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Banking regulation and network-topology dependence
of iterative risk-trading games

Abstract

In the context of understanding risk-regulatory behavior of financial institutions we propose a
general dynamical game between several agents who pick their trading strategies depending on their
individual risk-to-wealth ratio. The game is studied numerically for different network topologies.
Consequences of topology are shown for the wealth time-series of agents, for the safety and efficiency
of various types of networks. The model yields realistic-looking time-series of wealth and the cost
of safety increases as a power-like function. The relevant model parameters should be controllable
in reality. This setup allows a stringent analysis of the effects of different approaches of banking
regulation as currently suggested by the Basle Committee of Banking Supervision. We find evidence
that a tightening of the current regulatory framework does not necessarily lead to an improvement
of the safety of the banking system. Moreover, the potential impact of catastrophic events like

September 11, 2001, on the financial system can be measured within this framework.
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INTRODUCTION

The efficiency and stability of the financial system and its institutions is seen as one of the
core elements of a modern economy. The regulation of financial intermediaries is thus a cen-
tral issue which raises a number of open questions both for practical implementations and for
academic research. During the past two decades an intensive discussion about the regulation
of financial markets evolved mostly driven by media attended events like the ’Russian crisis’
in 1998 and defaults of big financial institutions like the failure of Barings Bank or, more
recently, Long Term Capital Management. This discussion formed the basis for a regulatory
innovation process under the lead of the Basle Committee of Banking Supervision which
sets the relevant legal regulatory framework for the G-10 economies as well as for the EU.
As a consequence of the US Savings & Loans disaster in the mid-eighties the first milestone
of this process was the first Capital Accord in 1988 (Basle I) which forced banks to hold a
8% of total assets capital cushion to prevent default due to extreme unexpected losses. This
was the first step where the activities of financial intermediaries were limited by the risk
(measured by total assets) of their positions. Since total assets is an insufficient measure
of risk at least for trading positions in securities and derivatives, the 1995 Amendment to
the Capital Accord introduced a more risk-sensitive framework for market risk activities.
Finally, the second Capital Accord (Basle IT) which currently is under consultation is aimed
to introduce a risk-sensitive framework for credit risk as well.

Although the discussion about the cornerstones of the new regulatory framework is in its
final phase, there are a number of open questions remaining for the future. Firstly, if the
activities of financial intermediaries are limited by the risk of their current positions, how
should risk be measured? Secondly, if a capital cushion relative to the risk run by a bank
is needed, what is its optimal size? Further, does a specific risk-sensitive framework lead to
undesirable pro-cyclical effects in the economy? Finally, is this risk-regulatory framework
sufficient to prevent the financial system from a total collapse when catastrophic events like
September 11, 2001, occur?

It is the main purpose of this paper to address these questions and to develop a formal
framework which allows a stringent analysis of the effects of different approaches of banking
regulation. Moreover, the potential impact of catastrophic events like September 11 on the

financial system can be measured within this framework. To achieve this goal we propose



a general dynamical game between several agents (banks or financial intermediaries) who
build their trading strategies depending on their individual risk-to-wealth ratio. The general
structure of the suggested framework allows to model the decisions of the agents without
resorting to a specific utility-model. Therefore, our results do not depend on the choice of
a specific utility-based framework. The financial system is modeled using different network
topologies which enables us to explicitly measure the network-topology dependence of dif-
ferent regulatory actions and various other important factors. This is a major contribution
to the existing research because to our knowledge this is the first attempt of an analysis
of financial markets where dynamic game models and network-topology are combined. Dif-
fering effects of single bank defaults and regional banking crises can easily be captured by
our model. Additionally, the chosen network topology can be used to mimic specific struc-
tures of several national banking systems like ”sectors” or risk-sharing cooperations (e.g.,
” Genossenschaftsbanken”).

This research is related to the discussion about systemic risk in the banking sector, see
[1, 7, 15]. The authors of [1] empirically examine systemic risk in the Italian interbank
clearing network where they explicitly address the potential size of a ”domino effect” where
the default of a single bank may jeopardize the ability of "neighbor” banks to meet their
obligations. A first attempt to model systemic risk in financial networks was undertaken
in [7] where the authors show comparative statics describing the relationship between the
clearing vector and the underlying parameters of the financial system which is exposed to
external stochastic shocks. However, they model the behavior of financial institutions purely
deterministically and they do not examine potential effects of network topology. A third
stream of research, e.g. [15], focuses on the default correlation of banks as the central
parameter of measuring systemic risk or contagion in the banking sector. The framework
suggested in this paper enables us to analyze contagion as well as "domino effects” and
provides a profound basis for comparative statics with respect to the architecture of the

financial market combined with the regulatory framework.

THE MODEL

The aim of this work is to develop a simple model of a network of banks or financial

institutions who can trade risk amongst each other in a game-theoretical setting. Banks



are forced to enter risk through demands of their clients, but try to compensate it amongst
each other. We introduce an iterative dynamical game where players (banks) can choose
between different strategies, depending on their need to reduce individual risk. The need to
reduce risk depends on the wealth of a bank and regulatory parameters. The game takes
place between players whose connections are characterized by a certain graph topology. We
introduce measures which characterize the performance of different network topologies with
respect to overall fairness and stability of the network, individual safety, i.e. survival prob-
ability, and the efficiency of reducing exogenous, i.e. externally enforced, risk. By studying
the time evolution of the wealth of interacting players we find remarkable coincidence with
realistic financial time-series. Characteristics of those time-series differ drastically depend-
ing on topology. It is important to mention here that in contrast to some recent approaches
in cooperative network- and game theory, see e.g. [4, 5, 20, 23], our agents do not learn but
are purely selfish. In our setting they do not have any incentive to adapt for cooperation.
In the following we deal with a set of N sites (representing banks) labeled by i = 1,---, N
who receive requests from their N exterior clients (for simplicity each bank has only one
client). These requests (forwards, swaps, weather derivatives, etc.) are modeled by bets
which depend on an external random process X (t), say the weather, and a time of maturity
tm. For the rest of this paper we consider a simple binary random process X (t) € {—1,1}
with equal probabilities p(—1) = p(1) = . For example, a client today bets 20 m USD
that on t,, = Dec. 15" 2004 there will be rain. The bank has to accept these external bets
and receives an incentive, inc®™®, for it (transaction costs). At each timestep in the game,
exterior clients confront their banks with external bets with uniformly distributed times of
maturity, t,, = t+ 7, 7 € {0,1---,7™*}, where ¢t denotes present time. For two players
only, compare e.g. with [11, 21]. The associated betting volume offered to bank i is a
random number also drawn from a uniform distribution Bf*°(t+7) € [0, D(t) - W;(t)], where
W;(t) is the present wealth of bank i. This means that the maximum betting volume asked
from a bank is proportional to its present wealth (the smaller the banks the smaller their
transactions). D is the percentage of external risk a bank is allowed to take within a given
time step, with respect to its own wealth. D could be seen as a regulatory parameter since
it imposes an upper limit for a bank’s risk dependent on its wealth (or equity in a wider
sense). This parameter does not yet resemble the 8%-rule currently set by regulators, where

some risk measure (e.g., risk-weighted nominal value of positions) must not exceed the 12.5



multiple of a bank’s equity. Rather, D can be understood as a measure that prevents banks
to accept large risks within short time. The 8%-rule will be incorporated in the model later
(see below). Since in case of no interactions, D would simply be the diffusion constant of a
Brownian motion, we will call D a diffusion constant.

By accepting a bet, bank 7 enters risk R;(t+7), which is defined as the maximum amount
the bank can loose at time t + 7, i.e. R;(t+7) = |Bf*°(t + 7)|. This risk measure is related
to a great variety of risk measures used by regulators, e.g., the standard deviation of profit
and losses (volatility), and the 1%-quantile of the profit and loss distribution (value-at-risk).
Now, the essence of the game is that this risk can be traded away, if the bank is able to
find a neighbor bank, which is willing to enter a betting contract which serves to reduce this
risk. In the above example, the bank will either look if an appropriate bet is already offered
on the "market” (issued by a neighbor bank), or it will issue one itself to its neighbor sites,
which would read: 20 m USD that on t,, = Dec. 15" 2004 there will be sunshine. All the
contracts are kept in the "betting book” B;;(t+ 7), which contains the betting volume bank
1 is betting against bank j at time ¢ + 7. If bank ¢ offers a bet at ¢ + 7 it does so through
an entry in the "market” book M;(t + 7). The numerical value of M; is the volume. The
market book is ”visible” to all neighbor banks of 7 only. Whenever a bank agrees to a bet,
the offering party is obliged to pay an incentive (inc) to the accepting bank. We choose inc
to be 10 % of the bet volume B;;(t + 7).

If a bank finds a bet on the market (offered by a neighbor site) which serves to reduce
its risk it will accept it and receive the incentive for the deal. This we call the passive
strategy. On average, the bank will gain the incentive for sure and then await the outcome
of the bet, where there is a fair 1:1 chance to win. In case there is no offer in the market
book, and the risk of bank i is high with respect to its present wealth W;(t), it will offer a
bet itself to its neighbor banks, which we call the active strategy (insurance is only bought
if really needed, i.e. if risk-taking can not be afforded). After entering a contract, risk is
still defined as the maximum amount the bank can loose at a given time ¢ 4+ 7, but now
consists of the external bets and all the bets entered with neighbor sites, i.e., R;(t + 7) =
|Bezo(t +7) + 5, Byt +7)

banks is always passive, if possible, and only becomes active if the risk/wealth ratio is high.

, where j indexes the neighboring banks. The strategy of all

To model this we define the probability density for bank i of current wealth W;(t) to adopt



an active strategy to reduce risk at time ¢ 4+ 7 by

active

piee(t, ) = exp l—a

Ri(t+7) ] 1)

The interaction between banks is thus not fully deterministic. Here « is a constant which
controls the "riskiness” of players. It was kept constant o = 5, for all following computations.
In contrast to previous work, e.g., [7], we introduce a noise component into the behavior of
agents which replaces the role of the utility function in the decision making process. Whereas
from a single-agent perspective this might be regarded as an arbitrary approximation, from
a regulator’s perspective, however, this model seems realistic, because the regulator faces a
large number of agents with different utility functions which are not known by the regulator.
Thus, our decision making rule (1) explicitly models the uncertainty about the single-agent
utility functions, or put equivalently, models the stochastic deviations of the decisions of
single agents from the representative agent.

To explicitely model the Basle regulatory framework, the probability for adopting an
active strategy is always equal to one, whenever the total risk exceeds a certain percentage of
wealth, i.e. Y. |R;(t+7)| > Lpasie-Wi(t). Presently, the actual Basle parameter Lp,ge is 12.5,
but is an open parameter in the model. Note, that the restriction to act it }°, |R;(t + 7)| >
Lpasie - Wi(t) only enforces the agent to adopt the active strategy, i.e. to place an order
to the market. It is possible, however, that the order is not fulfilled because there is no
counterparty willing or able to accept the bet. Under this scenario the actual risk of the
bank will exceed its regulatory boundary. This scenario is thus related to a (at least local)
banking crisis where due to a lack of liquidity in the market banks are not able to reduce the
risk of their positions even when they are forced to by regulators. This feature of our model
allows to capture propagation of illiquidity effects comparable to what happened during the
Russian crisis in 1998.

Each of the N players who participate in the game is represented by a node or site. Sites
are connected by links, which are non-zero entries of the interaction-graph matrix, G;;. A
value of G;; = 1 means site ¢ has a connection to site j, G;; = 0 means no connection.
Players which are connected by links are called neighbors and can interact with each other.
In the following we shall study the particular classes of six different network topologies which

are shown in Fig. 1. The connectivity of these graphs, defined as the average number of

#links
site

links per site C = ( ), model the efficiency of ”information flow” in the network, a low
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connectivity C means high "market friction”.

At the beginning of each timestep, the external bets are offered to the banks. Each bet
carries a time of maturity from now (¢) till 7 timesteps in the future. As a maximum future
date for bets we chose 7™2* = 10 timesteps. The total exogenous risk entering at this stage
at time ¢ is R{xo, (1) = X5, Bf*°(t+7). After this exogenous update the sites are run through
in a random asynchronous update. Once a site 7 is chosen, the routine goes through all of its
neighbor sites j (determined by G;;), again in randomized order. The actual game between
the pair (7, 7) now takes place:

Bank ¢ checks in the market book if any bets are available from bank j for all times
7 which can reduce i’s risk, i.e., |R;j(t +7) — M;(t+7)| < |R;(t+7)|. If that is possible
the deal will be accepted and ¢ will receive the incentive from j. The betting book is now
adjusted according to the terms of the deal, i.e., B;;(t+7) now becomes B;; (t+7)+ M;(t+7).
If no more passive strategies are possible ¢ decides — according to Eq. 1 — if it will issue an
offer itself by placing an entry in the market book of size M;(t + 7) = R;(t + 7). If an other
bank will (later) accept this bet, 7 will then pay the corresponding incentive and be then
free of risk. After all sites have been run through, all the bets of today (¢) will be settled

according to the random outcome of X (¢). The wealth update now is nothing but,

Wit + 1) = Wi(t) + X;(¢) - (Bexo(t) + Z Bij(t)) , (2)

since all incentives have been taken care of along the way.

A bank is said to be defaulted if its wealth falls below zero. It will then be eliminated
from the network, together with all the links tying it to its neighbor sites. Also all future
entries in the betting book will be eliminated as well, the partner sites will neither pay lost
bets to the defaulted site nor will they receive what they would have won. So default of
a site can be good or bad for partner sites, depending on the the exterior process X (t).
Any open payments of the defaulted bank to external customers will be shared by all the
remaining banks. This resembles the function of a deposit insurance system to some extent.
A default of a neighbor site can be disastrous for a bank however, since it becomes rapidly
exposed to external risk again, which can be high, and in case of a bad outcome of X (¢) can
cause its own default as well. In this context spatial catastrophe-spreading can be studied

dynamically.



RESULTS

We implemented the above model for N = 36 sites to stay within reasonable computing
times. For simulations of the regulation effects we used N = 100 banks for networks with

X0 = (), in order to keep things as

low connectivity C. The external incentive was set inc
transparent as possible and not be disturbed by externally enforced drifts. As the initial

condition we set W;(0) = 1, for all 4.

Network Effects

In order to estimate the effects of different network topologies on the game, in a first set
of simulations we set the Basle parameter Lp,g. to infinity, i.e. it will not play any role.
We first analyze the time-series of the wealth processes. In Fig. 2 (a) and (b) we show the
wealth trajectories of the 36 sites over 200 timesteps for a diffusion constant D = 7. The
latter was chosen to avoid defaults during this run. The 1D lattice (left row) is compared to
the fully connected graph (right). The difference due to network topology is visible by plain
eye. The fully connected graph appears to keep the sites at more or less the same level of
wealth, while for the badly connected topology some sites become ”rich” and some are at
the edge of disappearing. The fully connected graph provides a ”fair” basis for all sites. In
Fig. 2 (c) and (d) the log-return of the wealth process, r;(t) = log(W;(t)) —log(W;(t—1)), is
shown, again for all sites. It can be seen that for the fully connected net the average spread
in returns is significantly smaller, the market is less volatile. The log-return is frequently
used in financial time-series, and — for efficient and complete markets (which is unrealistic)
— is often assumed to be Gaussian [9]. The corresponding distributions for the two runs
are shown in 2 (e) and (f). The log-return distribution of the fully connected network is
clearly "more” Gaussian for small r;, but still has large outliers (fat tails). Fat tails are a
well known phenomenon in financial time-series [3, 6, 17, 19], which has been addressed in
a number of physical models recently, see e.g. [8, 10, 13, 14, 18].

In Fig. 3 we present the number of defaults as a function of connectivity, occurred during
a simulation with a diffusion constant D = 10 (a). All the data and errors shown in the
figure are mean values and standard deviations from 50 independent simulation runs, each

a 100 timesteps long. The spread is defined as the variance of wealth of the N sites at the



latest time in the simulation (100 timesteps) and is shown in (b). Volatility is defined as
V=> Il , (3)
it

and is a measure of trading activity in a market (c). All of these above measures show a
clear drop as the number of links per site rises, i.e. as the connectivity of the network, or
the risk flow or ”permeability” increases. It seems reasonable to define an index of efficiency
of the network, which relates the risk imposed by the exterior clients to the risk the banks

are left with after risk-trading (at the end of the trading day):

E(f) = exo (t) — > Ri(t, after trades)
total (1)

If all the risk is compensated £ = 1, if trading did not have any risk-reducing effect, it

(4)

should equal zero. The corresponding curve is given in Fig. 3 (d), and shows that the
efficiency of the network increases from about £ = 0.74 to £ = 0.92. In (e) we show the
ratio of active to passive strategies as adopted by the players during the run. It is seen
that for the poorly connected topologies sites are forced to be more active since they face
high risk/wealth ratios. As a measure for overall safety in the various networks we looked
at the mean first-default-times in separate runs for various values of the diffusion constant
D. The mean first-default-times are averages over the timesteps in the simulation until the
fist default occurs. 1000 independent runs have been performed; random graphs have been
additionally averaged over 10 different random topologies. A clear power law is seen when
plotted in a log-log fashion, as in Fig. 4. The corresponding power exponents for D = 0.20,
0.15, and 0.13 are 0.21, 0.42, and 0.56, respectively.

In a set of simulations we observed contagion effects. Contagion means that the default
of a given bank significantly increases the default probability of its neighbors. In many
scenarios the default of neighbors is realized and local ”banking crises” can be observed. To
model effects like September 11 we artificially removed a single large bank from the network.
The spread of the crisis depends heavily on the network topology, and ranges from small,
locally bounded events to the total collapse of the network. Since these results are hard to

visualize over the time course we do not present them in this version of the paper.
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Basle Parameter Effects

Now we bring the Basle parameter Lg,g. down to finite values and study its effects on
network safety. As a measure of safety we again take the mean first default time as defined
above. For a fixed value of D we run simulations for different values of Lgp,ge.. To study
the effects of network type we perform the runs for the 1D and 2D regular lattices with
a connectivity of 2 and 4 respectively. These runs contained 100 banks, so that higher
connectivity was beyond reasonable computation time. Results are given in Fig. 5. First
default time, which is an inverse measure of network risk, generally decreases with increasing
Basle multiplier Lg,q.. As one would expect, a lower value of Lp,se — which is equivalent to
a higher capital cushion — reduces the risk of the system.

One of the most interesting findings of this paper is the existence of two plateaus, one for
low and one for high values of Lg,ge. This seems to be independent of network structure.
From a regulator’s point of view, this means that there are regions of the multiplier Lg,ge,
where a seemingly strong reduction of the regulatory parameter has vanishing or even zero
effect on the safety of the system. It could be interesting for regulators to know in which
region the current regulatory framework is located.

The strong (power like) decay from one plateau to the other is often related to a phase
transition in physics. This means the existence of two stable regimes (where regulatory
activity has no effect) which can change from one state to the other within a relatively small
critical region. Whenever a phase transition is present powerful mathematical tools from
statistical physics can be applied and used to describe such systems.

We found that a change in parameter D results in a parallel shift of the curves and does

not alter the basic characteristics of the findings.

DISCUSSION

To summarize, we have introduced a relatively simple model of interacting agents who
change their modes of interaction (strategy) according to their state of being, i.e. their
need to reduce risk. The basic model is inspired from the structure of the well-known
iterated prisoner’s dilemma [2, 12], where two players are equipped with two possible actions,

see also [24]. In our case the pay-off matrix additionally depends on an external process,
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and the size of bets, which in our model is a dynamical variable. Our model contains
very few parameters, three of which, the connectivity C, the diffusion parameter D, and
the regulatory (Basle) parameter Lp,ge are the relevant ones. We have checked that the
remaining parameters o and 7,,, play a comparably irrelevant role which we do not discuss
here. We have performed several runs with various sizes of N to check for finite size effects.
We found that for N smaller than about 20, scaling starts to vanish. Our main results
are that in a number of crucial measures there exists a very sensitive dependence on the
connectivity (which models the market structure in the real world). We find that in well
connected networks almost no spread of wealth is able to develop and that topology alone
can lead to ”fair” networks. Highly connected networks show significantly less large moves
in wealth changes (less volatility), the market becomes less hectic. Distributions of the log-
returns are "more” Gaussian, but still show realistic fat tails. Well connected networks are
more efficient in reducing global risk, and show significantly fewer defaults. The average
first default time (inverse safety) increases with connectivity as a power with exponents
smaller than 1. If connectivity is associated with costs for the agents, this demonstrates
that safety becomes extremely costly (power-like) as higher levels of safety are required. We
are currently investigating the same model in a small-world network setting [22].

We finally remark that the parameters C, D, and particularly Lg.qe can be controlled by
central banks and governments in reality to regulate risk [16]. It is a major finding of this
paper that the requirement of a capital cushion in the form of the Basle multiplier Lg,ge
as currently used by regulators may have unexpected adverse effects. We found that for
some Lg,ge a seemingly strong reduction of the regulatory parameter has vanishing or even
zero effect on the safety of the system. This may lead to unjustified overconfidence in the
regulatory action. It may also lead to unnecessary restrictions to economic activity, because
a relaxation of the Basle multiplier would not lower the safety of the system. The next stage
of the analysis should focus on a more detailed inspection of the interrelation of the model
parameters and on the calibration of the model to real world data.

Even though our model is phrased in terms of a game between banks who insure them-
selves by trading financial assets the model should be very general and be applicable not
only to the theory of financial markets, but also to a wide variety of interacting complex

systems.
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FIG. 1: Schematic plot of different graph topologies. (a) One site is connected to all the other N —1
sites (monopoly). (b) Each site is connected to two neighboring sites (1-D circle, with periodic
boundary) (c) Each site is connected to four neighboring sites (regular 2-D lattice, with p.b.) (d)
Random lattice: Each site is connected to a random other sites, the average number of links per
site is fixed. "Random 0.222” means that on average 22.2% of all possible (N x N) links are
present. (e) Same as before with "Random 0.444”, i.e. 44.4% of N x N possible links are realized
on average. These numbers are chosen to to provide a connectivity of C' = 8 and 16 links/site on
graphs with N = 36 sites. For the random graphs we checked that they were complete, i.e. every
site could be reached from every other site. (f) Each site is connected to all the other sites (fully

connected).

FIG. 2: Comparison between the 2D (left) and the fully connected (right) topologies. Top: Wealth
trajectories for the 36 sites. Middle: Log-returns 7;(t) of the sites plotted on top of each other. The
volatility for the fully connected graph is much less. Bottom: Distribution functions derived from
histograms of r;(¢) (points). The line is a Gaussian function with the same mean and standard
deviation as the sample of r;. Clearly the fully connected graph is "more” Gaussian, though it still

has fat tails.

FIG. 3: Performance measures as a function of the different topologies. From top to bottom: num-
ber of defaults occurred within the first 100 timesteps; spread (standard deviation) of the wealth
distribution at timestep 100; volatility estimate; efficiency parameter; ratio of active strategies over

passive ones within 100 timesteps.

FIG. 4: Mean time till the first default occurs, as a function of graph topology. We show the
situation in a for several values of the ”diffusion constant” D and find clear power law behavior.

Errors are less than symbolsize.
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FIG. 5: Mean of the first default times as a function of the regulatory Basle multiplier. Symbols
represent mean values from 100 independent simulation runs with 100 banks for two different types
of networks. Mean errors are less than twice the symbolsize, and are not shown for clarity of the

plot.
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