
of its Radon-Nikodym density)

According to Meyer (1966, p.153) the last expression is an uniformly integrable
(Gn)n∈IN-martingale and because of the martingale convergence theorem it converges to a
limit in the L1 norm when n → ∞. This limit is evidently a Radon-Nikodym density of
the restriction of P ∗ to σ(ΠT ) = G∞, with respect to the restriction of P to σ(ΠT ). This
yields

(29) Π−1
T Wn w−→ Π−1

T P ∗ .

Therefore, for a fixed time T the one-dimensional marginal distribution converges
towards the one-dimensional marginal distribution of the ”true” pricing measure P ∗.

7 Conclusion

In this paper, we consider the mean-variance hedging approach under the assumption
of additional market information represented by a given, finite set of observed prices of
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non-attainable contingent claims. Taking into account these additional trading and hedge
possibilities we obtain a modified mean-variance hedging problem. We present a solution
of this optimization problem by applying the techniques developed by Gouriéroux et al.
(1998) and obtain an explicit description for the optimal mixed portfolio strategy and
derive a constraint variance optimal, admissible, signed martingale measure.
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